A Database of Graphs in Combinatorica Format
A Database of Graphs in Combinatorica Format
|
|
|
This page contains several collection of important classes of graphs,
all converted to the
graph format used by
Combinatorica, a package for
teaching and research in discrete mathematics, particularly combinatorics
and graph theory.
See our associated book:
Computational Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica by
Sriram Pemmaraju and
Steven Skiena,
Cambridge University Press, 2003 for more information about Combinatorica.
These graphs can be used to test conjectures, by explictly testing
whether a given property holds on all small trees, bipartite graphs, etc.
Experiments with
Random labeled graphs are typically easy to construct, but experiments
with them are typically wasteful because isomorphic copies can be repeatedly
generated, and
unconvincing because they do not systematically look for all possible
counter-examples.
These graph collections represent complete sets of interesting unlabeled
graphs, and permit typically testing all relevant
graphs up to a non-trivial number
of vertices.
For example, the animation above cycles through all 106 unlabeled trees on
10 vertices; by comparison,
there are 100,000,00 labeled trees on 10 vertices!
These graphs are converted to Combinatorica format
from the originals made available in the compact but unprintable g6 format on
Gordon Royle's website.
He deserves great thanks for making them available. Larger instances of many
graph classes are available on his site.
The conversion from g6 format was done using
conversion software developed by King Larry Mak
at Stony Brook.
Graph databases available include
All of these files have been collected into a single 6MB
gzipped tarfile for convenient downloading.
A Database of Graphs in Combinatorica Format
A Database of Graphs in Combinatorica Format
|
|
|
This page contains several collection of important classes of graphs,
all converted to the
graph format used by
Combinatorica, a package for
teaching and research in discrete mathematics, particularly combinatorics
and graph theory.
These graphs can be used to test conjectures, by explictly testing
whether a given property holds on all small trees, bipartite graphs, etc.
Experiments with
