
Lectures 1, 2, and 3:
Preliminaries

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Administrivia

Make sure I get your name andemailaddress written clearly,
as well as whether you intend to take this course for credit.
Project lists should go out in a few weeks.

Why Computational Biology?

Computational biology is the application of a core technology
of computer science (e.g.algorithms, artificial intelligence,
data bases) to problems arising from biology.
Computational biology is particularly exciting today because:

• the problems are large enough to motivate efficient
algorithms,

• the problems are accessible, fresh and interesting,

• biology is increasing becoming a computational science.

CS or Biology?

Developments in biology are coming astonishingly quickly,
and with amazing possibilities.
Computational biology is increasing of interest in both life
science and computational science departments.
Many problem ideas go from biology to CS: e.g. fragment
assembly, sequence analysis, algorithms for phylogenic trees.
Many problem ideas go from CS to biology: e.g. sequencing
by hybridization, DNA computing.

Attack on the SARS Virus

The scientific reaction to the outbreak of the SARS virus after
being first reported in Asia in February 2003 illustrates the
critical roles that genomics and computation play in modern
biology.

• DeRisi’s analysis of microarray data reveals that the agent
was a coronavirus in March 2003.

• The Michael Smith Genome Sciences Centre in Canada
announce the sequencing of the SARS virus genome on
April 12, 2003.

• Commercial SARS-specific microarrays become avail-
able in April 15, 2003.

• Gene predictions and analysis of SARS genome published
in Science online May 1, 2003.

• Phylogenic analysis placing where SARS fits among the
coronaviruses published in late May 2003.

• Synthetic SARS virus construction published in Novem-
ber 2008.

We will study the computational problems of sequence
assembly, gene prediction, microarray design/analysis, and
phylogenic tree construction in this course.

Computer Scientists vs. Biologists

There are many different types of life scientists (biologists,
ecologists, medical doctors, etc.), just as there are many
different types of computational scientists (algorists, software
engineers, statisticians, etc.).
There are many fundamental cultural differences between
computational/life scientists:

• Nothingis ever completely true or false in biology, where
everythingis either true or false in computer science /
mathematics.

• Biologists strive to understand the very complicated, very
messy natural world; computer scientists seek to build
their own clean and organized virtual worlds.

• Biologists aredata driven; while computer scientists are
algorithmdriven.

One consequence is CS WWW pages have fancier
graphics while Biology WWW pages have more content.

• Biologists are much more obsessed with being the first to
discover something; computer scientists invent more than
discover.

• Research biologists have to know more than computer
scientists; computer scientists know how to do more.

• Biologists are comfortable with the idea that all data has
errors; computer scientists are not.

• Biologists are live in stronger hierarchies than computer
scientists: PI→ postdocs→ graduate students→ lab
assistants.

Genetics students seeking to work with me ask to join the
“Skiena lab”.

• The Platonic ideal of a biologist runs a big laboratories
with many people. The Platonic ideal of a computer
scientists is a hacker in garage.

Biologists can get/spend infinitely more research money
than computational scientists.

• Biotechnology/drug companies are largely science
driven, while the computer industry is more
engineering/marketing driven.

• Biologists seek to publish in prestigious journals like
ScienceandNature. Computer scientists seek to publish
in prestigious refereed conference proceedings.

One consequence is life science journals get refereed
faster than computational science journals.

• Computer scientists can get interesting, high-paid jobs
after a B.S. Biologists typically need to complete one or
more postdocs. . .

Biology for Computer Scientists

DNA sequences can be thought of as strings of bases on a
four-letter alphabet,{A, C,G, T}.
Each base binds with its complement,A − T andC − G, so
each sequence has a unique complementary sequence.
The human genome is approximately 3 billion base-pairs
long, and contains all the information necessary to make all
theproteinswhich you are made of.
Proteins are sequences of amino acids, and hence all proteins
can be thought of as strings on a 20-letter alphabet.

