
Lectures 15, 16, 17, and 18:
Microarrays

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Faster, Better, Cheaper

Biology used to be a hypothesis driven science...
But one of the major themes driving contemporary genomics
research is the idea of doing experiments to capture raw data
on “complete” state of a particular system.
Obtaining such massive amounts of data requires increases in
automation and parallelism over traditional experiments.
Laboratory techniques exist to enable biologists to measure
theexpressionof a single gene under certain conditions.
Microarray technology enables one to do such experiments
on a vastly larger scale.



Random Access and Arrays

Suppose you want to do millions of different chemical
reactions simultaneously.
You can’t do them in single test tube, because how do you
know where to look for the results of any given reaction?
To exploit parallelism, you need to be able to associate each
intended reaction with a location or address.
The traditional solution is to do experiments in 96-well or
384-well plates, where each chamber is kept separate from
each other.
Coordinating the results from many plates involves careful
labeling, e.g. with barcodes.



Certain technologies have been developed where different
compounds are anchored to tinybeads, so reacting beads can
be eye-balled, isolated, and identified.
But the best solution is to attach distinct compounds to
different regions of a solid substrate so you knowwherethey
are.



What Are They Good For?

Identification of genes involved in the cell division cycle for
yeast:



Sequencing variants of aknowngenome, for detecting single
nucleotide polymorphisms (SNPs) or identifying a specific
strain of virus (e.g. the Affymetrix HIV-1 array).
Measuring differential expression of all genes in tumor and
normal cells, to determine which genes may cause/cure
cancer, or identify which treatment a specific tumor should
respond best to.
Measuring differential expression of all genes in different
tissue types, to determine what makes one cell type different
than another.
Measuring copy number variants from chromosomal anoma-
lies or cancer.
Obtaining individual’s genotype / SNP data, e.g. 23andMe.



Microarray Technology

Single stranded DNA/RNA molecules are anchored by one
end to the plate/substrate. These molecules will seek to
hybridize with complementary strands floating in solution.
The target molecules are fluorescently labeled, so that the
spots on thechip/array where hybridization occurs can be
identified.
The strength of the detected signal somewhat reflects the
amount of stuff which binds to it, and thus the amount of the
target in solution. Suchquantitativeexpression data is not
very reliable, however.



Relative Target Analysis

More accurate data comes from comparing therelative
amounts of expressed DNA/RNA in two related samples,
each of which is colored with a different fluorophore. The
ratio of green/red tells us about the relative expression inboth
samples.



Sources of Error

There are several factors which lead to errors in microarray
hybridization data, beyond obvious manufacturing defects
and experimental errors.
The strength of the bond formed between two single stranded
DNA/RNA molecules is a function of (1) the length of
the bonded molecules, (2) the base composition of the
molecules, since A/T and C/G bond with different energies,
(3) the number and location of base mismatches, since end
mismatches cause less trouble.
Cross hybridizationis a source of many false positive errors,
where a closely related DNA sequence binds at the probe in
the absence of the desired target.



Heat breaks these bonds, so thestringencyof hybridization
can be effected by changing the temperature and other
conditions.
Self hybridizationoccurs when probe molecules fold and
hybridize with themselves, thus rendering them less effective
at hybridizing with the target. This occurs particularly inself-
palindromicprobes.



Spotted Microarrays

There are two distinct but important types of DNA/RNA array
technology.
Spotted microarrays, pioneered by Pat Brown at Stanford, lay
down rows of tiny drops from racks of previously prepared
DNA/RNA samples.
Extensive automation makes it possible to build small glass
slides containing tens of thousands of different probe spots.
Any given DNA/RNA probe can be hundreds of bases long,
and in principle made from any DNA/RNA sample.
Thus reasonable spotted arrays might contain all genes in a
given organism, or all EST fragments from a library.