Random labeled graphs are typically easy to construct, but experiments
with them are typically wasteful because isomorphic copies can be repeatedly
generated, and
unconvincing because they do not systematically look for all possible
counter-examples.
These graph collections represent complete sets of interesting unlabeled
graphs, and permit typically testing all relevant
graphs up to a non-trivial number
of vertices.
For example, the animation above cycles through all 106 unlabeled trees on
10 vertices; by comparison,
there are 100,000,00 labeled trees on 10 vertices!
These graphs are converted to Combinatorica format
from the originals made available in the compact but unprintable g6 format on
Gordon Royle's website.
He deserves great thanks for making them available. Larger instances of many
graph classes are available on his site.
The conversion from g6 format was done using
conversion software developed by King Larry Mak
at Stony Brook.
Graph databases available include
Bipartite Graphs
Trees
Vertex-critical graphs
Edge-critical graphs
Type-2 Edge Colorable Graphs (Vizing's theorem)
Cubic graphs
Vertices | girth>=3 | >=5 | >=6 | >=7 |
8 | 5 | 0 | 0 | 0 |
10 | 19 | 1 | 0 | 0 |
12 | 85 | 2 | 0 | 0 |
14 | 509 | 9 | 1 | 0 |
16 | 4060 | 49 | 1 | 0 |
18 | 41301 | 455 | 5 | 0 |
20 | 510489 | 5783 | 32 | 0 |
22 | 7319447 | 90938 | 385 | 0 |
24 | 117940535 | 1620479 | 7574 | 1 |
26 | 2094480864 | 31478584 | 181227 | 3 |
28 | 40497138011 | 4624501 | 4624501 | 21 |
30 | 2094480864 | 432757568 | 122090544 | 546 |
Snarks
Transitive graphs
Cubic Transitive Graphs
Vertices | Prime Factorization | Symmetric | Cayley | Non-Cayley | Total |
68 |
2, 2, 17 |
0 |
11 |
1 |
12 |
70 |
2, 5, 7 |
0 |
11 |
0 |
11 |
72 |
2, 2, 2, 3, 3 |
1 |
36 |
1 |
37 |
74 |
2, 37 |
1 |
8 |
1 |
9 |
76 |
2, 2, 19 |
0 |
11 |
0 |
11 |
78 |
2, 3, 13 |
1 |
14 |
0 |
14 |
80 |
2, 2, 2, 2, 5 |
1 |
29 |
4 |
33 |
82 |
2, 41 |
0 |
8 |
1 |
9 |
84 |
2, 2, 3, 7 |
1 |
27 |
3 |
30 |
86 |
2, 43 |
1 |
9 |
0 |
9 |
88 |
2, 2, 2, 11 |
0 |
16 |
1 |
17 |
90 |
2, 3, 3, 5 |
1 |
18 |
3 |
21 |
92 |
2, 2, 23 |
0 |
13 |
0 |
13 |
94 |
2, 47 |
0 |
9 |
0 |
9 |
96 |
2, 2, 2, 2, 2, 3 |
2 |
90 |
? |
? |
98 |
2, 7, 7 |
2 |
13 |
0 |
13 |
100 |
2, 2, 5, 5 |
0 |
23 |
2 |
25 |
102 |
2, 3, 17 |
1 |
15 |
1 |
16 |
104 |
2, 2, 2, 13 |
1 |
? |
? |
22 |