Genes

A gene is a DNA sequence which acts as a template for
building a specific protein.
Genes specify how to build proteins according to thetriplet
code, where each of the43 = 64 possible sequences orcodons
of three consecutive nucleotide bases map to one of the 20
different amino acids or the stop symbol.

A T G C C A G C T T G ADNA

A G UCGCU C A
RNA

M P AProtein

RNA is an intermediate step in the translation process, and
maps 1-to-1 with DNA.
The human genome contains about 25,000 genes, meaning
that your body is made up of about that many different
components.
The human genome project sought tosequenceor read the
entire set of DNA and protein strings.
But sequencing is just a first step towards understanding what
the proteins do and how to manipulate them.
Only a small portion of the human genome consists of genes.
The rest contains various binding/signaling sites and lesswell
understood sequence that used to be called “junk”.

Organisms

Living organisms differ greatly in complexity and organiza-
tion.
Virusesare simplest organisms (∼ 10, 000 bp. long), which
require a living host.
Prokaryotesare simplest free-living organisms, e.g. bacteria
(∼ 1, 000, 000 bp. long).
Eukaryoteshave cells which contain internal structures such
as a nucleus, e.g. yeast.
Multi-celled organismsinvolve cell specialization, requiring
differential gene expression and inter-cellular signaling.

Model Organisms

Historically, many biologists focused their careers on one
model organism: E. Coli, yeast, drosophila, arabadopsis,
zebrafish, sea urchins, mouse.
Each such organism makes it particularly convenient to study
certain aspects of biology (genetics→ drosophila, cell cycle
→ yeast, mammals→ mice).
The advent of genomics has focused more attention on the
similarity between organisms.

Evolution

Evolutionary change happens because of changes in genomes
due tomutationsandrecombination.
Mutationsare rare events, sometimes single base changes,
sometimes larger events.
Recombinationis how your genome was constructed as a
mixture of your two parents.
Throughnatural selection, favorable changes tend to accu-
mulate in the genome.

Homology

Evolution motivateshomology(similarity) search, because
different species are assumed to have common ancestors.
Thus DNA/amino acid sequences for a given protein (e.g.
hemoglobin) in two species or individuals should be more
similar the closer the ancestry between them.
The genetic variation between different people is surprisingly
small, perhaps only 1 in 1000 base-pairs.
Homology searches can often detect similarities between
extremely distant organisms (e.g. humans and yeast).

Phylogenies

Phylogenic treesbased on gene homologies provide an
independent confirmation of those proposed by taxonomists.
This is convincing evidence of evolution.
A host of interesting computational problems arise in trying
to reconstruct evolutionary history.

Biotechnologies

Amazing biotechnologies for manipulating DNA molecules
are used as building blocks for even more powerful technolo-
gies.
These technologies are as amazing to me as the silicon
etching/masking of VLSI fabrication.
DNA synthesis machinesenable one to grow short DNA
molecules of a specified sequence.
The Polymerase chain reaction (PCR)enables one to make
many copies of a particular DNA sequence anywhere in
solution given only the starting/ending sequences (primers).

PCR Killer Apps

PCR is one foundation ofDNA fingerprinting, by turning a
single molecule into billions.
Electrophoresisenables one to approximately measure the
length of a DNA molecule, by measuring the time it takes
to walk up an electrically charged Gel.
Since certain regions of the human genome have varying
numbers of repeated characters, measuring their length by
electrophoresis yields one method of DNA fingerprinting /
identification.
DNA sequencing machinesare traditionally built from both
these technologies, and will be discussed when we talk about
assembly.

Computer Science for Biologists

We will be interested in the correctness and efficiency of
computeralgorithms.
We seek algorithms which provably always return the best
possible solution to awell-definedcombinatorial problem.
Heuristicsare procedures which might return good answers
in practice, but are not provably correct.
We seek to extract clean, well-defined problems from the
typically messy “real” problem to gain insight into it.
This process is analogous toin vitro versusin vivo experi-
mentation.

Problem: Exact String Matching

Input: A text stringT , where|T | = n, and a pattern stringP ,
where|P | = m.
Output: An indexi such thatTi+j−1 = Pj for all 1 ≤ j ≤ m,
i.e. showing thatP is a substring ofT .

