
The Kelly Criterion

How To Manage Your Money 
When You Have an Edge



The First Model

• You play a sequence of games
• If you win a game, you win W dollars for each 

dollar bet
• If you lose, you lose your bet
• For each game,

– Probability of winning is p
– Probability of losing is q =1 –p

• You start out with a bankroll of B dollars
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The First Model, con’t
• You bet some percentage, f, of your bankroll on 

the first game --- You bet fB
• After the first game you have B1 depending on 

whether you win or lose
• You then bet the same percentage f of your new 

bankroll on the second game --- You bet fB1
• And so on
• The problem is what should f be to maximize 

your “expected” gain
– That value of f is called the Kelly Criterion 
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Kelly Criterion
• Developed by John Kelly, a physicist at Bell 

Labs
– 1956 paper “A New Interpretation of Information Rate”

published in the Bell System Technical Journal
• Original title “Information Theory and Gambling”

– Used Information Theory to show how a gambler with 
inside information should bet

• Ed Thorpe used system to compute optimum 
bets for  blackjack and later as manager of a 
hedge fund on Wall Street
– 1962 book “Beat the Dealer:  A Winning Strategy for 

the Game of Twenty One”
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Not So Easy
• Suppose you play a sequence of games of 

flipping a perfect coin
– Probability is ½ for heads and ½ for tails
– For heads, you win 2 dollars for each dollar bet

• You end up with a total of 3 dollars for each dollar bet
– For tails, you lose your bet

• What fraction of your bankroll should you bet
– The odds are in your favor, but

• If you bet all your money on each game, you will eventually 
lose a game and be bankrupt

• If you bet too little, you will not make as much money as you 
could
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Bet Everything
• Suppose that your bankroll is 1 dollar and, to 

maximize the expected (mean) return, you bet 
everything (f = 1)

• After 10 rounds, there is one chance in 1024 that 
you will have 59,049 dollars and 1023 chances 
in 1024 that you will have 0 dollars
– Your expected (arithmetic mean) wealth is 57.67 

dollars
– Your median wealth is 0 dollars

• Would you bet this way to maximize the 
arithmetic mean of your wealth?
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Winning W or Losing Your Bet

• You play a sequence of games
• In each  game, with probability p, you win W for 

each dollar bet
• With probability q = 1 – p, you lose your bet
• Your initial bankroll is B
• What fraction, f, of your current bankroll should 

you bet on each game?
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Win W or Lose your Bet, con’t

• In the first game, you bet fB
– Assume you win.  Your new bankroll is                  

B1 =  B + WfB  =  (1 + fW) B
– In the second game, you bet fB1

fB1  =  f(1 + fW) B
– Assume you win again.  Your new bankroll is     

B2  =  (1 + fW) B1 =  (1 + fW)2 B
– If you lose the third game, your bankroll is     

B3 =  (1 – f) B2 =  (1 + fW)2 * (1 – f) B
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Win W or Lose your Bet, con’t

• Suppose after n games, you have won w games 
and lost l games
– Your total bankroll is                                       

Bn =  (1 +fW)w * (1 – f)l B
– The gain in your bankroll is                            

Gainn =  (1 + fW)w * (1 – f)l

• Note that the bankroll is growing (or shrinking) 
exponentially
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Win W or Lose your Bet, con’t
• The possible values of your bankroll (and your 

gain) are described by probability distributions
• We want to find the value of f that maximizes, in 

some sense, your “expected” bankroll (or 
equivalently your “expected” gain)

• There are two ways we can think about finding 
this value of f
– They both yield the same value of f and, in fact, are 

mathematically equivalent 
• We want to find the value of f that maximizes

– The geometric mean of the gain
– The arithmetic mean of the log of the gain
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Finding the Value of f that 
Maximizes the Geometric Mean of 

the Gain
• The geometric mean, G, is the limit as n 

approaches infinity of the nth root of the gain              
G  =  lim n->oo ((1 + fW)w/n * (1 – f)l/n )
which is
G  =  (1 + fW)p * (1 – f)q

• For this value of G, the value of your bankroll 
after n games is                                                        
Bn =  Gn * B
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The Intuition Behind the Geometric 
Mean

• If you play n games with a probability p of 
winning each game and a probability q of losing 
each game, the expected number of wins is pn 
and the expected number of loses is qn