Affymetrix Arrays

Affymetrix arrays aresynthesizedby using the same light
mask technology that silicon chips are manufactured.
They exploit photo-sensitivereactions to (1) remove a
blocking group at the end of a molecule, and (2) to extend
the molecule with a given blocked base.
Thusanysubset of DNAk-mers can be built up using at most
4k reactions.
Affymetrix arrays are typically limited to oligos ofk ≈ 25,
but can contain hundreds of thousands of probes.
It is expensive to fabricate the masks for a new array design,
so they win only if you can sell many copies.



Other Array Technologies

Agilent Technologies manufactures array makers using ink-
jet printer technology.
These mimic the Affymetrix synthesis approach of growing
another base at the end of a molecule by (1) deprotecting the
end, and (2) attaching a new base with a protected end to
avoid duplication.
These are exciting because it becomes practical to synthesize
only one instance of a given array design.
Other companies use similar technologies on addressable
beads to get around patent issues concerning arrays of
oligonucleotides – or locations in friendly countries (e.g.
Iceland).



Image Processing Issues

Each array image contains so much information it must be
read by a computer, not a person.
The first step of image processing isgridding, identifying the
mapping between the image and the locations of the spots on
the array.
The careful mechanical construction of these arrays makes
this a tractable problem.
Determining the hybridization level of a spot is not just
a function of intensity, but a statistical analysis ofcontrol
probesandredundantprobes for the specific target.
But your data analysis has only begun once you have the
hybridization level for each spot. . .



Linkage Analysis and Microarrays

Many genetic diseases (e.g. Huntington’s Disease, Tay-
Sachs) are caused by inheriting defective versions (allele) of
genes from one or both parents, who in turn inherited them
from their parents. . .
Trying to figure out which genes actually cause the disease is
complicated by several factors, including (1) the phenotype
may not show up unless you get some combination of
bad alleles, (2) about 1/4 of your genes come from each
grandparent, so there are many possible candidates and (3)
how do you tell which alleles you got from whom?



Recombination and Linkage Analysis

Through recombination, each chromosome you inherit from
Mom is a random mixture of the corresponding chromosomes
of her parents.
In this mixture, alternations between parents occurs relatively
rarely, so if you inherit given gene from grandma, likely the
neighboring gene also came from grandma.
Linkage analysismapped diseases to approximate locations
on chromosomes bases on (1) pedigree analysis (i.e. family
trees annotated with the presence or absence of disease),
and (2) experimental data describing which flavor of genetic
marker you have at each of a few hundred positions.
This analysis is done through very computationally-intensive



linkage analysis programs.
Specially-designed linkage analysis microarrays with hun-
dreds of thousands of markers will enable researchers to
gather very accurate measurements of exactly where the
crossovers were and what you inherited from each parent.



Data Clustering

Clustering is an inherently ill-defined problem since the
correct clusters depend upon context and are in the eye of
the beholder.

How many clusters are there?



Biological applications of clustering include grouping se-
quences/ESTs by similarity, genes by similar expression
patterns, and samples by tissue type/disease.
Biological clustering is often associated withdendogramsor
phylogenic trees, although there is no reason thereneedbe a
tree associated with clusters.



Distance Measures

Certain mathematical properties are expected of any distance
measure, ormetric:

1. d(x, y) ≥ 0 for all x, y.

2. d(x, y) = 0 iff x = y.

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, andz. (triangle
inequality)

Euclidean distanced(x, y) =
√

∑d
i=1 |xi − yi|2 is probably

the most commonly used metric. Note that it weights all
features/dimensions “equally”.



Variations on Euclidean distance includeLk norms fork 6= 2:

d(x, y) = (
d

∑

i=1
|xi − yi|

k)(1/k)

We get the “Manhattan” distance metric fork = 1 and the
“maximum” component fork = ∞.
The correlation coefficientof sequencesX and Y , yield a
number from -1 to 1 but isnota metric.
The loss of the triangle inequality in non-metrics can cause
strange clustering behavior, particularly in single linkage
methods.



Distance Measures Between Clusters

There are several ways to measure the distance between two
clusters:

The choice of measure implies a tradeoff between computa-
tional efficiency and robustness.