String Matching Algorithm

The following brute force search algorithm always uses at
mostn × m steps:

for i = 1 to n − m + 1 do
j = 1
while (T [i + j − 1] == P [j]) and (j ≤ m))

do j = j + 1
if (j > m) print ”pattern at position ”,i

Analysis

This algorithm might use onlyn steps if we are lucky, e.g.
T = aaaaaaaaaaa, andP = bbbbbbb.
We might need∼ n × m steps if we are unlucky, e.g.T =
aaaaaaaaaaa, andP = aaaaaab.
We can’t say what happens “in practice”, so we settle for a
worst case analysis.
By being more clever, we can reduce the worst case running
time toO(n + m).
Certain generalizations won’t change this, like stopping after
the first occurrence of the pattern.
Certain other generalizations seem more complicated, like
matching with gaps.

Algorithm Complexity

We use the Big oh notation to state an upper bound on the
number of steps that an algorithm takes in the worst case.
Thus the brute force string matching algorithm isO(mn), or
takesquadratictime.

• A linear time algorithm, i.e.O(n + m), is fast enough for
almost any application.

• A quadratic time algorithm is usually fast enough for
small problems, but not big ones, since10002 =
1, 000, 000 steps is reasonable but1, 000, 0002 is not.

• An exponential-time algorithm, i.e.O(2n) or O(n!), can
only be fast enough for tiny problems, since220 and10!
are already up to1, 000, 000.

“A billion here, a billion there, and soon you are talking about
real money” – Senator Everett Dirksen

NP-Completeness

Unfortunately, for many problems, there is no known
polynomialalgorithm.
Even worse, most of these problems can be provenNP-
complete, meaning that no such algorithm can exist!
At the 1999 RECOMB conference, I saw biologists rebel
against seeing all their problems shown NP-complete.
But proving NP-completeness can be very useful, because
it focuses our attention on heuristics and tells us why it is
difficult.
NP-completeness proofs work by showing that the target
problem is as “hard” as some famous hard problem, e.g.
satisfiability, vertex cover, Hamiltonian cycle.

Shortest Common Superstring

Input: A set S = {s1, . . . , sm} of text strings on some
alphabetΣ.
Output: The shortest possible stringT such that eachsi is a
substring ofT .
This problem arises in DNA sequence assembly.
What is the shortest common superstring of
{abba, baba, bbaa}?
Can you suggest an algorithm to find the shortest common
superstring?

The Greedy Heuristic

The most obvious strategy is one where we merge the two
strings with the longest overlap, put the combined string back,
and repeat until only one string remains.
This greedystrategy can yield a string which is almost twice
as long as necessary:

ababababc babababab
babababab ababababc

aabababab aabababab
Optimal Greedy

Implementing Greedy

The greedy heuristic for longest common superstring ofn

strings of lengthl can be easily solved inn rounds ofn2

string comparisons, each of which takesl2 steps, for a total
of O(n3l2).
But faster implementations exist using the “right” data
structure, and avoiding string redundant comparisons.

Directed Hamiltonian Path is NP-Complete

TheHamiltonian cycleproblem asks whether there is a tour
using the edges of a givengraph such that every vertex is
visited exactly once.
When computer scientists talk about graphs, they mean
networks of nodes or vertices where certain pairs are
connected byedges.

The Hamiltonian pathproblem is well known to be NP-
complete, even if (a) every edge is directed, (b) a particular
node is designated as the start vertex, and (c) a particular node
is designated as the stop vertex.
Clearly it stays just as hard if no node has outdegree-1.
The proof is that we can construct an equivalent graph by
contracting the two vertices of this edge – without making it
any easier to find a HC!