• The value of your bankroll after n games                    
Bn =  Gn * B
is the value that would occur if you won exactly 
pn games and lost exactly qn games 
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Finding the Value of f that 
Maximizes the Geometric Mean of 

the Gain, con’t
• To find the value of f that maximizes G, we take  the 

derivative of                                                   
G  =  (1 + fW)p * (1 – f)q

with respect to f, set the derivative equal to 0, and solve 
for f 

(1 + fW)p *(-q (1 – f)q-1) + Wp(1 + fW)p-1 * (1 – f)q  =  0
• Solving for f gives

f  =  (pW – q) / W  
=  p – q / W                                                

• This is the Kelly Criterion for this problem
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Finding the Value of f that 
Maximizes the Arithmetic Mean of 

the Log of the Gain
• Recall that the gain after w wins and l losses is          

Gainn =  (1 + fW)w * (1 – f)l

• The log of that gain is  
log(Gainn)  =  w * log(1 + fW) + l* log (1 – f)

• The arithmetic mean of that log is the
lim n->oo ( w/n * log(1 + fW) + l/n* log (1 – f) )
which is 

p * log(1 + fW) + q * log (1 – f)
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Finding the Value of f that 
Maximizes the Arithmetic Mean of 

the Log of the Gain, con’t
• To find the value of f that maximizes this 

arithmetic mean we take the derivative with 
respect to f, set that derivative equal to 0 and 
solve for f
pW / (1 + fW) – q / (1 – f)  =  0

• Solving for f gives
f  =  (pW – q) / W  

=  p – q / W
• Again, this is the Kelly Criterion for this problem
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Equivalent Interpretations of Kelly 
Criterion

• The Kelly Criterion maximizes 
– Geometric mean of wealth
– Arithmetic mean of the log of wealth
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Relating Geometric and Arithmetic 
Means

• Theorem
The log of the geometric mean of a random 

variable equals the arithmetic mean of the log of 
that variable
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Intuition About  the Kelly Criterion 
for this Model

• The Kelly criterion                                     
f   =  (pW – q) / W                                                    
is sometimes written as                                         
f   =   edge / odds
– Odds is how much you will win if you win

• At racetrack, odds is the tote-board odds
– Edge is how much you expect to win

• At racetrack, p is your inside knowledge of which 
horse will win
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Examples
• For the original example (W = 2, p = ½)

f = .5 - .5 / 2 = .25
G = 1.0607
– After 10 rounds (assuming B = 1)

• Expected (mean) final wealth = 3.25
• Median final wealth = 1.80

• By comparison, recall that if we bet all the 
money (f = 1)
– After 10 rounds (assuming B = 1)

• Expected (mean) final wealth = 57.67
• Median final wealth = 0
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More Examples

• If pW – q = 0, then f = 0
– You have no advantage and shouldn’t bet 

anything 
– In particular, if p = ½ and  W = 1, then again   

f = 0
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Winning W or Lose L  (More Like 
Investing)
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• If you win, you win W If you lose, you lose L.
L is less than 1

• Now the geometric mean, G,  is                         
G  =  (1 + fW)p * (1 – fL)q

• Using the same math, the value of f that 
maximizes G is                                                     
f  =  (pW – qL)/WL 

=  p/L – q/W
• This is the Kelly Criterion for this problem



An Example
• Assume p = ½, W = 1, L = 0.5.  Then 

f = .5
G = 1.0607

• As an example, assume B = 100.  You play two 
games
– Game 1 you bet 50 and lose (25) .  B is now 75
– Game 2 you bet ½ of new B or 37.50.  You win.  B is 

112.50
• By contrast, if you had bet your entire bankroll 

on each game, 
– After Game 1,  B would be 50
– After Game 2,  B would be 100 

22



Shannon’s Example

• Claude Shannon (of Information Theory fame) 
proposed this approach to profiting from random 
variations in stock prices based on the 
preceding example

• Look at the example as a stock and the “game”
as the value of the stock at the end of each day
– If you “win,” since W = 1, the stock doubles in value
– If you “lose.” since L = ½, the stock halves in value
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Shannon’s Example, con”t
• In the example, the stock halved in value the first 

day and then doubled in value the second day, 
ending where it started
– If you had just held on to the stock, you would have 

broken even
• Nevertheless Shannon made money on it

– The value of the stock was never higher than its initial 
value, and yet Shannon made money on it

• His bankroll after two days was 112.50
– Even if the stock just oscillated around its initial value 

forever, Shannon would be making (1.0607)n gain in n
days
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An Interesting Situation

• If L is small enough, f can be equal to 1 (or even 
larger)
– You should bet all your money 
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An Example of That Situation

• Assume p = ½, W = 1, L = 1/3 .  Then 
f = 1
G = 1.1547

• As an example, assume B = 100.  You play two 
games
– Game 1 you bet 50 and lose 16.67  B is now 

66.66
– Game 2 you bet 66.66 and win.  B is now 

133.33
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A Still More Interesting Situation

• If L were 0 (you couldn’t possibly lose)                
f would be infinity
– You would borrow as much money as you 

could (beyond your bankroll) to bet all you 
possibly could.
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N Possible Outcomes (Even More 
Like Investing)