Agglomerative Clustering

Such methods merge smaller clusters into bigger clusters.
The simplest merging criteria is to join the twonearest
clusters.
Minimum spanning tree methods definesingle-link cluster-
ing.



But does nearest mean the closest pair of examples? The
closest mean/median examples?
In complete link clustering, we merge the pair which
minimizes the maximum distance between elements. This
is more expensive (O(n3) vs. O(n2)), but presumably more
robust.



k-Means Clustering

k-Means clusteringis an iterative clustering technique where
you specify the number of clustersk in advance.
Pickk points, and assign each example to the closest of thek
points.
Pick the ‘average’ or ‘center’ point from each cluster, and
repeat until sufficiently stable.
Note that such center points are not well defined in clustering
non-numerical attributes, such as color, profession, favorite
type of music, etc.



How Many Clusters?

The question of how many clusters you have (or expect)
is inherently fuzzy in most applications. However, the
“right” number of clusters, adding another cluster should not
dramatically reduce distance from the centers.
Such techniques represent apartitioning-based strategy,
which is dual to the notion of agglomerative clustering.



Graph-Theoretic Clustering Methods

An alternate approach to clustering constructs an underlying
similarity graph, where elementsi andj are connected by an
edge iffi andj are similar enough that they should/can be in
the same cluster.
If the similarity measure is totally correct and consistent, the
graph will consist of disjoint cliques, one per cluster.



Overcoming spurious similarities reduces to finding
maximum-sized cliques, an NP-complete problem.
Overcoming occasional missing edges means we really seek
to find sets of vertices inducing dense graphs.
Repeatedly deleting low-degree vertices gives an efficient
algorithm for finding an induced subgraph with minimum
degreek, if one exists.



Cut-Based Algorithms

A real cluster in such a graph should be easy to disconnect
by deleting a small number of edges. Theminimum edge cut
problem asks for the smallest number of edges whose deletion
will disconnect the graph.

X

The max flow / min cut theoremstates that the maximum
possible flow between verticesi and j in a weighted graph
G is the same as the minimum total edge weight needed to
separatei from j.



Thus network flow can be used to find the minimum cut
efficiently.

S T S T

However the globally minimum cut is likely to just slice off a
single vertex as opposed to an entire cluster.



Graph Partitioning Approaches

Graph partitioning problems which seek to ensure large
components on either side of the cut tend to be NP-complete.
By complementinggraphG, we get a graphG′ with an edge
(i, j) in G′ iff the edge did not exist inG.
By finding themaximum cutin G′ and recurring on each side,
we can have a top-down (i.e. divisive) clustering algorithm.



Finding the maximum cut is NP-complete, but a simple
algorithm gives a cut at least half as big as the optimal cut:
For each vertex, flip a coin to decide which side of the cut
(left or right) it goes. This means that edge(i, j) has a 50%
chance of being cut (yes if coinsi andj both came up either
heads or tails).
Local improvement heuristics can be used to refine this
meaningless cut.



Nearest Neighbor Clustering

Assign each point to its nearest neighbor who has been
clustered if the distance is sufficiently small.
Repeat until there are sufficient number of clusters.
Nearest neighborclassifiersassign an unknown sample the
classification associated with the closest point.



Conceptually, all classifiers carve up space into labeled
regions.Voronoi diagramspartition space into cells defining
the boundaries of the nearest neighbor regions.
Nearest neighbor classifiers are simple and reasonable,
but not robust. A natural extension assigns the majority
classification of thek closest points.

25

50

75

Age

Income

20K 40K 60K 80K 100K 120K

D

D

D

D

D
D

D

D

D
RD

D

D

D

D

D

D

DDD

D D

D

D

D

D

D

R

R
R

R

R

R

RR

RR

R

R

R
R

D

R

R

R

RR

R

R

R

R

R

R
R R

R

R

R

R

R

R

D

D

D D R
R

R

An important task in building classifiers is avoidingover-
fitting, training your classifier to replicate your data too



faithfully.
Other classifier techniques includedecision trees and
support-vector machines.