Shortest Common Superstring is NP-Complete

We prove this by constructing aninstanceof SCS from any
directed Hamiltonian path problem such that any solution to
the SCS gives the Hamiltonian path.
Since Hamiltonian path cannot be solved in polynomial time,
this means that SCS also can’t – because if it could then HP
could!
For all edges(v, xi) out of vertexv, we will construct two
strings,v̄xiv̄ andxiv̄xi+1.
Thus if there are three edges fromv, ie. (v, 4), (v, 7), (v, 8),
we will construct the following strings:

v̄4v̄, 4v̄7, v̄7v̄, 7v̄8, v̄8v̄, 8v̄4

Note that these have a superstring of length 8 starting withv̄

and ending with any other vertex, by breaking the cycle at the
right point.
We will also constructn “connector” stringsv#v̄ to join each
vertex with its complement.
Finally, we have a start string to connect to first vertex in the
path,@#v̄1, and an end string to connect to the last vertex in
the path,vn#$.
These strings have a superstring of length2m + 3n iff the
graph has a Hamiltonian path.
The weird characters (#, $, @) ensure there can be no shorter
way to put the strings together than the intended way.

Tools of the Trade: GenBank

GenBank is the NIH genetic sequence database, an annotated
collection of all publicly available DNA sequences, available
at http://www.ncbi.nlm.nih.gov
Most journals require all relevant DNA sequences be put in
GenBank before publication.

There is a great deal of redundancy and junk in the database
– anybody can add their favorite sequence to it.

Searching Databases

Search programs like BLAST can check whether a sequence
similar to one you are interested in appears in GenBank.
Other interesting databases include SwissProt (a curated
sequence database), and PubMed (abstracts of the entire
biomedical literature).

Example GenBank File

LOCUS AF067844 218336 bp DNA PRI 08-FEB-1999
DEFINITION Homo sapiens chromosome 10 clone PTEN, complete sequence.
ACCESSION AF067844
VERSION AF067844.1 GI:4240386
KEYWORDS HTG.
SOURCE human.

ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mamm alia;
Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 218336)
AUTHORS Jensen,K., de la Bastide,M., Parsons,R., Parnell, L.D., Dedhia,N.,

Gottesman,T., Gnoj,L., Kaplan,N., Lodhi,M., Johnson,A.F .,
Shohdy,N., Hasegawa,A., Haberman,K., Huang,E.N., Schutz ,K.,
Calma,C., Granat,S., Wigler,M. and McCombie,W.R.

TITLE Genomic sequence of PTEN/MMAC1
JOURNAL Unpublished

REFERENCE 2 (bases 1 to 218336)
AUTHORS Jensen,K., de la Bastide,M., Parsons,R., Parnell, L.D., Dedhia,N.,

Gottesman,T., Gnoj,L., Kaplan,N., Lodhi,M., Johnson,A.F .,
Shohdy,N., Hasegawa,A., Haberman,K., Huang,E.N., Schutz ,K.,
Calma,C., Granat,S., Wigler,M. and McCombie,W.R.

TITLE Direct Submission
JOURNAL Submitted (18-MAY-1998) Lita Annenberg Hazen Geno me Sequencing

Center, Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring
Harbor, NY 11724, USA

FEATURES Location/Qualifiers
source 1..218336

/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="10"
/clone="PTEN"

source 1..106991
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="10"
/clone="BAC 265N13"

5’UTR 22308..23338
/gene="PTEN"
/note="5’-UTR defined by comparison to PTEN cDNA U93051"

mRNA join(22308..23417,51995..52079,83482..83526,890 15..89058,
90987..91225,110086..110227,115821..115987,118862.. 119086,

123258..124345)
/gene="PTEN"
/note="mRNA coordinates delineated by comparison to PTEN
cDNA U93051"

gene 22308..124345
/gene="PTEN"
/note="the coding region of PTEN, as defined by the cDNA,
identifies 9 exons within this region; identical to MMAC1
(U92346) and PTEN (U93051)"
/evidence=experimental

exon 22308..23417
/gene="PTEN"
/function="5’-UTR and initial segment of the CDS"
/number=1

