
Lectures 21, 22, and 23:
Phylogenic Trees and Evolution

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Phylogenic Trees

In any evolutionary process,speciationevents cause a new
species to split off from an existing one, thus creating the
diversity of life forms we know today.

human gorilla mouse birds reptiles



Reconstructing Evolution

A key issue in evolutionary biology is to reconstruct the
history of these speciation events. Given the properties of
the leaf nodes, reconstruct what the tree is.
Much of the current interest in phylogenic trees follows from
the increasing availability of DNA sequence data.
Biological applications include evolution studies (e.g. the
out of Africa debate) and medical research (tracing HIV
infection).
However, phylogenic trees play an important role in ana-
lyzing the history of languages, religions, chain letters,and
medieval manuscripts, as well as biology.



What Data is Available?

• Distance datameasures (directly or indirectly)dij, the
time since speciesi andj diverged. This can be estimated
from the distance between DNA sequences, assuming a
‘molecular clock’ governing the frequency of mutations.

• Feature/character datameasures taxonomical properties
such as ‘warm blooded’, ‘has wings’, or ‘walks upright’.
Hard-to-develop features describe branch points in the
phylogenic tree.

Different types of reconstruction algorithms are necessary for
such distinct types of data.



Counting Trees

Observe that there are many treetopologiespossible for any
set ofn leaves.
Every binary tree onn leaves hasn − 1 internal nodes, and
thus2n − 1 vertices and2n − 2 edges.
Every unrootedbinary treen leaves has2n − 2 vertices and
2n− 3 edges, since the in-degree 0 root can be contacted to a
single edge.



9

8

7

6

1
2 3

4
5

1

7

6
2

3

8

5

4

Since the root can be positioned at any edge, there are2n− 3
more rooted trees than unrooted trees onn leaves.
Further, any rooted tree onn leaves corresponds to an
unrooted tree onn + 1 leaves, since we can take the highest
numbered leaf to be the root.



Tree Counting Recurrence

Thus

Rooted[n] = (2n − 3)Unrooted[n]

Rooted[n] = Unrooted[n + 1]

yielding that

Rooted[n] = (2n − 3)(2n − 5) . . . 1

Forn = 10, there are about 2,000,000 unrooted trees, and for
n = 20 about2.2× 1020, so the number of possible topologies
grows very fast.
This makes it hopeless to exhaustively search for the best
possible tree beyond 10 or so species.



Why is it Difficult?

The business of reconstructing trees is very messy for several
reasons:

• Nobody knows the correct underlying trees, but many
people have strong and contradictory opinions.

• The data is inherently noisy, error-prone, and hard to
interpret.

• Most precise definitions of optimal trees lead to NP-
complete problems soon as errors creep into the data.

• Many different tree reconstruction algorithms and heuris-
tics have been proposed, each of which yields different
trees on the same data.



Reconstructing Intermediate Nodes

Phylogenic tree problems have the same flavor asSteinertree
problems in graphs, where we must deduce the positions of
intermediate nodes to find the best possible fit.



Algorithms for Distance Data

Distance data tree construction algorithms bare a strong rela-
tionship toclustering algorithms, particularly agglomerative
algorithms which explicitly construct a tree as they merge
clusters together.
Representative algorithms includenearest neighborjoining,
and repeatedly merging the nearest cluster centroids (the
unweighted pair group method using arithmetic averages
(UPGMA)).
Such algorithms can yield reasonable and informative trees,
but there seems no good reason to believe that they yieldthe
correct tree.



Defining mathematical properties which real trees obey
enable us to define optimization criteria which make it
plausible to define thebesttree.



Ultrametric Trees

An ultrametric tree is a rooted tree where

• Each internal node is labeled by a number.

• Each internal node has at least two children

• Along any root to leaf path the labels strictly decrease.

Note that if the labels mean “time units ago”, this is true of
any evolutionary tree.



A E

D

B C

5

3 3

8 A B C D E

A

B

C

D

E

8

8 8

8 8

8 5

5

3

3

Each pairwise distanced(i, j) represents the label of the least
common ancestor ofi andj.