Decisions with Clustering

How many clustersshouldthere be? (hint: eyeball it or look
for large distances)
How do we visualize large, multidimensional datasets? (hint:
read Tufte’s books)
How do we handle multidimensional datasets? (hint:
dimension reduction techniques such as principle component
analysis and singular-value decomposition (SVD))
How do we handle noise? (hint: aim for robustness by
avoiding single-linkage methods and proper distance criteria)



Which clustering algorithm should we use? (hint: this
probably doesn’t make as much difference as you think).
Which distance measure should we use? (hint: this is your
most important decision)



Microarray Software

Affymetrics supplies image analysis and data analysis soft-
ware for customers of its microarrays.
Several third-party bioinformatics companies (e.g. Scana-
lytics, Silicon Genetics, Compugen Lion Bioscience) supply
such software applicable for spotted microarray systems.
Data mining software uses clustering and other statistical
methods to identify interesting features in microarray and
heterogeneous data sets.
Websites such as Netaffx (www.affymetrix.com) provide
links between various public databases, enabling you to click
on genes that look interesting in your microarray data and find
out what is known about them.



Cluster/TreeView

Developed by Michael Eisen, this is the original microarray
clustering software.
Provides a computational and graphical environment for
analyzing data from DNA micorarray experiments
Clusterorganizes and analyzes the data in a number of ways,
clustering either genes or experiments by similarity.
TreeViewallows interactive graphical analysis of the results
from Cluster.



Cluster uses the correlation coefficient (-1 to 1) oflogarith-
mically normalizedprimary data for each gene. Since this
primary data is a ratio of red/green, this is zero for equal
expression, positive for up-regulated expression, and negative
for down-regulated expression.

corr(X,Y ) =
∑

i(xi − X̄)(yi − Ȳ )
√

∑

i(xi − X̄)2
√

∑

i(yi − Ȳ )2

The denominators are the standard deviations of the two
sequences, to normalize them. Positive correlation is
achieved when both measurements on the same size of their
respective means.





Algorithmics of Cluster/TreeView

This agglomerative clustering algorithm uses the average-
linkage method of Sokal and Michener. Each cluster
is assigned a gene-expression profile by, for each probe
averaging all of the values of genes in its cluster. The
profile of a merged cluster is determined by averaging the two
component clusters weighted by the number of non-missing
values in each cluster.
These clusters are displayed by permuting the rows of the
matrix to reflect the structure of the tree/dendogram. A
heuristic solution for this TSP-like problem is used to order
the genes so as to help visualize the clusters.



Note that there are2n−1 ways to permute then leaves of
any binary tree while leaving a non-intersecting drawing. A
polynomial-time dynamic programming can be used to find
the best possible ordering:
Let C[r, i, j] be the cost of the cheapest way to permute the
subtree with rootr such that genei is on the left and genej
is on the right. Then

C[r, i, j] = min
k,l

C[child1, i, k] + C[child2, l, j] + cost(k, l)



SBH: The Vision

The original proposed application for hybridization arrays
wasde novoDNA sequencing.
The idea was to build an array with a large number of
short probes, hybridize the target against it, and read off the
sequence by knowing which subsequences were andwere not
present.
Shotgun sequencing gives you longer strings which are
present in the sequence, but no information as to what is not
present.
These extra combinatorial constraints should be very helpful
in unraveling the sequence.



SBH: The Reality

Important classes of Affymetrix arrays are used toresequence
variants of known sequences.
Single nucleotide polymorphisms(SNPs) are common one-
base DNA differences among members of a given species.
Such minor differences in coding sequences may or may not
have important consequences for particular diseases.
Much of the genetic variation among humans consists of
SNPs.
The Affymetrix HIV-1 array attempts to determine the exact
strain of the virus.
Each of the first9, 718− 24 starting positions in the sequence
of HIV-1 defines a particular 25-mer.