CDS join(23339..23417,51995..52079,83482..83526,8901 5..89058,
90987..91225,110086..110227,115821..115987,118862.. 119086,
123258..123443)
/gene="PTEN"
/note="coding regions delineated by comparison to PTEN
cDNA"
/codon_start=1
/product="PTEN"
/protein_id="AAD13528.1"
/db_xref="GI:4240387"
/translation="MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGF PAERLEG
VYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIK
PFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRT
RDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVC
QLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVN
TFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKAN
RYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPF
DEDQHTQITKV"

exon 51995..52079
/gene="PTEN"
/number=2

source 58169..218336
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="10"
/clone="BAC 60C5"

exon 83482..83526
/gene="PTEN"
/number=3

exon 89015..89058
/gene="PTEN"
/number=4

exon 90987..91225
/gene="PTEN"

/number=5
exon 110086..110227

/gene="PTEN"
/number=6

exon 115821..115987
/gene="PTEN"
/number=7

exon 118862..119086
/gene="PTEN"
/number=8

exon 123258..124345
/gene="PTEN"
/function="terminal segment of the CDS and 3’-UTR"
/number=9

3’UTR 123444..124345
/gene="PTEN"
/note="3’-UTR defined by comparison to PTEN cDNA U93051"
/evidence=experimental

BASE COUNT 64194 a 39437 c 43295 g 71406 t 4 others
ORIGIN

1 caagctttac actagagcct atatgaagtt ttgattctaa gtgttaatgt accttctgac
61 aactgtgaaa tgaaccttgt tcctggggag cgcgttctgg ttttctctt t gcacagttaa

121 gctgagacta gcatcattct agtttgcagg tgacattctc tgggaagc ta gtctatgggg
181 gagatgacat cttctgaacc tagtccccac agagaacttt gaatgagt gg aatcaagagg
241 ttgcctgcat tcttgctcat gtcacaatgc tggacatgtg acttcaga ga agcatgtgcc
301 aggtcaatat gattgggctg ttctcacaat acaaggcctt gaccatag ag tgattcagag
361 gcaaatgcag ccttcttaga ctcttaacca aaacattggc atgacata aa attataatta
421 ataaaagata tacagttatt tcaaaagtac cgttttattg ggacatct ca aaggactaag
481 aaaatgttta ttttcttatc tcctatcttt tgttaatagc tgttcatc gc tcatcagcct
541 ttactgaaag cttatcatgt atcaaacaat atgccaggtg tcagagag gg cagcaaagag
601 agtacaattg agttagatag agtacctgca ctcaataata ataacagc ta acacttacat
661 agtgctttct gcgtgccagg cttgtcctaa gtgattttac acacacac ac acacacacac
721 acacacacac acacacactc cctcactcag tccttataaa aacccact ga taggccgggt
781 gcggtggctc atacctgtaa tcccagcaac tttgggaggc tgaagcag gc agatcacttg
841 aggtcaggag ttcgagatca ccctggccaa catggtgaaa cctcatct ct actaaaaata
901 caaaaattaa ccaagcatgg tggcaggtgc ctgtaatcct agctactc aa gaggctgaga
961 caggaaaatc acttgaacct ggtaggtgga tgttgcagtg tgccgaga tc gtgccaccac

1021 actccagcct gagcaacaga gtgagactct atctaaaaaa aaaaaaa aaa aaattaaaaa

217921 gtggtttgtg tatatatgag aacagtaact agaaaaaaat aatga acaag gtattttatg
217981 taacgataag agctatgaag aaaatcagac atgacgattt tcagc tagag ctacccaaag
218041 catgatcttt gagtcaacaa caacatatga gcaatcagtt tgtta aaaat gcagaatctc
218101 agaagacggc ctagacctac tgattcagaa tcatcattgt aacag gatcc ccttgtcatt
218161 tctttgcatg ctaatgtttg agaagcactg agctagacag tggga aatgg aaggtttctc
218221 tgcctaggtg acatctgagc tgagacttga atgaagaaaa gctgt ccatg taaagatctg
218281 ggagcagaag gatccaggca gaggaaatgg aaagtacaag gggct ggatg agagaa

