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Faster, Better, Cheaper

Biology used to be a hypothesis driven science...

But one of the major themes driving contemporary genom
research is the idea of doing experiments to capture raw (
on “complete” state of a particular system.

Obtaining such massive amounts of data requires increast
automation and parallelism over traditional experiments.
Laboratory technigues exist to enable biologists to meas
the expressiorof a single gene under certain conditions.
Microarray technology enables one to do such experime
on a vastly larger scale.



Random Access and Arrays

Suppose you want to do millions of different chemic
reactions simultaneously.

You can’t do them in single test tube, because how do \
know where to look for the results of any given reaction?
To exploit parallelism, you need to be able to associate e
Intended reaction with a location or address.

The traditional solution is to do experiments in 96-well ¢
384-well plates where each chamber is kept separate frc
each other.

Coordinating the results from many plates involves care
labeling, e.g. with barcodes.



Certain technologies have been developed where diffel
compounds are anchored to tibgads so reacting beads cat
be eye-balled, isolated, and identified.

But the best solution is to attach distinct compounds
different regions of a solid substrate so you kneherethey
are.




What Are They Good For?

|dentification of genes involved in the cell division cycls f
yeast:




Sequencing variants ofkanowngenome, for detecting single
nucleotide polymorphisms (SNPs) or identifying a speci
strain of virus (e.g. the Affymetrix HIV-1 array).

Measuring differential expression of all genes in tumor a
normal cells, to determine which genes may cause/c
cancer, or identify which treatment a specific tumor shot
respond best to.

Measuring differential expression of all genes in diffdre
tissue types, to determine what makes one cell type differ
than another.

Measuring copy number variants from chromosomal anor
lies or cancer.

Obtaining individual’s genotype / SNP data, e.g. 23andMe



Microarray Technology

Single stranded DNA/RNA molecules are anchored by c
end to the plate/substrate. These molecules will seek
hybridize with complementary strands floating in solution.
The target molecules are fluorescently labeled, so that
spots on thechip/array where hybridization occurs can b
identified.

The strength of the detected signal somewhat reflects
amount of stuff which binds to it, and thus the amount of t
target in solution. Suclguantitativeexpression data is nof
very reliable, however.



Relative Target Analysis

More accurate data comes from comparing tedtive
amounts of expressed DNA/RNA in two related sampl
each of which is colored with a different fluorophore. Tt
ratio of green/red tells us about the relative expressidoth

samples.



Sourcesof Error

There are several factors which lead to errors in microar
hybridization data, beyond obvious manufacturing defe
and experimental errors.

The strength of the bond formed between two single stran
DNA/RNA molecules is a function of (1) the length o
the bonded molecules, (2) the base composition of
molecules, since A/T and C/G bond with different energie
(3) the number and location of base mismatches, since
mismatches cause less trouble.

Cross hybridizations a source of many false positive error
where a closely related DNA sequence binds at the probt
the absence of the desired target.



Heat breaks these bonds, so g#tgngencyof hybridization
can be effected by changing the temperature and of
conditions.

Self hybridizationoccurs when probe molecules fold an
hybridize with themselves, thus rendering them less afect
at hybridizing with the target. This occurs particularlyseif-
palindromicprobes.



Spotted Microarrays

There are two distinct but important types of DNA/RNA arre
technology.

Spotted microarrayioneered by Pat Brown at Stanford, la
down rows of tiny drops from racks of previously prepare
DNA/RNA samples.

Extensive automation makes it possible to build small gl
slides containing tens of thousands of different probesspot
Any given DNA/RNA probe can be hundreds of bases lor
and in principle made from any DNA/RNA sample.

Thus reasonable spotted arrays might contain all genes
given organism, or all EST fragments from a library.



Affymetrix Arrays

Affymetrix arrays aresynthesizedy using the same light
mask technology that silicon chips are manufactured.
They exploit photo-sensitivereactions to (1) remove &
blocking group at the end of a molecule, and (2) to exte
the molecule with a given blocked base.

