
Motivation: Online Problems
Many problems in both finance and computer science
reduce to trying to predict the future. . .

Examples from computer science include cache and vir-
tual memory management.

Examples from finance typically revolve around predict-
ing future returns for an asset, or designing a portfolio
to maximize future returns.

Such problems become trivial if we know the future (i.e.
the stream of future memory requests or tomorrow’s
newspaper), but typically we only have access to the
past.

An off-line problem provides access to all the relevant
information to compute a result.

An online problem continually produces new input and
requires answers in response.



Competitive Analysis
How can we theoretically evaluate how well an algo-
rithm forecasts the future?

Statistical forecasts provide a predict the future that
makes some sense in practice. However, they offer no
future guarantees, particularly if the data distribution
changes.

Competitive analysis offers a worst-case measure of the
quality of the behavior of an algorithm which predicts
the future.

We seek to compare the performance of algorithm A
with only knowledge of the past with an algorithm
which has complete knowledge of past and future makes
optimal use of it.

We say an online algorithm ALG is c-competitive if
there is a constant α such that for all finite input se-
quences I,

ALG(I) ≤ c · OPT (I) + α

Note that the additive constant α is a fixed cost that
becomes unimportant as the size of the problem in-
creases.

We do not particularly care about the run-time effi-
ciency of ALG (except maybe that it is polynomial),
but we do care about its competitive ratio c.



The Ski Rental Problem
Consider the problem of deciding when to purchase
skis.

Whenever you go skiing, you can either rent skis for
the day at cost x, or buy them for b · x.

If you buy them the first day, the worst case is you never
ski again, and you spent b times the optimal decision
of simply renting.

Suppose you never buy them. After k > b days, you
have spent k/b times the optimal decision of buying
from the first day.

But suppose you buy them after renting b times.

You did the right thing if you go k < b times. If you
go exactly b times, you spent twice as much as the
optimal decision, but never changes after that.

Thus this “balancing” algorithm is 2-competitive.

We can view any online algorithm as a game between
an online player (the skier) and a malicious adversary
(his/her anterior cruciate ligament).



Searching for a Price
Suppose that we want to sell a indivisible asset (say a
house) sometime over the next n days.

Say the price fluctuates on a daily basis in the real
interval [m, M], where m is the lowest possible price
and M is the highest possible price.

What strategy can we use to sell the asset and get the
highest possible price?

If we knew the future history, the optimal strategy
would be to that the maximum price occurring over
the n days.

We seek a strategy which optimizes competitive ratio,
i.e. which minimizes the maximum ratio of the price
we get over the maximum price.

We do not seek a price which is good related to the
“average”, but good in the worst case.

What can we do?



Deterministic Price Searching
Note that if the price was high at one point but we
didn’t sell, our adversary could immediately and per-
manently lower the price to m.

Note that once we sell, our adversary can immediately
raise the price to M.

At the end of the time period, we can always get a
price of at least m.

Together, this suggests that we should buy the instant
the price reaches some p∗ which is high enough that
we do OK in each instance.

The worst we do in the first case is p∗/m. The worst we
do in the second case is M/p∗. Balancing them yields:

p∗

m
=

M

p∗ → p∗ =
√

Mm

The reservation price policy (RPP) accepts the first
price greater than or equal to p∗ =

√
Mm.

Let φ = M/m define the global fluctuation ratio.

The competitive ratio c we get is

c =
√

Mm/m =

√
M√
m

=
√

φ

This is the optimal deterministic strategy.



Randomized Algorithms
Randomized algorithms use random numbers to help
them make decisions.

Randomization is particularly useful to make things dif-
ficult for an adversary – we assume the adversary has
access to your program to design a future that is bad
for you, but does not have access to read or effect the
random numbers.

In an analysis of a randomized algorithms, we deter-
mine the expected value over all random number se-
quences for the worst possible input.

Thus our analysis is completely independent of the in-
put distribution – randomized expectation has nothing
to do with statistical expectation.