//

Fasta

FASTA is a simpler file format just containing the sequence
data.
>gi|4240386|gb|AF067844.1|AF067844 Homo sapiens chromo some 10 clone PTEN, complete sequence
CAAGCTTTACACTAGAGCCTATATGAAGTTTTGATTCTAAGTGTTAATGTACCTTCTGACAACTGTGAAA
TGAACCTTGTTCCTGGGGAGCGCGTTCTGGTTTTCTCTTTGCACAGTTAAGCTGAGACTAGCATCATTCT

Field Definitions: Header

• LOCUS - A short mnemonic name for the entry. The line
contains the Accession number, length of molecule, type
of molecule (DNA or RNA), a three letter reference to
possibly Taxonomy, and the date that the data was made
public.

• DEFINITION - A concise description of the sequence.

• ACCESSION - The primary accession number is a
unique, unchanging code assigned to each entry. Used
often when citing sequence in journals

• VERSION - The primary accession number and a numeric
version number associated with the current version of the

sequence data in the record. This is followed by an integer
key (a ”GI”) assigned to the sequence by NCBI.

• KEYWORDS - Short phrases describing gene products
and other information about an entry.

• SOURCE - Common name of the organism or the name
most frequently used in the literature.

• ORGANISM - Formal scientific name of the organism
(first line) and taxonomic classification levels (second and
subsequent lines).

• REFERENCE - Citations for all articles containing data
reported in this entry.

• AUTHORS - Lists the authors of the citation.

• TITLE - Full title of citation.

• JOURNAL - Lists the journal name, volume, year, and
page numbers of the citation.

• MEDLINE - Provides the Medline unique identifier for a
citation.

• PUBMED - Provides the PubMed unique identifier for a
citation.

• REMARK - Specifies the relevance of a citation to an
entry.

• COMMENT - Cross-references to other sequence entries,
comparisons to other collections, notes of changes in
LOCUS names, and other remarks.

Field Definitions: Features

• SOURCE: contains information about organism, map-
ping, chromosome, tissue alignment, clone identification.

• CDS: instructions on how to join sequences together to
make an amino acid sequence from the given coordinates.
Includes cross references to other databases.

• GENE Feature: a segment of DNA identified by a name.

• RNA Feature: used to annotate RNA on genomic
sequence (for example: mRNA, tRNA, rRNA)

• Sequence: The entire sequence.

Entrez

Entrez is a retrieval system for searching several linked
databases. Databases include:

• PubMed: The biomedical literature (PubMed)

• Nucleotide sequence database: includes sequences from
Genbank, EMBL, and DDBJ.

• Protein sequence database: includes sequences from
translated coding regions in the nucleotide database, and
proteins submitted to PIR, SWISSPROT, PRF, and Protein
DataBank (PDB)

• Structure: three-dimensional macromolecular structures.
MMDB (Molecular Modeling Database) contains data

about crystallography and NMR specification. This data
is available from PDB.

• Genome: complete genome assemblies. Provides views
for a variety of genomes, complete chromosomes, con-
tiged sequence maps, and integrated genetic and physical
maps.

• PopSet: Population study data sets. Contains sequences
that are submitted from a study describing either Evolu-
tion or Population Variation.

• Taxonomy: organisms in GenBank

• SNP: single nucleotide polymorphism

• Gene: gene centered information.

Tools of the Trade: Perl

Perl stands for “Practical Extraction and Reporting Lan-
guage”. It is especially suited for simple parsing, formating,
and text conversion problems, which arise frequently in
working with web documents and genomic sequences.
As a (typically) interpreted language, it is significantly slower
than C++, so it is not as suited for computationally-intense
algorithms. But it is designed to make simple jobs easy.
A large Perl user community exists, which has developed an
extension calledbioperl which is particularly designed for
working with genomic sequences and databases.