106 |
2, 53 |
0 |
10 |
1 |
11 |
108 |
2, 2, 3, 3, 3 |
1 |
? |
? |
42 |
110 |
2, 5, 11 |
1 |
19 |
0 |
19 |
112 |
2, 2, 2, 2, 7 |
3 |
? |
? |
38 |
114 |
2, 3, 19 |
1 |
18 |
0 |
18 |
116 |
2, 2, 29 |
0 |
17 |
1 |
18 |
118 |
2, 59 |
0 |
11 |
0 |
11 |
120 |
2, 2, 2, 3, 5 |
2 |
? |
? |
? |
122 |
2, 61 |
1 |
12 |
1 |
13 |
124 |
2, 2, 31 |
0 |
17 |
0 |
17 |
126 |
2, 3, 3, 7 |
1 |
? |
? |
26 |
128 |
2, 2, 2, 2, 2, 2, 2 |
2 |
82 |
1 |
83 |
130 |
2, 5, 13 |
0 |
17 |
2 |
19 |
132 |
2, 2, 3, 11 |
0 |
? |
? |
35 |
134 |
2, 67 |
1 |
13 |
0 |
13 |
136 |
2, 2, 2, 17 |
0 |
? |
? |
28 |
138 |
2, 3, 23 |
0 |
19 |
0 |
19 |
140 |
2, 2, 5, 7 |
0 |
? |
? |
? |
142 |
2, 71 |
0 |
13 |
0 |
13 |
144 |
2, 2, 2, 2, 3, 3 |
2 |
? |
? |
? |
146 |
2, 73 |
1 |
14 |
1 |
15 |
148 |
2, 2, 37 |
0 |
21 |
1 |
22 |
150 |
2, 3, 5, 5 |
1 |
? |
? |
28 |
152 |
2, 2, 2, 19 |
1 |
? |
? |
27 |
154 |
2, 7, 11 |
0 |
19 |
0 |
19 |
156 |
2, 2, 3, 13 |
0 |
? |
? |
46 |
158 |
2, 79 |
1 |
15 |
0 |
15 |
160 |
2, 2, 2, 2, 2, 5 |
0 |
? |
? |
? |
162 |
2, 3, 3, 3, 3 |
3 |
? |
? |
? |
164 |
2, 2, 41 |
0 |
23 |
1 |
24 |
166 |
2, 83 |
0 |
15 |
0 |
15 |
168 |
2, 2, 2, 3, 7 |
6 |
? |
? |
? |
170 |
2, 5, 17 |
0 |
21 |
2 |
23 |
172 |
2, 2, 43 |
0 |
23 |
0 |
23 |
174 |
2, 3, 29 |
0 |
23 |
0 |
23 |
176 |
2, 2, 2, 2, 11 |
0 |
? |
? |
? |
178 |
2, 89 |
0 |
16 |
1 |
17 |
180 |
2, 2, 3, 3, 5 |
0 |
? |
? |
? |
182 |
2, 7, 13 |
4 |
23 |
2 |
25 |
184 |
2, 2, 2, 23 |
0 |
? |
? |
31 |
186 |
2, 3, 31 |
1 |
26 |
0 |
26 |
188 |
2, 2, 47 |
0 |
25 |
0 |
25 |
190 |
2, 5, 19 |
0 |
23 |
0 |
23 |
192 |
2, 2, 2, 2, 2, 2, 3 |
3 |
? |
? |
? |
194 |
2, 97 |
1 |
18 |
1 |
19 |
196 |
2, 2, 7, 7 |
0 |
? |
? |
35 |
198 |
2, 3, 3, 11 |
0 |
? |
? |
? |
200 |
2, 2, 2, 5, 5 |
1 |
? |
? |
61 |
202 |
2, 101 |
0 |
18 |
1 |
19 |
204 |
2, 2, 3, 17 |
1 |
? |
? |
53 |
206 |
2, 103 |
1 |
19 |
0 |
19 |
208 |
2, 2, 2, 2, 13 |
1 |
? |
? |
? |
210 |
2, 3, 5, 7 |
0 |
43 |
? |
? |
212 |
2, 2, 53 |
0 |
29 |
? |
30 |
214 |
2, 107 |
0 |
19 |
0 |
19 |
216 |
2, 2, 2, 3, 3, 3 |
3 |
? |
? |
? |
218 |
2, 109 |
1 |
20 |
1 |
21 |
220 |
2, 2, 5, 11 |
3 |
? |
? |
? |
222 |
2, 3, 37 |
1 |
30 |
0 |
30 |
224 |
2, 2, 2, 2, 2, 7 |
3 |
? |
? |
? |
226 |
2, 113 |
0 |
20 |
1 |
21 |
228 |
2, 2, 3, 19 |
0 |
? |
? |
57 |
230 |
2, 5, 23 |
0 |
27 |
0 |
27 |
232 |
2, 2, 2, 29 |
0 |
? |
? |