Thusanysubset of DNAk:-mers can be built up using at mos
4k reactions.

Affymetrix arrays are typically limited to oligos of ~ 25,
but can contain hundreds of thousands of probes.

It is expensive to fabricate the masks for a new array desi
so they win only if you can sell many copies.



Other Array Technologies

Agilent Technologies manufactures array makers using il
jet printer technology.

These mimic the Affymetrix synthesis approach of growir
another base at the end of a molecule by (1) deprotecting
end, and (2) attaching a new base with a protected ent
avoid duplication.

These are exciting because it becomes practical to syathe
only one instance of a given array design.

Other companies use similar technologies on address:
beadsto get around patent issues concerning arrays
oligonucleotides — or locations in friendly countries (e.
lceland).



| mage Processing | ssues

Each array image contains so much information it must
read by a computer, not a person.

The first step of image processingisdding, identifying the
mapping between the image and the locations of the spot:
the array.

The careful mechanical construction of these arrays ma
this a tractable problem.

Determining the hybridization level of a spot is not ju:
a function of intensity, but a statistical analysis adntrol
probesandredundantprobes for the specific target.

But your data analysis has only begun once you have
hybridization level for each spot. ..



Linkage Analysisand Microarrays

Many genetic diseases (e.g. Huntington’s Disease, T
Sachs) are caused by inheriting defective versions (altfle
genes from one or both parents, who in turn inherited th
from their parents. ..

Trying to figure out which genes actually cause the diseas
complicated by several factors, including (1) the phenety
may not show up unless you get some combination
bad alleles, (2) about 1/4 of your genes come from e
grandparent, so there are many possible candidates an
how do you tell which alleles you got from whom?



Recombination and Linkage Analysis

Through recombination, each chromosome you inherit fre
Mom is a random mixture of the corresponding chromoson
of her parents.

In this mixture, alternations between parents occursivelat
rarely, so if you inherit given gene from grandma, likely tt
neighboring gene also came from grandma.

Linkage analysisnapped diseases to approximate locatio
on chromosomes bases on (1) pedigree analysis (i.e. fal
trees annotated with the presence or absence of dise:
and (2) experimental data describing which flavor of gene
marker you have at each of a few hundred positions.

This analysis is done through very computationally-inkens



linkage analysis programs.

Specially-designed linkage analysis microarrays with-ht
dreds of thousands of markers will enable researchers
gather very accurate measurements of exactly where
crossovers were and what you inherited from each parent



Data Clustering

Clustering is an inherently ill-defined problem since tt
correct clusters depend upon context and are in the ey

the beholder.
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How many clusters are there?



Biological applications of clustering include grouping- s
guences/ESTs by similarity, genes by similar express
patterns, and samples by tissue type/disease.

Biological clustering is often associated wdkndogram®r
phylogenic trees, although there is no reason theexlbe a
tree associated with clusters.



Distance M easures

Certain mathematical properties are expected of any aiste
measure, ometric

1.d(x,y) > 0forall x, y.
2.d(x,y) =01iff z =y.
3.d(z,y) = d(y, z) (symmetry)

4.d(x,y) < d(z,z) + d(z,y) for all x, y, andz. (triangle
Inequality)

Euclidean distancel(z,y) = s, |z; — y|? is probably
the most commonly used metric. Note that it weights |
features/dimensions “equally”.



Variations on Euclidean distance inclufignorms fork # 2:
d
d(z,y) = (3 Joi =y ")

We get the “Manhattan” distance metric fbr= 1 and the
“maximum” component fok = .

The correlation coefficienibf sequencesy andY, yield a
number from -1 to 1 but isota metric.

The loss of the triangle inequality in non-metrics can cat

strange clustering behavior, particularly in single ligka
methods.