Features of Perl

A scalar is a single number or a string:

$a = 1;
$b = "text";

Variables in Perl need not be declared before they are used.
Arithmetic operations (such as addition, multiplication etc.)
work in Perl as they do in other programming languages.
Concatenation of the strings is performed with ”.” operator:

$b = "bb";
$c = "cc";
$a = $b . $c; # now $a is "bbcc";

An array is a list of scalars:

@bases = ("A", "C", "G", "T");

Each element of a list is a scalar. Write $bases[1] instead of
bases[1] to get access to the second element of a list.
A hash is an array which elements are addressed by keywords.
The following hash represents a part of bases to acids
translation table:

%translate = ("AAT", "Asn", "TAT", "Tyr", "TTT",

To return the acid (”Asn”) that the sequence ”AAT” is
translated to:

$translate{"AAT"};

Example: Codon to Amino Acid Translator

convert DNA into amino acids

read convertion table; sample line: GCG Ala

$file = "trans.dat";
open(INFO, $file);

while ($string = <INFO>)
{

$string =˜ /ˆ\s * ([ACGT]{3})\s+(\w+)/ || die "Bad data: $string\n";
$trans{$1} = $2;

}

close(INFO);

read DNA sequence

print "DNA: ";
$dna_string = <STDIN>;

convert it to uppercase

$dna_string =˜ tr/acgt/ACGT/;

convert DNA to amino acids

print "Amino acids: ";

while ($dna_string =˜ s/(ˆ[ACGT]{3})//i)
{

print "$trans{$1} ";
}

print "\n";

Regular Expressions and String Operations

Regular expressions are perhaps the most exciting thing in
Perl. A regular expression (regexp) is a pattern representing
a possibly infinite set of words. Examples:

"abc" -- single word;
"a|b" -- two words "a" and "b";
"(a|b)c" -- either ac or bc;
"ab * " -- a, ab, abb, abbb, ...
"(a|b) * " -- any string on a and b

Searching for a substring in a string can be done with ”= ”
operator:

if ($text =˜ /AAT/) { print "has AAT"; }

Anything matched in parenthesis is remembered in variables
$1,...,$9 and can be referred to later:

if ($text =˜ /([A-Z]{3})/) { print "has $1

Perl has some predefined symbols for regexps:

. # Any single character
ˆ # Beginning of a line
$ # End of line
\b # Word boundary

* # Zero or more matches
+ # One or more matches

[abc] # Either a, b or c

[a-zA-Z] # Any letter

\w # Any word character ([a-zA-Z0-9_])
\s # Space character

String substitution can be done by using the s function:

$text =˜ s/([A-Z])/:\1:/g;

This turns ”TexT” into ”:T:ex:T:”. The ”g” option makes Perl
find all occurrences of the substring; the ”i” option makes Perl
ignore the letter case.

BioPerl

Bioperl is a project that coordinates efforts of different
developers in bioinformatics whose goal is to build a standard
tools for genomic analysis. Bioperl is a set of well-
documented and freely available Perl modules. Each module
represents one or more objects. The core objects of Bioperl
are:

• Sequence – represents a single DNA sequence;

• Sequence Alignment – represents a sequence alignment;

• BLAST – executes commands to generate BLAST reports
and analyzes them;

• Alignment Factories – implements an alignment algo-
rithm;

• 3D Structure – encapsulates coordinate data for 3D
structures.

The Seq sequence object represents a single nucleotide
sequence. It contains methods for reading and writing
sequences in different formats, including Fasta and GenBank.
The sequence object also supports other basic operations
such as sequence translation, DNA to RNA conversion, and
subsequence extraction.

Example BioPerl Program

This program reports sequence features within a Genbank
file:
$input_seqs = Bio::SeqIO->new (’-format’=>’GenBank’, ’- file’=>’t7.gb’);

while ($s = $input_seqs->next_seq())
{

print("sequence length is ", $s->length(), "\n");
print("ac number is ", $s->accession(), "\n");

foreach $f ($s->all_SeqFeatures())
{

print "Feature from ",$f->start," to ",$f->end," Primary t ag ",
$f->primary_tag, " From", $f->source_tag(), "\n";

print "Feature description is ", $f->gff_string(), "\n";
}

}

