
Fractals
Fractals are unusual, imperfectly defined, mathemati-
cal objects that observe self-similarity, that the parts
are somehow self-similar to the whole.

This self-similarity process implies that fractals are scale-
invariant, you cannot distinguish a small part from the
larger structure, e.g. a tree branching process.

Fractals are interesting because (1) many phenom-
ena in nature are self-similar and scale invariant, and
(2) traditional mathematics/geometry does not cap-
ture the properties of these shapes.

Mandelbrot defines a fractal set as one in which the
fractal dimension is strictly greater than the topological
dimension.

The Hurst exponent in R/S analysis is somewhat akin
to a fractal dimension.



Fractal Models in Finance:
Motivation

As has been discussed previously, real financial returns
are not accurately modeled by a normal distribution,
because there is too much mass at the tails.

In other words, outlying events occur much more fre-
quently in financial returns than they should if normally
distributed.

We would expect that the standard deviation of returns
should grow at a rate t0.5, where t is the amount of
time, if they were normally distributed.

In fact, for historical periods on the Dow Jones up
to about t ≈ 1000 days, the standard deviation grows
faster (0.53), and then drops dramatically (0.25).

Thus risk does increase with holding period up to a
point, but then favors long-term investors.

We seek distributions which model such phenomenon
better.



The Fractal Market Hypothesis
It is fairly easy to observe the difference between the
real distributions of returns and the normal distribution.

It is fairly easy to construct distributions which fit ob-
served data better than normal.

However, what tends to be lacking is an explanation of
how the distribution arises.

The Fractal Market Hypothesis (Peters, 1994) states:

• Markets are stable when they contain investors
with large numbers of different time horizons, thus
ensuring ample liquidity.

• Technical analysis factors are more important than
fundamental factors in short time horizons. Fun-
damental factors become more important in long
time horizons.

• If the validity of fundamental information changes,
long-term investors either stop trading or trade on
technical factors. However, the market becomes
less stable without the long-term horizon investors.

• Prices reflect a combination of short-term and long-
term valuations, where short-term valuations are
more volatile.

• If a security has no tie to the economic cycle (e.g.
currency), there is no long-term trend, so trading,
liquidity, and short-term information dominate



R/S Analysis: Introduction
A central tool of fractal data modeling is rescaled range
or R/S analysis.

We have seen how unbiased coin flipping leads to the
the expected the difference between the number of
heads and tails in an n tosses of an unbiased coin is
≈ c

√
n.

This is characteristic of random walk models and Brow-
nian motion, that R ≈ cT h, where R is the distance
traveled, T is time, c is a constant and h = 0.5 is the
exponent.

How could we discover this exponent h experimentally,
for say, a run of coin flipping? We could build up time
series Ri = |(

∑i
j=1 ci)|, where ci = 1 if the ith flip heads

and ci = −1 if the ith flip is tails.

By taking the log of both sides of the equation,

log R = log c + h logT

Thus by doing a linear regression on the log scaled
distance and time series we will discover c and, more
importantly, h.



Hurst’s Analysis
In any process modeled by an unbiased random walk,
h = 0.5.

A hydrologist studying floods, H. E. Hurst, did similar
analysis on 847 years worth of data on overflows of the
Nile River, and found an exponent h = 0.91.

This implies that the accumulated deviation from ex-
pectation was growing much faster than expected from
an unbiased random walk of independent observations.

Another way to think about this is that extreme events
(e.g. long runs of heads/tails, or heavy floods) were
more common than

It implied that the individual observations where not
really independent – although they were not accurately
modeled by a simple autoregressive process.

Hurst did a similar analysis of many different processes,
including rainfall, temperature, and sunspot data, and
consistently got h ≈ 0.7. This quantity h is now called
the Hurst exponent.



Interpretations of Hurst
Exponents

A Hurst exponent of h = 0.5 implies an independent
process. It does require that it be Gaussian, just in-
dependent. R/S analysis is non-parametric, meaning
there is no assumption / requirement of the shape of
the underlying distribution.

Hurst exponents of 0.5 < h ≤ 1 imply a persistent time
series characterized by long memory effects.

Hurst exponents of 0 ≤ h < 0.5 imply an anti-persistent
time series, which covers less distance than a random
process. Such behavior is observed in mean-reverting
processes, although that assumes that the process has
a stable mean.



R/S Time Series Analysis
Given a time sequence of observations xt, define the
series

X(t, τ) =

t
∑

u=1

(xt − x̄τ)

where

x̄τ =
1

τ

τ
∑

t=1

xt

Thus X(t, τ) measures difference sum of the observa-
tions time 1 to t compared to the average of the first
τ observations.

The self-adjusted range R(τ) is defined

R(τ) =
τ

max
t=1

X(t, τ) −
τ

min
t=1

X(t, τ)

The standard deviation as a function τ is

S(τ) =

√

√

√

√(
1

τ

τ
∑

t=1

(xt − x̄τ)
2)

Finally, the self-rescaled, self adjusted range is

R/S(τ) = R(τ)/S(τ)

Basically, it compares the largest amount of change
happens over the initial τ terms to what would be ex-
pected given their variance.



The asymptotic behavior of R/S(τ) is provably

R/S(τ) = ((π/2)τ)1/2

for any independent random process with finite vari-
ance.

In plotting log(R/S(τ)) against log(τ), we expect to
get a line whose slope determines the Hurst exponent.

In practice for financial data, this line fits a straight
line up to some τ , and then breaks down.

This τ gives some idea of a cycle time, over which
there is dependence upon the past.



Generating Multi-fractal
Time-Series

Mandelbrot proposed a multi-fractal generating process
to generate time-series which have the persistence ef-
fects resembling financial time series:





Straddle Strategies for Hurst
Random Walks

Another process which yields burstier walks than coin-
flipping states that we will repeat the previous step (up
or down) with probability h and reverse with probability
1 − h.

If h = 0.5 this is just coin flipping, but other expo-
nents/probabilities yield interesting walks.

We found that h = 0.57 matched price behavior better
than h = 0.5.

Consider the following betting strategy. Buy a stock
now. Sell it when it gets up to price u, or drops down
to price l.

For h = 0.5, is there a strategy (i.e. u, l pair) which
will return an expected profit (e.g. 10, 100)? The
answer is no – why?

What about h > 0.5? The answer is yes – why?

Is this a winning idea? Only if (1) prices really are
modeled by Hurst walks, (2) transaction costs are in-
significant, (3) there is not an upward trend where buy
and hold becomes more profitable. . .