Reconstructing Ultrametric Trees

There is an efficientO(n2) algorithm to reconstruct an
ultrametric tree, if one exists.
Observe that the labels on the path from a leafa to the root
follow from sorting the distances in rowa, since a branching
point corresponds to each unique distance.
Shared distances on the path partition the other leaves into
groups in the other subtrees.
Thus each of the resulting partitions is fixed, and can be
refined by considering other rows.
Unless we get a contradiction, we get an ultrametric tree.
Further, this tree must be unique.



What about Noise?

The problem becomes hard when you seek the “most”
ultrametric tree in noisy data. A little noise can throw the
topology off considerably.



Additive Trees

A weaker but well defined condition assumes that we have
thedistancebetween all pairs of leaves, and seek an unrooted,
edge-weighted tree such that the sum of the distances along
each path adds up to the defined distance.

A B D

A

B

C

D

A

B C

D

3

6 2

3

1

4
7 9

8

6

C



Building Additive Trees

An algorithm for additive tree reconstruction follows froma
reduction to ultrametric trees.
First, lift one of the nodesv with a maximum distance entry
Mv to the root.
Second, add weight to each leaf edgei so that the total
distance from root to each leaf isMv.
Finally, assign each node the largest weight below it to give
us matrixD′:



2 1

3

4

2

3
1  + 6

2 + 24 + 0
2

a b

c d

a

c d

b
4

7

9

These node labels ofD′ define an ultrametric tree, since they
decrease along each root-to-leaf path.
Thus if we could construct this matrixD′ without the
knowledge of the tree, we could solve the additive tree
problem as an ultrametric tree problem by reversing this
construction.



Since the additive input matrixD determinesv andMv, we
need to compute the distance in the unknown tree fromv to
the least common ancestorLCA(i, j).

v

i j

w
d(v,i) + d(v,j) - d(i,j) = 2 d(v,w)

Thus if D is an additive matrix, thenD′ is an ultrametric
matrix, where

D′ = Mv(D) + (D(i, j) − D(v, i) − D(v, j))/2



The technical assumption that all species in an ultrametric
tree are leaves can be restored by hangingv directly off the
root.



Perfect Phylogenies

Suppose we haven species, andm features each of which
only evolved once (parsimony).
Each feature can be represented by ann-element{0, 1}-
vector wherefi(j) = 1 iff speciesj has featurei.
The perfect phylogeny problemasks for a phylogenic tree
given ann × m binary feature matrix, if one exists.



A

B

C

D E

1

2
3

4

5

1 4 5

1

1

0

0

0

2 3

1 0 0

010

0 0 1

B

C

A

D

E

0

1

0 1 1 0

0 1 0 0 0

Note that this is an edge-labeled tree, and certain featuresdo
not necessarily contribute to a split (e.g. 3), particularly when
m > n.



Reconstructing Perfect Phylogenies

Suppose we know that all features evolve from 0 to 1, i.e. the
characters are ordered.
Claim: Matrix M has a perfect phylogenic tree iff for every
pair of columnsi, j the set of 1s are either (1) disjoint, or (2)
i containsj.
If column i containsall the 1s of columnj, then featurej
evolvedbeforefeaturei.
If two columns are disjoint, then the features evolved
independently.
If speciesx has featurei but notj, andy has a featurej but
not i, thenno perfect phylogeny can exist.



Perfect Phylogeny Algorithm

This immediately gives anO(m2n) algorithm to test the
matrix for this property, which can be improved toO(nm)
using radix sorting.



Perfect Phylogeny via Ultrametric Trees

Define ann × n matrix whereD[i, j] equals the number of
characters which speciesi shares withj for a given feature
matrixM .

1 4 5

1

1

0

0

0

2 3

1 0 0

010

0 0 1

B

C

A

D

E

0

1

0 1 1 0

0 1 0 0 0

B

C

A

D

E

A B C D E

2 0 2 0

0 11

3 0

1

0

1

02

1

Given a perfect phylogeny forM , we can label each node of
the tree with the number of labels encountered from the root:



A

B

C

D E

1

2
3

4

5

A

B

C

D E

1

2
3

4

5

0

1 1

1

2

2 1

2 3

These numbers are increasing along each root-to-leaf path,so
negating them given an ultrametric matrix.
Thus if M has a perfect phylogeny, thenD must be
ultrametric.
This gives a reconstruction algorithm since ultrametric trees
are unique.



