
Financial Time Series as
Random Walks

J. P. Morgan’s famous stock market prediction was
that “Prices will fluctuate.”

Bachelier’s Theory of Speculation in 1900 postulated
that prices fluctuate randomly.

Indeed, simple random processes can generate time se-
ries which closely resemble real financial time series.

Such a model makes sense in a world where (1) most
price changes result from temporary imbalances be-
tween buyers and sellers, (2) stronger price shocks are
inherently unpredictable, and (3) under the efficient
market hypothesis, where the current price of a stock
reflects all information about it.



Caveats
Such a model does not make sense if you believe in
technical analysis, where it assume the price trajectory
to this point offers insight into the future.

One downside of conventional random walk models
is that they predict returns as being normally or log-
normally distributed.

As we have seen, such distributions tend to underesti-
mate the frequency of extreme events.

Still, random walks can be very useful in modeling fi-
nancial risks and returns.



Applications of Random Walks
Estimating the probability distribution for the price of
a stock at a given future time t is critical to pricing
certain options.

This probability distribution can be modeled as the dis-
tribution of positions after f(t) steps of a random walk.

For this question, there is a closed form which can
calculate the probability distribution directly, using a
normal or binomial distribution (depending upon the
random walk model).

However, simulations of random walks enable one to
compute the probabilities of more complicated events. . .

Suppose you want to know the probability that a stock
will hit a given price at some point between now and
time t, or what is the expected high price reached over
this interval.

Suppose you want to know the probability a company
will go bankrupt at some point between now and time
t. We can define a company as bankrupt, say, when
its capitalization falls to less than its debt minus its
assets.



Biased Coin Flipping
A simple discrete random walk model holds that in each
step, we move a distance of 1 either up or down, with
the probability p of an upward move and 1 − p of a
downward move.

The path we take as a function of such moves defined
a random walk, and is akin to flipping a biased coin.

What is the probability Pr(h, n, p) that we get exactly
h heads and n−h tails with a coin that comes up heads
with probability p?

Pr(h, n, p) =

(

n

h

)

ph(1 − p)n−h

For an unbiased coin (p = 0.5), the expected difference
between heads and tails is 0, but the expected absolute

difference between heads and tails is O(
√

n).



Brownian Motion
Continuous random walk models, called Weiner pro-

cesses or Brownian motion, can also be considered.

A time series {pt} is a random walk if

pt = pt−1 + at

where {at} is a white noise time series.

Recall that the white noise series is defined by its vari-
ance, σ2

Under such a model, pt is not predictable or mean-
reverting, but has expected value p0.

Price series that tend to increase with time can be
modeled as a random walk with drift:

pt = µ + pt−1 + at

Such a time series only makes sense if {pt} reflects
the log price, since otherwise the impact of {at} will
diminish with time.

Over short time scales, it is not too wrong to compute
percentage changes by adding percentages



Random Walks with Memory
Successive movements in the random walks models to
discussed to date are independent, which contradicts
our natural perception about how markets move.

Hurst random walks are discrete random walks which
reverse direction with probability h.

A value of h = 0.5 generates a coin flipping random
walk, while a value of h = 1.0 generates a walk which
moves in only one direction.

Intermediate values of h should generate walks with
more “driven” than simple coin-flipping, although the
eye often mistakenly identifies trends in such walks.

Hurst walks arise in the analysis of fractal phenomenon.



Generating Random Numbers
Simulating random walks require a source of random
numbers.

Truly random numbers cannot be produced by a deter-
ministic computer.

Linear congruential generators are a reliable source of
random numbers, where

rn = (arn−1 + c) mod m

for appropriate constants a, c, and m.

Note that the accuracy of a simulation depends on gen-
erating truly pseudo-random numbers. Would a ran-
dom walk alternating up and down look like a price
series?

Statistical tests are available for measuring the validity
of a random number generator, but library function
should be good until you exceed the period where they
start to repeat.

Efficient algorithms exist for constructing numbers from
a given, non-uniform distribution using a uniform gen-
erator.



Volatility Prediction
Stock volatility (measured by the absolute value of re-
turns) tends to show much stronger short term corre-
lation than returns itself.

Lag Volatility Corr. Return Corr.
1 0.441 0.021
2 0.371 -0.016
3 0.337 -0.024
4 0.311 -0.016
5 0.319 0.004

10 0.287 0.005
20 0.249 -0.012
30 0.264 -0.001
40 0.233 0.005
50 0.209 -0.002

We used an exponentially weighted moving average
model to predict volatility.

To incorporate the volatility prediction into our random
walk model, we must map volatility to parameters for
(1) the simulated number of steps per day, and (2) the
step size.

We modeled each trading day by a walk of 1000 steps,
and adjusted the step size so as to produce the step
size to achieve the desired volatility.

We used a Hurst random walk model with h = .57,
which gave us the best results.

We did not model any drift, because we where inter-
ested in predictions over very short time intervals.



Night Moves
Usually there is a substantial difference between one
days closing price and the next day’s opening price,
reflecting the news that occurred in the interim.

The NYSE is open 9:30AM-3:30PM each day. Does
more or less activity happen in the 18 hours until the
next session?

This can be established by plotting the average daily
ratio of night-to-day changes for Dow stocks:

The average night-move over this period was 0.567
that of the day-move, with a mean of 0.527.

The impact of these moves can be simulated by running
the random walk the equivalent of this many steps each
night and starting the next day from there.



Results: Predicting the
Expected High

We used our random walk to predict the range of the
expected high achieved over the next 1 day and 10
days:

The leftmost point records the frequency the actually
high never exceeded the close of the start period, with
the rightmost point recording the frequency the actu-
ally high exceeded our prediction of what is possible in
the time period.



The random walks do a good, but not perfect job, of
predicting the actual distribution.

We also do a good, but not perfect, job of predicting
closing prices:


