
Covariance and Correlation
The covariance of random variables X and Y , is defined

Cov(X, Y ) = E[(X − µx)(Y − µy)]

If X and Y are “in sync” the covariance will be high;
if they are independent, positive and negative terms
should cancel out to give a score around zero.

The lag-l auto-covariance Cov(rt, rt−l) = γl has two in-
teresting properties, (1) γ0 = V ar(rt) and (2) gammal =
γ−l.

The correlation coefficient of random variables X and
Y , is defined

ρx,y =
Cov(X, Y )

√

V ar(X)V ar(Y )

It measures the strength of linear dependence between
X and Y , and lies between -1 and 1.



Correlation and Causation
Note that correlation does not imply causation – the
conference of the Super Bowl winner has had amazing
success predicting the fate of the stock market that
year.

If you investigate the correlation of many pairs of vari-
ables (such as in data mining), some are destined to
have high correlation by chance.

The meaningfulness of the correlation can be evaluated
by considering (1) the number of pairs tested, (2) the
number of points in each time series, (3) the sniff test
of whether there should be a connection, (4) statistical
tests.



Stationarity
The mathematical tools we apply to the analysis of
time series data rest on certain assumptions about the
nature of the time series.

A time series {rt} is said to be weakly stationary if
(1) the mean of rt, E(rt), is a constant and (2) the
covariance Cov(rt, rt−l) = γl, which depends only upon
l.

In a weakly stationary series, the data values fluctuate
with constant variation around a constant level.

The financial literature typically assumes that asset re-
turns are weakly stationary, as can be tested empiri-
cally.



Autocorrelation
The lag-l autocorrelation ρl is the correlation coeffi-
cient of rt and rt−l.

A linear time-series is characterized by its sample au-

tocorrelation function al = ρl.

The naive algorithm for computing the autocorrela-
tion function takes O(n2) time for a series of n terms,
however fast convolution algorithms can compute it in
O(n log n) time.

What would we expect the autocorrelation function of
stock returns to look like?

If stock returns are truly random, we expect all lags to
show a correlation of around zero.

What about stock market volatility?

Presumably today’s volatility is a good predictor for
tomorrow, so we expect high autocorrelations for short
lags.

What about daily gross sales for Walmart?

Presumably today’s sales are a good predictor for yes-
terday’s, so we expect high autocorrelations for short
lags.

However, there are presumably also day-of-week effects
(Sunday is a bigger sales day than Monday) and day-
of-year effects (Christmas season is bigger than mid-
summer). These will show up as lags of 7 and about
365, respectively.



Autocorrelation Analysis of
GDP

**** Demonstration of Analysis of U.S. Quarterly Real GDP: 1967-2002.

**** "<====" indicates my explanation of the command.
**** Output will be explained in class.

--
input x1,x. file ’q-rgdpf6702.dat’ <=== Load data into SCA.

X1 , A 144 BY 1 VARIABLE, IS STORED IN THE WORKSPACE
X , A 144 BY 1 VARIABLE, IS STORED IN THE WORKSPACE

--
y=ln(x) <=== Take natural log transformation

--
diff old y. new dy. comp. <=== Take first difference of the log series.

1
DIFFERENCE ORDERS ARE (1-B )

SERIES Y IS DIFFERENCED, THE RESULT IS STORED IN VARIABLE DY
SERIES DY HAS 143 ENTRIES

--
iden dy. <=== Compute ACF and PACF of the differenced series.

NAME OF THE SERIES . . . . . . . . . . DY
TIME PERIOD ANALYZED . . . . . . . . . 1 TO 143

MEAN OF THE (DIFFERENCED) SERIES . . . 0.0071
STANDARD DEVIATION OF THE SERIES . . . 0.0079
T-VALUE OF MEAN (AGAINST ZERO) . . . . 10.7080

AUTOCORRELATIONS

1- 12 .29 .22 .07 .05 -.06 -.04 -.10 -.23 -.03 -.02 -.01 -.18

ST.E. .08 .09 .09 .09 .09 .10 .10 .10 .10 .10 .10 .10
Q 12.4 19.8 20.4 20.9 21.4 21.7 23.2 31.1 31.3 31.3 31.4 36.5

13- 24 -.09 -.18 -.13 -.00 -.05 .02 .05 .09 .07 .05 -.01 -.02
ST.E. .10 .10 .10 .11 .11 .11 .11 .11 .11 .11 .11 .11



Q 37.9 43.1 45.7 45.7 46.1 46.2 46.5 47.9 48.7 49.2 49.2 49.3

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
+----+----+----+----+----+----+----+----+----+----+

I
1 0.29 + IXXX+XXX

2 0.22 + IXXX+XX
3 0.07 + IXX +
4 0.05 + IX +

5 -0.06 + XI +
6 -0.04 + XI +

7 -0.10 + XXXI +
8 -0.23 X+XXXXI +
9 -0.03 + XI +

10 -0.02 + XI +
11 -0.01 + I +

12 -0.18 +XXXXI +
13 -0.09 + XXI +

14 -0.18 XXXXXI +
15 -0.13 + XXXI +
16 0.00 + I +

17 -0.05 + XI +
18 0.02 + IX +

19 0.05 + IX +
20 0.09 + IXX +

21 0.07 + IXX +
22 0.05 + IX +
23 -0.01 + I +

24 -0.02 + XI +

Thus autocorrelation analysis enables us to identify pe-
riodic cycles in the time series.