For each of these 25-mers, we can construct four 25-mer
probes by trying all possibilities (A,C,G,T) of the 13th base.
The correct one should clearly have the strongest signal.
Such a probe set will have trouble if there are more than one
SNP in a 25-mer, however.



SBH: The Theory

Applying SBH tode novosequencing is a different problem,
because we do not have any information as to whatk-mers
should be in the sequence.
Thus we might construct an arrayC(k) askingall k-mers for
the largest possiblek.
Asking all 420 ≈ one trillion 20-mers is clearly impossible
with current arrays sizes.
Such classical hybridization arrays up to all410 ≈ one million
10-mers have been built by Affymetrix.
How can we reconstruct a sequence by knowing whichk-
mers are andare notin the sequence?



Hamiltonian Paths

Suppose that exactly the following 3-mers occur in the
unknown sequence:AAA, AAC, ACA, CAC, CAA, ACG, CGC,
GCA, ACT, CTT, TTA.

CAA

ACGCGC

GCA

AAA

AAC

ACA

CAC ACT

CTT

TTA



We can construct a graph where the vertices correspond to
positive k-mers, with a directed edge between twok-mers
which overlap ink − 1 positions.
We seek a path that visits each vertex at least (and hopefully
at most) once to define a sequence consistent with the data.
This is theHamiltonian Pathproblem, so it is NP-complete
to find such a tour.



Interpreting the Spectrum

Multiple Hamiltonian paths means that the sequence recon-
struction is not uniquely defined by itsspectrum. Frequency
counts for each oligo can help resolve ambiguity.
The length of the oligos,k, must be large enough to span all
repeats if the sequence is to be reconstructed unambiguously.
This formulation is general enough to be extended to
reconstruction in the presence of hybridization errors by
appropriately weighting edges and asking for a minimum cost
tour.



Eulerian Paths

An Eulerian path/cyclevisits everyedgeof a graph exactly
once.

A connected, directed graph has an Eulerian cycle iff every
vertex has indegree equal to its out-degree.
Thus there is an efficient algorithm to find Eulerian cycles in
graphs.



Note that any pair of cycles in an Eulerian cycle can be
exchanged to create a different cycle. Thus one can’t make
a mistake by extracting a cycle.



de Bruijn Graphs

There is a clever way to reduce the SBH reconstruction
problem to finding an Eulerian cycle on a subgraph of the
de Bruijn graphof orderk.
We will represent everyk-mer as anedgeof the graph.
The vertices will represent all(k − 1)-mers, withk-mer S
being the edge between the vertex defined by the first(k − 1)
characters ofS and the last(k − 1) characters ofS.



This only works because the strings restrict the set of possible
Hamiltonian cycle graphs to highly structured examples.



Resolving Power

The sequenceak+1 cannot be distinguished fromak+2 using
justk-mer probes.
No sequence of length greater than4k + k can be unam-
biguously sequenced withC(k), since (by the pigeonhole
principle) at least one fragment will repeat.
Expected resolving lengths are even shorter,even assuming
no hybridization errors:

Fragment k Probes 4
k/2

80 7 16,384 128
180 8 65,536 256
260 9 262,144 512
560 10 1,048,576 1024
1300 11 4,194,304 2048
2450 12 16,777,216 4096



We can estimate the resolving fragment length by picking the
k such that the probability of anyk-mer repeating (≈ n/4k)
is sufficiently small. Fork = (lg4 n)/2 this probability goes
to 1/n.
From aninformation theoryperspective, an experiment which
maximizes resolving power should have about half positive
and half negative probes – but almost all probes will be
negative for any given sequence.



SBH: The Variants

A large variety of variations on the basic SBH technology
have been proposed with the goal of increasing the size of the
fragments which can be reconstructed.
In positional SBH, we also get information about roughly
where each fragment exists on the final sequence through
auxiliary data.
In interactiveSBH, we use ink-jet technology to design new
arrays in response to previous results to quickly converge on
the correct sequence.
Alternate chip designs usinguniversal baseswhich hybridize
at any base can theoretically increase resolving power using
fixed length probes with “don’t care” characters.