40 |
234 |
2, 3, 3, 13 |
2 |
? |
? |
? |
236 |
2, 2, 59 |
0 |
31 |
0 |
31 |
238 |
2, 7, 17 |
0 |
27 |
? |
? |
240 |
2, 2, 2, 2, 3, 5 |
3 |
? |
? |
? |
242 |
2, 11, 11 |
1 |
25 |
0 |
25 |
244 |
2, 2, 61 |
0 |
33 |
1 |
34 |
246 |
2, 3, 41 |
0 |
31 |
0 |
31 |
248 |
2, 2, 2, 31 |
1 |
? |
? |
41 |
250 |
2, 5, 5, 5 |
1 |
? |
? |
37 |
252 |
2, 2, 3, 3, 7 |
0 |
? |
? |
? |
254 |
2, 127 |
1 |
23 |
0 |
23 |
256 |
2, 2, 2, 2, 2, 2, 2, 2 |
4 |
? |
? |
284 |
258 |
2, 3, 43 |
1 |
34 |
0 |
34 |
Bipartite Graphs
Trees
Vertex-critical graphs
Edge-critical graphs
Type-2 Edge Colorable Graphs (Vizing's theorem)
Cubic graphs
Vertices | girth>=3 | >=5 | >=6 | >=7 |
8 | 5 | 0 | 0 | 0 |
10 | 19 | 1 | 0 | 0 |
12 | 85 | 2 | 0 | 0 |
14 | 509 | 9 | 1 | 0 |
16 | 4060 | 49 | 1 | 0 |
18 | 41301 | 455 | 5 | 0 |
20 | 510489 | 5783 | 32 | 0 |
22 | 7319447 | 90938 | 385 | 0 |
24 | 117940535 | 1620479 | 7574 | 1 |
26 | 2094480864 | 31478584 | 181227 | 3 |
28 | 40497138011 | 4624501 | 4624501 | 21 |
30 | 2094480864 | 432757568 | 122090544 | 546 |
Snarks
Transitive graphs
Cubic Transitive Graphs
Vertices | Prime Factorization | Symmetric | Cayley | Non-Cayley | Total |
68 |
2, 2, 17 |
0 |
11 |
1 |
12 |
70 |
2, 5, 7 |
0 |
11 |
0 |
11 |
72 |
2, 2, 2, 3, 3 |
1 |
36 |
1 |
37 |
74 |
2, 37 |
1 |
8 |
1 |
9 |
76 |
2, 2, 19 |
0 |
11 |
0 |
11 |
78 |
2, 3, 13 |
1 |
14 |
0 |
14 |
80 |
2, 2, 2, 2, 5 |
1 |
29 |
4 |
33 |
82 |
2, 41 |
0 |
8 |
1 |
9 |
84 |
2, 2, 3, 7 |
1 |
27 |
3 |
30 |
86 |
2, 43 |
1 |
9 |
0 |
9 |
88 |
2, 2, 2, 11 |
0 |
16 |
1 |
17 |
90 |
2, 3, 3, 5 |
1 |
18 |
3 |
21 |
92 |
2, 2, 23 |
0 |
13 |
0 |
13 |
94 |
2, 47 |
0 |
9 |
0 |
9 |
96 |
2, 2, 2, 2, 2, 3 |
2 |
90 |
? |
? |
98 |
2, 7, 7 |
2 |
13 |
0 |
13 |
100 |
2, 2, 5, 5 |
0 |
23 |
2 |
25 |
102 |
2, 3, 17 |
1 |
15 |
1 |
16 |
104 |
2, 2, 2, 13 |
1 |
? |
? |
22 |
106 |
2, 53 |
0 |
10 |
1 |
11 |
108 |
2, 2, 3, 3, 3 |
1 |
? |
? |
42 |
110 |
2, 5, 11 |
1 |
19 |
0 |
19 |
112 |
2, 2, 2, 2, 7 |
3 |
? |
? |
38 |
114 |
2, 3, 19 |
1 |
18 |
0 |
18 |
116 |
2, 2, 29 |
0 |
17 |
1 |
18 |
118 |
2, 59 |
0 |
11 |
0 |
11 |
120 |
2, 2, 2, 3, 5 |
2 |
? |
? |
? |
122 |
2, 61 |
1 |
12 |
1 |
13 |
124 |
2, 2, 31 |
0 |
17 |
0 |
17 |
126 |
2, 3, 3, 7 |
1 |
? |
? |
26 |
128 |
2, 2, 2, 2, 2, 2, 2 |
2 |
82 |
1 |
83 |
130 |
2, 5, 13 |
0 |
17 |
2 |
19 |
132 |
2, 2, 3, 11 |
