
Time Series Analysis
A time series are the values of a function sampled at
different points in time.

Time series data arises throughout the natural and
physical sciences, as growth curves, statistical mea-
surements of activity, . . .

With respect to financial data, the price of any asset
as a function of time naturally gives a time series.

Many relevant statistics (such as the unemployment
rate or index of leading economic indicators) can also
be thought of as time series data.

A wide variety of mathematical and statistical tools
have been developed for working with time series data.

Adherents to technical analysis argue that insight into
future price movements follow from the analysis of a
given asset’s price time series.

Regardless, the analysis of financial time series is im-
portant in developing/evaluating any investment strat-
egy, risk modeling, and arbitrage.



Asset Returns
The price of an asset as a function of time is perhaps
the most natural financial time series, but it is not the
best way to manipulate the data mathematically.

The price of any reasonable asset will increase expo-

nentially with time, but most of our mathematical tools
(e.g. correlation, regression) work most naturally with
linear functions.

The mean value of an exponentially-increasing time
series has no obvious meaning.

The derivative of an exponential function is exponen-
tial, so day-to-day changes in price have the same un-
fortunate properties.

Much better is to represent the data as a simple net

return:
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Negative returns means the asset declined in value,
positive returns means it increased, zero returns means
it is unchanged.

The return is a complete and scale-free summary of
investment performance.



Multiperiod Returns
A nice property of returns is that multiplying them gives
the return over a longer period:
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Normally, returns are discussed in annualized terms, so
over k years the annualized return is computed by its
geometric mean:
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Why the geometric mean instead of the arithmetic
mean? Because k years at the annualized rate of re-
turn gives exactly the same payoff as the given return
time series.

This can best be computed with logarithms or approx-
imated by its Taylor expansion, an arithmetic mean:
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Logarithmic and Other Returns
The mathematical complexities of multiplying returns
can be eliminated by dealing with continuously com-

pounded returns or log returns:

rt = ln(1 + Rt) = ln(
Pt

Pt−1

) = ln Pt − lnPt−1

The multiperiod log return is simply the sum of the log
returns.

Returns of assets paying dividends must include the
value of the dividend payments at the time they are
issued. Note that ignoring dividend payments with re-
spect to returns only messes up data points on dividend
days, instead of invalidating the entire time series.

The excess return of an asset at time t is the differ-
ence between its return and that of a reference asset,
typically the risk-free rate.

The excess return is the payoff of a portfolio going long
in the asset and short on the reference.



Moments of Distributions
The lth moment of a continuous random variable X is
defined

m′
l = E(X l) =

∫ ∞

−∞
xlf(x)dx

where E(X) is the expected value and f(x) is the prob-
ability density function of X.

The first moment is the mean or expectation of X, µx.

The lth central moment of a continuous random vari-
able X is defined
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The second central moment is the variance (σx)2 where
σx is the standard deviation.

The variance measures how much the random variable
jumps around from the mean.

The third central moment is the skewness of the ran-
dom variable, a measure of the extent of symmetry.

The fourth central moment is the kurtosis, a measure
of how much mass in the tails of the distribution.



Properties of Asset Returns
If we consider the returns of a volatile asset, such the
daily return on a stock, we would expect:

• The expected value will be small, probably near
zero. Think about 10% return divided by 365 days.

• There should be a gross symmetry between nega-
tive returns and positive returns.

• Smaller absolute returns will occur more frequently
than larger absolute returns.

All of these suggest some time of bell-shaped curve,
but which one. . .



The Normal Distribution
The classic bell-shaped curve is that of the normal dis-

tribution, whose probability density function is:

f(x) =
e((−(x−µ)2)/(2σ2))

(σ
√

2π)

where σ > 0, −∞ < µ < ∞, and −∞ < x < ∞.

This is centered around the mean, symmetrical, and
has tails which go out to infinity in each direction.

The normal distribution is completely parameterized by
the mean and standard deviation.

Approximately 2/3 of the probability mass of a normal
distribution lies within one standard deviation from the
mean.



Approximately 95% of the probability mass of a normal
distribution lies within two standard deviations from the
mean.

Thus the probability of being far from the mean de-
creases rapidly – less than one in 10,000 points is more
than four two standard deviations from the mean.



What’s Normal?
Human heights and weights seem to be fit reasonably
well by normal distributions, although the observed dis-
tributions do not have tails which go to infinity.

Consider compare this to the distribution of incomes.
It is much rarer to find someone twice as tall as the
mean than twice as rich as the mean.

The tails of the income distribution go out much fur-
ther than is supported by a normal distribution.

Stock returns are not completely modeled by normal
distributions because:

• a lower bound on return is −1, with no upper
bound,

• if daily returns were normally distributed, then mul-
tiperiod returns are not normal (they would be the
product of normals),

• Empirical data suggests that returns show greater
kurtosis (fatter tails) than expected with a normal
distribution.



The Lognormal Distribution
Another common assumption is that the log returns rt

are normally distributed with mean µ and variance σ2.

Since the sum of a finite number of independent normal
random variables is normal, the conceptual problem
with multiperiod returns is eliminated

Still, empirical data suggest that returns show greater
kurtosis (fatter tails) than expected with a lognormal
distribution.

Creating a mixture of two normal distributions with
identical mean but different variance can produce fatter
tails:

rt ≈ (1 − α)N(µ, σ1
2) + αN(µ, σ2

2)

However, adding parameters requires more data to fit
accurately, and are less satisfying theoretically unless
you can explain the need for two distributions.

Other distributions, including stable distributions and
the Cauchy distribution have been proposed to model
returns.



Empirical Properties of
Returns

Stock returns exhibit greater kurtosis than the normal
or lognormal routines would suggest.

This means that extreme events (both positive and
negative) are observed more often than predicted by
these distributions.

Stock returns also exhibit a certain amount of skew-
ness. Certainly extreme events are more likely to be
crashes than explosions.

In general, empirical density functions are taller, skin-
nier, and have a wider base of support than the corre-
sponding normal density function.


