
Spectral Analysis
Certain phenomena of financial (and other) time se-
ries data is best revealed in the frequency domain, or
equivalently represented by their spectra.

A duality transform is a one-to-one mathematical func-
tion that takes a mathematical object of type-1 and
maps it to an equivalent type-2 mathematical object.

Sample duality relations are point-line duality in com-
putational geometry, and Laplace transforms used solv-
ing differential equations.

Such transforms are useful if there are interesting al-
gorithms and tools for manipulating data of type 2.

Perhaps the most useful duality transform known is the
Fourier transform for representing time-series data as
the sums of sine and cosine functions.

Its wide applicability is due to the existence of Fast
Fourier Transform algorithm or FFT which computes
what seems like an inherently quadratic function in
O(n lg n) time.



Filtering via the FFT
On the left, we construct a time series of points sam-
pled from a sine function with added random noise.

On the right we take the Fourier transform of this
series, plotting the coefficients of the resulting sine
functions:

50 100 150 200 250

-1.5

-1

-0.5

0.5

1

1.5

50 100 150 200 250

2

4

6

8

• Filtering – By eliminating undesirable high- and/or
low-frequency components (i.e. dropping some of
the sine functions) and taking an inverse Fourier
transform to get us back into the time domain,
we can filter a function to remove noise and other
artifacts.

• Compression – A smoothed function less informa-
tion than a noisy function, while retaining a similar
appearance. We can perform lossy compression by
eliminating the coefficients of sine functions that
contribute relatively little to the function.



FFT Filtering Example
Note how very particular cross-hatching was removed
by eliminating the appropriate transform coefficients.



Convolutions and Correlation

• Convolution and Deconvolution – A convolution
is the pairwise product of elements from two dif-
ferent sequences, such as in multiplying two n-
variable polynomials f and g or multiplying two
long integers. Implementing the product directly
takes O(n2), while O(n lgn) suffices using the fast
Fourier transform.

• Computing the correlation of functions – The cor-
relation function of two functions f(t) and g(t) is
defined by

z(t) =

∫ ∞

−∞
f(τ)g(t + τ)

and can be easily computed using Fourier trans-
forms.

If the two functions are similar in shape but one is
shifted relative to the other (such as f(t) = sin(t)
and g(t) = cos(t)), the value of z(t0) will be large
at this shift offset t0.

As an application, suppose that we want to detect
whether there are any funny periodicities (auto-
correlations) in a time series or random number
generator. When we take the Fourier transform
of this series, any large spikes will correspond to
potential periodicities.



Polynomials: A Refresher
We can represent a given polynomial

A(x) = a0 + a1x + a2x
2 + . . . + an1x

n−1

by either (1) the set of coefficients ai, or (2) a set of
n points (xi, yi) on the polynomial, i.e. yi = A(xi).

Given the coefficient representation, we can add or sub-
tract two polynomials in O(n) time by just adding or
subtracting each pair of corresponding terms.

Given the coefficient representation, we can evaluate a
polynomial in linear time using Horner’s rule

A(x) = a0 + x(a1 + x(a2 + x(a3 + . . .)))

It is not clear how to multiply two polynomials in co-
efficient representation in less than O(n2).

However, it is easy add, subtract, and multiply pairs
of polynomials in point-value representation (assuming
the same set of xi values is used in both polynomials)
by operating on the pair of points for each x value.

We can multiply coefficient polynomials by (1) con-
verting them to point-value representation, (2) multi-
ply these pointwise in O(n), and (3) interpolate these
2n points back to a polynomial.

Note that the product of two n-degree polynomials has
degree 2n.

Steps (1) and (3) can in fact be done on O(n logn) by
using the DFT and inverse transform.

Lagrange’s formula can solve the interpolation problem
in O(n2), but it is too slow.



Complex Numbers: A
Refresher

Although any polynomial of degree d should have d
roots/solutions, they sometimes require complex num-
bers:

x2 + 1 = 0

If i =
√
−1, the two solutions are i and −i.

The n roots of unity are the n solutions to the equation

xn = 1

These roots are defined by the n powers ωi
n for 0 ≤ i ≤

n − 1, where

ωn = cos(2π/n) + i sin(2π/n) = e2πi/n

The identity linking the trigonometric functions to e is

eiu = cosu + i sin u



The Discrete Fourier
Transform

The discrete Fourier transform takes as input n com-
plex numbers hk, 0 ≤ k ≤ n−1, corresponding to equally
spaced points in a time series.

It outputs n complex numbers Hk, 0 ≤ k ≤ n − 1, each
describing a trigonometric function of the given fre-
quency.

The discrete Fourier transform is defined by

Hm =

n−1∑
k=0

hke
−2πikm/n

and the inverse Fourier transform is defined by

hm =
1

n

n−1∑
k=0

Hke
2πikm/n

which enables us move easily between h and H.

However, the complexity of a naive implementation is
O(n2).



The FFT Algorithm
The critical step in efficiently computing the DFT takes
as input a set of n complex numbers a0, a1, . . . , an−1 and
outputs the sequence of n complex numbers

A(1), A(ωn
1), A(ωn

2), . . . , A(ωn
n−1)

resulting from evaluating the polynomial

A(x) = a0 + a1x + a2x
2 + . . . + an1

xn−1

In particular, to evaluate A(x) when n is even, let

Aeven(y) = a0 + a2y + . . . + an−2y
n/2−1

Aodd(y) = a1 + a3y + . . . + an−1y
n/2−1

It should be clear that

A(x) = Aeven(x
2) + xAodd(x

2)

FFT algorithms are based on divide-and-conquer. Es-
sentially, the problem of computing the discrete Fourier
transform on n points is reduced to computing two
transforms on n/2 points each and is then applied re-
cursively.

In general, this recurrence does not help us, since we
have to spend linear time to evaluate it at each of n
points. The fact that our points are complex roots of
unity provide the magic to speed things up.



Implementation Details
The FFT algorithm assumes that n is a power of two.

If this is not the case for your data, you are better off
padding your data with zeros to create n = 2k elements
rather than hunting for a more general code.

Some care is needed to determine where to best pad
the zeros.

Historically, the FFT has been implemented in assem-
bler or even hardware for performance optimization.

Highly optimized FFT implementation exist which tune
themselves to your specific hardware configurations (e.g.
cache size). Check out the FFTW (Fastest Fourier
Transform in the West).

In recent years, wavelets have been proposed to replace
Fourier transforms in filtering.