Distance M easur es Between Clusters

There are several ways to measure the distance betweer
clusters:

Nearest
Neighbour +_
(Single Linkage) |«

Average Furthest
Neighbour .
Complete Linkage) - .

The choice of measure implies a tradeoff between compt
tional efficiency and robustness.



Agglomerative Clustering

Such methods merge smaller clusters into bigger clusters
The simplest merging criteria is to join the twtearest

clusters.

Minimum spanning tree methods defismgle-link cluster-

ing.



But does nearest mean the closest pair of examples?
closest mean/median examples?

In complete link clustering, we merge the pair whicl
minimizes the maximum distance between elements. T
is more expensive({(n?) vs. O(n?)), but presumably more
robust.



k-Means Clustering

k-Means clusterings an iterative clustering technique wher
you specify the number of clustekan advance.

Pick & points, and assign each example to the closest df tr
points.

Pick the ‘average’ or ‘center’ point from each cluster, at
repeat until sufficiently stable.

Note that such center points are not well defined in clusger
non-numerical attributes, such as color, profession, rievo
type of music, etc.



How Many Clusters?

The question of how many clusters you have (or expe
IS inherently fuzzy in most applications. However, tf
“right” number of clusters, adding another cluster shouwdtl r
dramatically reduce distance from the centers.

Such techniques represent @artitioning-based strategy,
which is dual to the notion of agglomerative clustering.



Graph-Theoretic Clustering Methods

An alternate approach to clustering constructs an unayly
similarity graph, where elemenisand; are connected by ar
edge iff; andj are similar enough that they should/can be
the same cluster.

If the similarity measure is totally correct and consisté¢ime
graph will consist of disjoint cliques, one per cluster.




Overcoming spurious similarities reduces to findir
maximum-sized cliques, an NP-complete problem.
Overcoming occasional missing edges means we really ¢
to find sets of vertices inducing dense graphs.
Repeatedly deleting low-degree vertices gives an effici
algorithm for finding an induced subgraph with minimut
degreek, if one exists.



Cut-Based Algorithms

A real cluster in such a graph should be easy to disconr
by deleting a small number of edges. Tiheaimum edge cut
problem asks for the smallest number of edges whose dele
will disconnect the graph.

s S

The max flow / min cut theorerstates that the maximun
possible flow between verticésand j in a weighted graph
G Is the same as the minimum total edge weight needec
separate from j.



Thus network flow can be used to find the minimum c
efficiently.

However the globally minimum cut is likely to just slice off
single vertex as opposed to an entire cluster.



Graph Partitioning Approaches

Graph partitioning problems which seek to ensure lat
components on either side of the cut tend to be NP-compl
By complementingraphG, we get a graplés’ with an edge
(¢, 7) In G" iff the edge did not exist .

By finding themaximum cuin G’ and recurring on each side
we can have a top-down (i.e. divisive) clustering algorithm




Finding the maximum cut is NP-complete, but a simg
algorithm gives a cut at least half as big as the optimal cut
For each vertex, flip a coin to decide which side of the ¢
(left or right) it goes. This means that edge;) has a 50%
chance of being cut (yes if coirisand; both came up either
heads or tails).

Local improvement heuristics can be used to refine t
meaningless cut.



Nearest Neighbor Clustering

Assign each point to its nearest neighbor who has be
clustered if the distance is sufficiently small.

Repeat until there are sufficient number of clusters.
Nearest neighboclassifiersassign an unknown sample th
classification associated with the closest point.




Conceptually, all classifiers carve up space into labe
regions.Voronoi diagramgartition space into cells defining
the boundaries of the nearest neighbor regions.

Nearest neighbor classifiers are simple and reasona
but not robust. A natural extension assigns the majot
classification of the&: closest points.