0 |
? |
? |
35 |
134 |
2, 67 |
1 |
13 |
0 |
13 |
136 |
2, 2, 2, 17 |
0 |
? |
? |
28 |
138 |
2, 3, 23 |
0 |
19 |
0 |
19 |
140 |
2, 2, 5, 7 |
0 |
? |
? |
? |
142 |
2, 71 |
0 |
13 |
0 |
13 |
144 |
2, 2, 2, 2, 3, 3 |
2 |
? |
? |
? |
146 |
2, 73 |
1 |
14 |
1 |
15 |
148 |
2, 2, 37 |
0 |
21 |
1 |
22 |
150 |
2, 3, 5, 5 |
1 |
? |
? |
28 |
152 |
2, 2, 2, 19 |
1 |
? |
? |
27 |
154 |
2, 7, 11 |
0 |
19 |
0 |
19 |
156 |
2, 2, 3, 13 |
0 |
? |
? |
46 |
158 |
2, 79 |
1 |
15 |
0 |
15 |
160 |
2, 2, 2, 2, 2, 5 |
0 |
? |
? |
? |
162 |
2, 3, 3, 3, 3 |
3 |
? |
? |
? |
164 |
2, 2, 41 |
0 |
23 |
1 |
24 |
166 |
2, 83 |
0 |
15 |
0 |
15 |
168 |
2, 2, 2, 3, 7 |
6 |
? |
? |
? |
170 |
2, 5, 17 |
0 |
21 |
2 |
23 |
172 |
2, 2, 43 |
0 |
23 |
0 |
23 |
174 |
2, 3, 29 |
0 |
23 |
0 |
23 |
176 |
2, 2, 2, 2, 11 |
0 |
? |
? |
? |
178 |
2, 89 |
0 |
16 |
1 |
17 |
180 |
2, 2, 3, 3, 5 |
0 |
? |
? |
? |
182 |
2, 7, 13 |
4 |
23 |
2 |
25 |
184 |
2, 2, 2, 23 |
0 |
? |
? |
31 |
186 |
2, 3, 31 |
1 |
26 |
0 |
26 |
188 |
2, 2, 47 |
0 |
25 |
0 |
25 |
190 |
2, 5, 19 |
0 |
23 |
0 |
23 |
192 |
2, 2, 2, 2, 2, 2, 3 |
3 |
? |
? |
? |
194 |
2, 97 |
1 |
18 |
1 |
19 |
196 |
2, 2, 7, 7 |
0 |
? |
? |
35 |
198 |
2, 3, 3, 11 |
0 |
? |
? |
? |
200 |
2, 2, 2, 5, 5 |
1 |
? |
? |
61 |
202 |
2, 101 |
0 |
18 |
1 |
19 |
204 |
2, 2, 3, 17 |
1 |
? |
? |
53 |
206 |
2, 103 |
1 |
19 |
0 |
19 |
208 |
2, 2, 2, 2, 13 |
1 |
? |
? |
? |
210 |
2, 3, 5, 7 |
0 |
43 |
? |
? |
212 |
2, 2, 53 |
0 |
29 |
? |
30 |
214 |
2, 107 |
0 |
19 |
0 |
19 |
216 |
2, 2, 2, 3, 3, 3 |
3 |
? |
? |
? |
218 |
2, 109 |
1 |
20 |
1 |
21 |
220 |
2, 2, 5, 11 |
3 |
? |
? |
? |
222 |
2, 3, 37 |
1 |
30 |
0 |
30 |
224 |
2, 2, 2, 2, 2, 7 |
3 |
? |
? |
? |
226 |
2, 113 |
0 |
20 |
1 |
21 |
228 |
2, 2, 3, 19 |
0 |
? |
? |
57 |
230 |
2, 5, 23 |
0 |
27 |
0 |
27 |
232 |
2, 2, 2, 29 |
0 |
? |
? |
40 |
234 |
2, 3, 3, 13 |
2 |
? |
? |
? |
236 |
2, 2, 59 |
0 |
31 |
0 |
31 |
238 |
2, 7, 17 |
0 |
27 |
? |
? |
240 |
2, 2, 2, 2, 3, 5 |
3 |
? |
? |
? |
242 |
2, 11, 11 |
1 |
25 |
0 |
25 |
244 |
2, 2, 61 |
0 |
33 |
1 |
34 |
246 |
2, 3, 41 |
0 |
31 |
0 |
31 |
248 |
2, 2, 2, 31 |
1 |
? |
? |
41 |
250 |
2, 5, 5, 5 |
1 |
? |
? |
37 |
252 |
2, 2, 3, 3, 7 |
0 |
? |
? |
? |
254 |
2, 127 |
1 |
23 |
0 |
23 |
256 |
2, 2, 2, 2, 2, 2, 2, 2 |
4 |
? |
? |
284 |
258 |
2, 3, 43 |
1 |
34 |
0 |
34 |