Randomization can be used to design simple algorithms
which make it unlikely to encounter the worst possible
case.



Example: Finding a Tire Leak
Suppose I ride over a tack and get a flat tire.

What is the best way I can find the location of the
tack, assuming I can only explore 1/nth of the wheel
at a time?

Suppose I use the deterministic strategy of repeatedly
turning the wheel left 2π/n radians until I find the tack.

But my adversary can put the tack just to the right of
the initial position.

Then strategy yields a cost of n versus the optimal
off-line cost of 1, for a competitive ratio of n.

Suppose instead I spin the wheel around randomly and
then start walking to the left. Regardless of where the
adversary puts the tack, my expected search cost (and
competitive ratio) is n/2.



Randomized Price Searching
Suppose that φ = M/m = 2k for some integer k, i.e.
M = m2k.

Let RPPi be the deterministic reservation price policy

where we buy soon at the price hits m2i.

The strategy EXPO picks an integer i uniformly at
random from 1, . . . , k, and then performs buys soon iff
the price hits m2i.

There must be some j such that the optimum off-line
return pmax lies between m2j ≤ pmax < m2j+1.

What can the adversary do? Knowing we are restricted
to picking values of the form m2i, they will pick a value
of the form m2j+1 − ε to frustrate us for some j.

Suppose the adversary picks j.

Our target i was too big with probability (k − j)/j – if
so we were forced to settle for a price of m.

Our target i was less than pmax otherwise, meaning
were able to realize our price.



Analysis
Our expected price is:

EXPO(j) =
k − j

k
m +

1

k

j
∑

i=i

m2i (1)

=
m

k

(

k − j +

j
∑

i=i

2i

)

(2)

=
m

k

(

k − j + 2j+1 − 2
)

(3)

The competitive ratio is

c =
OPT

EXPO(j)
=

m2j+1 − ε
m
k
(k − j + 2j+1 − 2)

(4)

≈ k
2j+1

k − j + 2j+1 − 2
→ O(k) (5)

The competitive ratio is maximized when k is largest,
for a competitive ratio of O(log φ).



One-Way Trading
A generalization of the price searching problem is to
sell my entire assets over the trading period, but to
remove the constraint that I must sell it all at once.

Suppose I am trying to liquidate my position in a stock.
I may be able to better optimize my expected perfor-
mance by using this freedom.

This is particularly true in real markets, as my sales
serve to depress prices by increasing supply.

For this problem, it turns out that there is no difference
between what competitive ratio is achievable with and
without randomization.

What is a reasonable strategy?



Threat-Based Strategies
Suppose we know that a competitive ratio of c can be
obtained.

If the current price is high and I don’t sell, my adversary
can drop it to m and keep it there the rest of the period.

But if I do buy, the adversary can jack the price to M
at least momentarily, and I will be in trouble if I have
already sold everything.

The threat-based strategy buys only when the price
hits a new maximum. It buys just enough to ensure
that we achieve a competitive ratio of c if the price
drops to m for the rest of the game.

Analysis is needed to determine the optimal c value and
also how much to buy in response to price changes.

Clearly, we can achieve c = O(lgφ), since we can use
the randomized strategy and sell all at once.

Note that we can simulate the randomized strategy
deterministically by putting 1/kth of our money on each
value of i.

The optimal threat-based strategy for one-way trading
achieves a competitive ratio of 1/ ln 2 ≈ 1.44 times
better the search bound of EXPO.



Assessing the Model
How useful are our competitive algorithms for price
searching and one-way trading?

Our assumptions of upper and lower bounds on possible
price movements seem suspicious, although one can
probably make save over/under-estimates of possible
movements over short periods of time using historical
data.

Still, wider upper/lower price bounds imply worse com-
petitive ratios.

Guaranteeing you do, say half, as well as optimal doesn’t
look so good when the difference between the best in-
vestor and an index fund is often only a few percentage
points.

That said, the randomized and threat-based heuristics
seem to suggest reasonable approaches for one-way
trading.