• There are n possible outcomes, xi ,each with 
probability pi 

– You buy a stock and there are n possible final 
values, some positive and some negative

• In this case
ip

ifxG )1(∏ +=
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N Outcomes, con’t

• The  arithmetic mean of the log of the gain is

• The math would now get complicated, but if
fxi << 1 we can approximate the log by the first 
two terms of its power expansion

to obtain

)1log(*log ii fxpGR +== ∑

2/log 22
iiii xpfxpfGR ∑∑ −≈=

...4/3/2/)1log( 432 +−+−=+ zzzzz
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N Outcomes, con’t

• Taking the derivative, setting that derivative 
equal to 0, and solving for f gives 

which is very close to the                 
mean/variance

• The variance is

)/()( 2
iiii xpxpf ∑∑=

22 )( iiii xpxp ∑∑ −
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Properties of the Kelly Criterion
• Maximizes 

– The geometric mean of wealth
– The arithmetic mean of the log of wealth

• In the long term (an infinite sequence), with 
probability 1
– Maximizes the final value of the wealth (compared 

with any other strategy)
– Maximizes the median of the wealth

• Half the distribution of the “final” wealth is above the median 
and half below it

– Minimizes the expected time required to reach a  
specified goal for the wealth 
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Fluctuations using the Kelly 
Criterion

• The value of f corresponding to the Kelly 
Criterion leads to a large amount of volatility in 
the bankroll
– For example, the probability of the bankroll dropping 

to 1/n of its initial value at some time in an infinite 
sequence is 1/n

• Thus there is a 50% chance the bankroll will drop to ½ of its 
value at some time in an infinite sequence

– As another example, there is a 1/3 chance the 
bankroll will half before it doubles
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An Example of the Fluctuation
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Varying the Kelly Criterion

• Many people propose using a value of f equal to 
½ (half Kelly) or some other fraction of the Kelly 
Criterion to obtain less volatility with somewhat 
slower growth
– Half Kelly produces about 75% of the growth 

rate of full Kelly
– Another reason to use half Kelly is that people 

often overestimate their edge.

34



Growth Rate for Different Kelly 
Fractions
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Some People Like to Take the Risk 
of Betting More than Kelly

• Consider again the example  where                    
p = ½, W = 1, L = 0.5, B = 100
Kelly value is         f = .5    G = 1.060
Half Kelly value is  f = .25  G = 1.0458

• Suppose we are going to play only 4 games and 
are willing to take more of a risk
We try f = .75   G = 1.0458

and  f = 1.0    G = 1.0
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All the Possibilities in Four Games

Final Bankroll
½ Kelly     Kelly    1½ Kelly  2 Kelly
f = .25 f = .5       f = .75    f = 1.0

4 wins 0 losses (.06)    244          506          937       1600
3 wins 1 loss (.25)    171          235          335         400
2 wins 2 losses (.38)    120          127          120         100
1 win   3 losses (.25)      84            63            43           25
0 wins 4 losses (.06)      59            32            15             6
------------------- ------- ------ ------ -----
Arithmetic Mean 128          160          194         281

Geometric Mean            105          106          105        100
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I Copied This From the Web

If I maximize the expected square-root of 
wealth and you maximize expected log of 
wealth, then after 10 years you will be richer 
90% of the time. But so what, because I will 
be much richer the remaining 10% of the 
time. After 20 years, you will be richer 99% of 
the time, but I will be fantastically richer the 
remaining 1% of the time. 
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The Controversy
• The math in this presentation is not controversial
• What is controversial is whether you should use 

the Kelly Criterion when you gamble (or invest)
– You are going to make only a relatively short 

sequence of bets compared to the infinite sequence 
used in the math

• The properties of infinite sequences might not be an 
appropriate guide for a finite sequence of bets

• You might not be comfortable with the volatility
– Do you really want to maximize the arithmetic mean 

of the log of your wealth (or the geometric mean of 
your wealth)?

• You might be willing to take more or less risk
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Some References
• Poundstone, William, “Fortunes Formula:  The Untold Story of the 

Scientific Betting System that Beat the Casinos and Wall Street,” Hill 
and Wang, New York, NY, 2005

• Kelly, John L, Jr., A New Interpretation of Information Rate, Bell 
Systems Technical Journal, Vol. 35, pp917-926, 1956

• http://www-
stat.wharton.upenn.edu/~steele/Courses/434F2005/Context/Kelly%
20Resources/Samuelson1979.pdf
– Famous paper that critiques the Kelly Criterion in words of one syllable

• http://en.wikipedia.org/wiki/Kelly_criterion
• http://www.castrader.com/kelly_formula/index.html

– Contains pointers to many other references
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