An important task in building classifiers is avoidimmyer-
fitting, training your classifier to replicate your data tc



faithfully.
Other classifier techniques includdecision treesand
support-vector machines



Decisionswith Clustering

How many clustershouldthere be? (hint: eyeball it or look
for large distances)

How do we visualize large, multidimensional datasets?t{hi
read Tufte’s books)

How do we handle multidimensional datasets?  (hi
dimension reduction techniques such as principle compyor
analysis and singular-value decomposition (SVD))

How do we handle noise? (hint: aim for robustness
avoiding single-linkage methods and proper distancer@jte



Which clustering algorithm should we use? (hint: th
probably doesn’t make as much difference as you think).

Which distance measure should we use? (hint: this is y
most important decision)



Microarray Software

Affymetrics supplies image analysis and data analysis st
ware for customers of its microarrays.

Several third-party bioinformatics companies (e.g. Sea
lytics, Silicon Genetics, Compugen Lion Bioscience) sypy
such software applicable for spotted microarray systems.
Data mining software uses clustering and other statisti
methods to identify interesting features in microarray a
heterogeneous data sets.

Websites such as Netaffx (www.affymetrix.com) provic
links between various public databases, enabling you ¢& c
on genes that look interesting in your microarray data aretl f
out what is known about them.



Cluster/TreeView

Developed by Michael Eisen, this is the original microarr:
clustering software.

Provides a computational and graphical environment
analyzing data from DNA micorarray experiments
Clusterorganizes and analyzes the data in a number of we
clustering either genes or experiments by similarity.
TreeViewallows interactive graphical analysis of the resul
from Cluster.



Cluster uses the correlation coefficient (-1 to 1)adarith-
mically normalizedprimary data for each gene. Since th
primary data is a ratio of red/green, this is zero for eqL
expression, positive for up-regulated expression, andtney
for down-regulated expression.

i — X)(yi —Y
corr(X,Y) = =il = )Y )_
Vol — X))y — V)2
The denominators are the standard deviations of the 1
sequences, to normalize them. Positive correlation

achieved when both measurements on the same size of
respective means.
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Algorithmics of Cluster/TreeView

This agglomerative clustering algorithm uses the avera
linkage method of Sokal and Michener. Each clust
IS assigned a gene-expression profile by, for each pr
averaging all of the values of genes in its cluster. T
profile of a merged cluster is determined by averaging the t
component clusters weighted by the number of non-miss
values in each cluster.

These clusters are displayed by permuting the rows of
matrix to reflect the structure of the tree/dendogram.
heuristic solution for this TSP-like problem is used to ard
the genes so as to help visualize the clusters.



Note that there ar@"~! ways to permute the. leaves of
any binary tree while leaving a non-intersecting drawing.
polynomial-time dynamic programming can be used to fi
the best possible ordering:

Let Cr, i, j| be the cost of the cheapest way to permute |
subtree with root such that geneéis on the left and geng
IS on the right. Then

Clr,i,j] = n}{uln Clchildy, i, k] + C[childs, 1, j| + cost(k, 1)



SBH: The Vision

The original proposed application for hybridization asa
wasde novoDNA seguencing.

The idea was to build an array with a large number
short probes, hybridize the target against it, and readheff
sequence by knowing which subsequences wereavane not
present.

Shotgun sequencing gives you longer strings which
present in the sequence, but no information as to what is
present.

These extra combinatorial constraints should be very hkly
In unraveling the sequence.



SBH: The Reality

Important classes of Affymetrix arrays are usedggequence
variants of known sequences.

Single nucleotide polymorphisnSNPs) are common one
base DNA differences among members of a given species
Such minor differences in coding sequences may or may
have important consequences for particular diseases.
Much of the genetic variation among humans consists
SNPs.

The Affymetrix HIV-1 array attempts to determine the exa
strain of the virus.

Each of the firsD, 718 — 24 starting positions in the sequenc
of HIV-1 defines a particular 25-mer.



For each of these 25-mers, we can construct four 25-r
probes by trying all possibilities (A,C,G,T) of the 13th bas
The correct one should clearly have the strongest signal.
Such a probe set will have trouble if there are more than
SNP in a 25-mer, however.