Online Portfolio Selection
Suppose we can invest in a market with s types of
assets, including cash.

How should partition our money among the assets, and
how should we adjust our portfolio to changes in asset
prices?

The buy and hold strategy (BAH) strategy does not
attempt to modify the portfolio for long periods of
time.

Buy and hold results in very low transaction costs, and
is historically better for individual investors to do than
market-timing strategies which switch among invest-
ments seeking the best return.

Of course, market timing can yield much better returns
if you do it right. Consider a stock that alternates
returns of d and 1/d. Buy and hold returns at most d
over any period of length n, while the optimal market
timing would yield a return of dn/2.

A constant rebalancing algorithm always puts 1/s of
our current wealth in each of the s securities.

Such a diversified strategy enables us to pickup expo-
nential growth over the previous return sequence if it
starts positively.

Implementing a constant rebalancing strategy requires
daily trades, but provides a way to capitalize on boom
periods.



Two-Way Trading
Two-way trading is a special case of online portfolio
selection where you have only cash and one other se-
curity you can hold.

It differs from one-way trading in that we can shift back
and forth between the two assets.

The optimal offline strategy is clear: put all your assets
into the security on any day it offers positive returns.
Otherwise, put everything into cash.

A trading strategy is said to be money making if it
returns positive profit on every market sequence for
which the optimal offline algorithm makes a profit.

The general adversary can ensure that no money mak-
ing strategy exists.

If you are not initially invested in the non-cash asset,
the next period will be the only one offering positive
returns. If you are initially invested in the non-cash
asset, offer such a negative return as to essentially
wipe it out, then have a small enough positive return
that you cannot recoup what you lost.



The (n, φ) Adversary
Money making strategies are only possible against weaker
adversaries.

An (n, φ) trading sequence is a n − 1 day sequence of
returns for which the optimal offline strategy generates
a return of at least φ.

φ =

n−1
∏

i=1

max{1, ri}

An (n, φ) adversary is constrained to produce (n, φ)
trading sequences.

We assume that you are given n and φ in advance to
help you plan your trading strategy.

Can you devise a provably money making strategy against
an (n, φ) adversary?

How about when n = 2?

How about when n = 3?



Making Money from the
Adversary

For n = 2, we have only one trading period. Since this
must produce a profit φ, we should be fully invested in
the non-cash asset.

For n = 3, we must look ahead to the case of n = 2.
If we initially bet only on cash, the adversary will make
that the only period of positive return.

If we are initially out of cash, the adversary can wipe
us out now and show a φ in the next period.

We must bet something but not everything on the non-
cash asset in the first round. If it shows positive return,
we can quite the game with our holdings. If it shows
negative return, we still have money and know there
must be a positive return of at least φ in the remaining
time.

Through such reasoning, for large n we can work back-
wards from n − 1 to figure out the best first move to
make.



The Money Making Strategy
If n = 2, invest in the non-cash asset for return R2(φ).

Otherwise, invest the fraction b of your wealth in the
non-cash asset, where

b = argmax1
b=0 inf

x≤φ
{(bx + (1 − b))Rn−1(φn−1)}

argmax returns the b which maximizes the value, as
opposed to max which returns the value.

Once you pick a b, your adversary will pick a return x
such as to minimize your wealth.

Your wealth after this event is your initial wealth times
the returns on the cash and non-cash portions, i.e.
(bx + (1 − b)).

After the return x is revealed to you, you can figure
out the guaranteed return for the remaining period:

φn−j−1 = min{φn−j, φn−j/rj+1}

The best value of b can be determined by dynamic
programming.

Although this strategy is provably money-making, its
can be yield poor returns for large n,

Rn(φ) ≤ 1

1 − (1 − 1/φ)n−1

For large n, it can initially only afford to put a small
amount of money into non-cash assets.

Since the optimal offline return is φ, we get a not-
inspiring competitive ratio of ≥ max{n − 1, φ}.