Autoregressive Models
A simple autoregressive model to capture a significant
lag-1 autocorrelation is

rt = φ0 + φ1rt−1 + at

where {at} is assumed to be a white noise series with
mean zero and σa

2.

The autocorrelation function of white noise should be
near zero.

The order of the model is the number of terms of
history; this is an AR(1) model, which can readily be
generalized into AR(p) models for arbitrary p.



Building Autoregressive Models
For a given return series and desired history, the φi pa-
rameters can be found using the least squares method.

Build an (n − p)× (p +1) matrix where the lth column
is the lag-(l − 1) return series.

If p ≈ n, we have a complete linear system, and Gaus-
sian elimination will set all of the parameters.

When p ≤ n, we can find the φ coefficients which min-
imize least-square errors.

The white noise residual terms can be calculated

at = rt − (φ0 + φ1rt−1)

A model is likely good if the magnitude and variance
of the residual terms are small.

A model has likely captured enough history if the au-
tocorrelation function of the residuals is small.



Forecasting with
Autoregressive Models

The value of the model at the next time step can be
easily predicted by plugging in terms.

rt = φ0 + φ1rt−1

The observed variance of the residual terms provides
error bounds on the reliability of our forecast.

By plugging the predicted next value into the model
and repeating, we can forecast indefinitely into the fu-
ture but the error bounds on our predictions will dete-
riorate.



Moving Average Models
A special class of autoregressive models assumes com-
plete history, but constrains the coefficients to make
the number of parameters tractable.

The form of an exponentially weighted moving average

model is

rt = φ0 +
∑

i

θ1
irt−i + at

Note that the weight of each term decreases exponen-
tially with history.

Subtracting the series for rt and θ1rt−1 yields

rt = φ0(1 − θ1) + at − θ1at−1

Thus the next prediction of rt from such an order-
1 moving average model can be computed from the
previous prediction and the next result.

In general, an MA(q) model has form

rt = c0 + at −

i=q
∑

i

θqat−q

The order of such a model can be determined by anal-
ysis of the autocorrelation function.

The parameters of this model cannot be set using least
squares, because the error terms at are affected by the
parameters themselves.



Trial and error (for MA(1) models) or more sophisti-
cated numerical methods are needed.

Exponential moving average models are often used for
volatility prediction,

Vn = λVn−1 + (1 − λ)V ′
n−1

where V is the predicting volatility and V ′ the observed
volatility.

Volatility is fairly stable, as shown by the fact that the
last 30 to 90 days still has predictive power. Thus
the exponential decay must be small. The RiskMetrics
model uses λ ≈ 0.944 for volatility estimation.



Relating Time Series
In many applications, the relationship between two time
series is important.

Consider the relationship between the 1-year Treasury
interest rate r1t and the 3-year rate r3t, sampled each
week.

We expect them both to move pretty much in tandem
in response to world events, and that typically r3t > r1t.
But what is the relationship?

A simple linear model yields

r3t = α + βr1t + et

where et is the error term.

When fitted to data, this yielded

r3t = 0.911 + .924r1t + et

with σe = 0.538 and R2 = 95.8%.

However, if we plot the error terms, we see these resid-

uals are highly autocorrelated – there are periods in
time where the yield curve is inverted.

The high serial correlation and R2 are misleading; there
is not a long-term equilibrium between the rates.

Since our residuals are not independent, we must look
for a model which removes such autocorrelations.



Removing Autocorrolations
Consider the delta functions c1t = r1t − r1,t−1 and c3t =
r3t − r3,t−1

These deltas remain highly correlated, since

c3t = 0.0002 + 0.7811c1t + et

with σe = 0.0682 and R2 = 84.8%.

However, the remaining error terms are not significantly
autocorrelated.

We can use a moving average (MA(1)) model to re-
move such autocorrelations,

c3t = α + βr3t + at − θat−1

The parameters can be fit using maximum likelihood
methods.

Once such parameters are fit, the delta functions can
be back substituted to give us r3t as a function of r3,t−1,
r1t, r1,t−1, and at−1.



GARCH Models
We have previously associated the risk of an investment
with the volatility of its returns.

The implied volatility of a return series is defined by
the variance of the returns.

However, this calculation is based on the assumption
that returns are log-normally distributed.

GARCH (generalized autoregressive conditional heteroscedas-
tic) models are often used to model volatility.

Heteroscedastic means a set of statistical distributions
having different variances.

Let at = rt − µt The GARCH(1,1) model is defined by
at = σtεt where

σt
2 = α0 + α1a

2
t−1 + β1σt−1

2

where 0 ≤ α1, β1 ≤ 1 and (α1 + β1) < 1

These conditions imply that the model is mean revert-

ing, which implies that it returns to an average value
after reaching extremes.