SBH: The Theory

Applying SBH tode novosequencing is a different problem
because we do not have any information as to whaters
should be in the sequence.

Thus we might construct an arr&y( k) askingall k-mers for
the largest possible.

Asking all 4 ~ one trillion 20-mers is clearly impossible
with current arrays sizes.

Such classical hybridization arrays up todll ~ one million
10-mers have been built by Affymetrix.

How can we reconstruct a sequence by knowing wiiieh
mers are andre notin the sequence?



Hamiltonian Paths

Suppose that exactly the following 3-mers occur in t
unknown sequence&AA, AAC, ACA, CAC, CAA, ACG, CGC

GCA, ACT, CTT, TTA

O

AAA

=

GCA———= can l



We can construct a graph where the vertices correspon:
positive k-mers, with a directed edge between twaners
which overlap ink — 1 positions.

We seek a path that visits each vertex at least (and hopef
at most) once to define a sequence consistent with the da
This is theHamiltonian Pathproblem, so it is NP-complete
to find such a tour.



|nterpreting the Spectrum

Multiple Hamiltonian paths means that the sequence rec
struction is not uniquely defined by ispectrum Frequency

counts for each oligo can help resolve ambiguity.

The length of the oligos;, must be large enough to span a
repeats if the sequence is to be reconstructed unambiguo
This formulation is general enough to be extended

reconstruction in the presence of hybridization errors

appropriately weighting edges and asking for a minimum c
tour.



Eulerian Paths

An Eulerian path/cyclevisits everyedgeof a graph exactly
once.

A connected, directed graph has an Eulerian cycle iff ev
vertex has indegree equal to its out-degree.

Thus there is an efficient algorithm to find Eulerian cycles
graphs.



Note that any pair of cycles in an Eulerian cycle can
exchanged to create a different cycle. Thus one can't m
a mistake by extracting a cycle.



de Bruijn Graphs

There is a clever way to reduce the SBH reconstructi
problem to finding an Eulerian cycle on a subgraph of t
de Bruijn graphof orderk.

We will represent everjt-mer as aredgeof the graph.

The vertices will represent alk — 1)-mers, withk-mer S
being the edge between the vertex defined by the(first 1)
characters of and the lastk — 1) characters of.



T
AC+—CA

SEPA

\TT «—CT CG — GC

This only works because the strings restrict the set of ptess
Hamiltonian cycle graphs to highly structured examples.



Resolving Power

The sequence®*! cannot be distinguished froaf*? using
just k-mer probes.

No sequence of length greater th&h+ £ can be unam-
biguously sequenced with'(k), since (by the pigeonhole
principle) at least one fragment will repeat.

Expected resolving lengths are even shomeen assuming
no hybridization errors

Fragment| k Probes 4%/2
80 7 16,384 128
180 8 65,536 256

260 9 262,144 512
560 10 1,048,576 1024
1300 11 4,194,304 2048
2450 12 16,777,216 4096




We can estimate the resolving fragment length by picking 1
k such that the probability of ang-mer repeating~ n/4%)
Is sufficiently small. Fok = (Ig, n)/2 this probability goes
to1/n.

From aninformation theoryperspective, an experiment whicl
maximizes resolving power should have about half posit
and half negative probes — but almost all probes will
negative for any given sequence.



SBH: The Variants

A large variety of variations on the basic SBH technolot
have been proposed with the goal of increasing the size of
fragments which can be reconstructed.

In positional SBH, we also get information about roughl
where each fragment exists on the final sequence thro
auxiliary data.

In interactiveSBH, we use ink-jet technology to design ne
arrays in response to previous results to quickly converge
the correct sequence.

Alternate chip designs usinmiversal basewhich hybridize
at any base can theoretically increase resolving powegu
fixed length probes with “don’t care” characters.