Generalizing Perfect Phylogeny

The perfect phylogeny problem can be made more general
by allowing non-binary features, e.g. the locomotion feature
might be ‘fixed’, ‘crawling’, or ‘walking’.
In general, each feature is one ofr states. Inordered
phylogeny problems, we know the directed sequence of
transitions for each character as we move down the tree.
There are polynomialorderedperfect phylogeny algorithms
for any constantr, i.e. r is in the exponent of the running
time.
For unordered problems it is NP-complete for generalr, but
polynomial forr = 2.



Quartet Puzzling

Another approach to reconstructing phylogenic trees is to
carefully analyze small subsets of species to reconstruct their
relative history, and then integrate a set of resulting trees into
a consistent whole.
The smallest interesting unrooted trees contain four species,
and are calledquartets.

human human human
chimp

chimp chimp

gorilla

gorilla
gorilla

orangutang

orangutang orangutang



There are three possible quartets on any set of species.
The set of(n

4) quartets induced from any tree uniquely defines
the topology of the tree.
Note that rooted triplets can be modeled as quartets if one
species is ancestral.
In general, it is difficult to analyze the data to construct
all possible quartets in a consistent manner. The problem
of constructing the tree maximizing the number of satisfied
quartets is NP-complete.



Consensus Trees

Because the various algorithms and heuristics give different
trees on the same data, more evidence is needed than a single
tree to define the history.
For this reason, there are suites of programs (e.g. Phylip)
which contain implementations of many different tree con-
struction algorithms and heuristics.
Thus there is a need for algorithms which find theconsensus
of a set of trees, i.e. the branch points that all (or most) of the
trees share in common.



Tree Compatibility

Also there aretree compatibilityproblems, where we seek the
most refined tree which do not contradict evidence from any
of a set of partially specified trees:

a b

cde

fg

ab

c de

f g

a b c de

f g



Genome Rearrangements

Point mutations are only the simplest type of genetic
modification event.
Duplication events happen when a second copy of a given
gene is inserted into the chromosome. This allows for one
copy of the gene to evolve a new function without preventing
the production of the protein.
Reversalevents happen when a portion of a chromosome is
deleted and replaced with the reversed sequence. Such events
occur during crossover operations, and can create entirely
new genes as well as copies.



Translocation Events

Translocationevents happen when genes moved to different
locations or chromosomes. Translocated genes may be
regulated in a different way in the new location. Genes can
even jump across bacterial species (lateral transfer).
Reconstructing evolutionary history requires accountingfor
these large-scale events.



Where Babies Come From

Each sperm/egg cell contains 23 chromosomes, representing
the parent’s genetic contribution to their offspring.
Other human cells contain 23pairs of chromosomes, one of
each pair being inherited from each parent.
Gametes form a single chromosome from each pair through
recombination, where acrossoveroperation randomly alter-
nates between the two chromosomes to select which gene
copy to pass on.
Such sexual reproduction provides explanations for many
things, including why introns may be good, and sex-linked
and dominant/recessive diseases.



Errors in this process plausibly account for many genome
rearrangement events.
Because there are second copies of most genes, cells can be
surprisingly robust in the face of large scale changes.
Cancer cells often lose parts of chromosomes, and certain
interesting but non-fatal diseases occur when extra copiesof
chromosomes occur.



Genome Reversals

As we have seen, large sets of homologous genes exist
between pairs of organisms.
Crossover mutations causereversals of a sequence of
contiguous genes.

54321

1 4 3 2 5

The evolutionary history between two species should reflect
the shortestsequence of reversals (crossovers) necessary to
align all homologous pairs of genes.
Nadeau and Taylor estimate that178±39 crossovers occurred
between mouse and man.



Algorithmic Problems

History reconstruction motivates the problem ofsorting with
reversals, since

• We can reduce each genome to a permutation on1 to n,
wheren is the number of homologous genes between the
species, and

• By appropriately labeling the genes, one of the permuta-
tions can be1, 2, . . . , n.

Any reversal operation changes theorientationof all reversed
genes. Thus a sorting problem can besignedor unsigned
depending upon whether we know/care or do not know/care
about the orientation of each gene.



There are two distinct theoretical problems in sorting with
reversal problems:
Thediameterquestion asks which two lengthn permutations
are farthest apart over all(n!

2) pairs – how many reversals
always sufficeto sort.
Thedistancequestion asks, for a given pairp1, p2 of lengthn
permutations what is the fewest reversals to bringp1 to p2 –
how many reversals are necessary.



Pancake Sorting

Suppose we seek to sort a stack of pancakes by size using
a spatula. How manyprefix reversals do we need to sortn
pancakes.

3

4

2

5

1

4

3

2

1

5

5

2

3

4 1

2

5

4

3

1

By flipping the largest unsorted pancake to the top, and then
into position (i.e. selection sort) then any permutation can be
sorted in at most2n reversals.



Any strategy must use at leastn − 1 reversals in the worst
case, since each reversal removes at most onebreakpoint, i.e.
(1,3,5,7,2,4,6,8).
Thus the diameterd is between2n ≥ d ≥ n − 1, but tighter
bounds are well known. . .



Approximating Pancake Distance

Any permutation can be partitioned intostripsof consecutive
increasing or decreasing elements.
The gaps between strips arebreakpoints, and the number
of breakpoints is alower boundon the number of reversals
needed to sort.
Suppose we modify the selection sort strategy to move
the strip containing the largest unpositioned element into
position.
One reversal brings the strip to the top, another brings the
biggest element in the strip to the top (if necessary), and one
last flip puts it into position.



Thus this strategy uses at most three times the number
required flips andapproximatesthe actual pancake distance
for every pair of permutations.



A Better Pancake Heuristic

Suppose instead we just want to merge the strip on top with
one of its two neighbors.
If the orientation is correct, one flip suffices; if not two flips
suffice.
Since the number of breakpoints is equivalent to the number
of strips, this gives a factor 2 approximation.
More careful analysis can lower the constant somewhat, but
no polynomial algorithm is known to compute the minimum
pancake distance.
Lower bounds on the length of the optimal solution are
helpful in reasonably efficientbranch and boundexhaustive
search algorithms.



Computing the Reversal Distance

The motivating biological problem demands that we find the
shortest sequence ofgeneral(not prefix) reversals.
Note that there are(n

2) general reversals but onlyn prefix
reversals, so we have much more freedom.
Caprera proved that computing the reversal distance of
unsignedpermutations is NP-complete.
However, Hannenhali/Pevzner gave a polynomial algorithm
for computing reversal distance forsignedpermutations.



5 3 4 2 1

5 2 134

5 2 134

5 2 134

1 2 3 4 5

The signed case is biologically important since the orientation
of genes can be determined from the DNA sequence.
The exact algorithm for signed permutations requires careful,
technical combinatorial arguments.



Approximating Unsigned Reversal Distance

Since this problem is NP-complete, we seek an approxima-
tion algorithm.
A breakpoint occurs whenever neighboring elements are not
consecutive, or with out of position endpoints.
(3, 2, 4, 5, 1) has breakpoints 03, 24, 51, and 16.
Note that the number of breakpoints/2 is alower boundon
reversal distance, since any reversal can erase at most two
breakpoints.
A strip of consecutive numbers between two breakpoints is
increasingif the numbers strictly increase. Otherwise it is
decreasing. A singleton strip will be defined as decreasing.



Claim 1: Any non-identity permutation without decreasing
strips has a reversal which does not increase breakpoints but
leaves a non-trivial decreasing strip.
Proof: Flip the end strip, e.g. 45123 goes to 45321.
Claim 2: If a permutation has a decreasing strip, then there
exists a reversal which decreases the number of breakpoints.
Proof: Match up the smallest endpoint of a decreasing strip.
E.g: 543...12.. goes to 54321..... and 12...543.. goes to
12345......
The following examples don’t work – but the decreasing strip
isn’t smallest:543...21.. and21...543..



Heuristic and Analysis

If there is a decreasing strip, use one reversal and remove a
breakpoint.
If not, use one reversal to create a decreasing strip.
Since one breakpoint is removed every other iteration (at
least), twice the number of breakpoints is anupper bound
on the reversal distance.
Since this is 4 times the lower bound we have a factor 4
approximation.
The approximation factor can be lowered to 1.5 with more
careful structural analysis.


