Lectures 8, 9, 10, and 11.
Homology Searching

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

String Comparison

The two “killer apps” of modern string processing algorithn
have been computational biology and searching the Interr
While exact matchingalgorithms are more important ir
text processing than biology, they are important (1)
llustrate techniques, and (2) as a component of heuri&ircs
approximate matching.

Three primary classes of string matching problems arise,
termining whether preprocessing techniques are apptepri

e Fixed texts, variable patterns e.g. search the humat
genome or the Bible.

Suffix trees/arrays are data structures to efficiently sctpy
repeated gueries on fixed strings.

e Variable texts, fixed patterns e.g. search a news fee:
for dirty words, or the latest Genbank entries for speci
motifs.

Such applications justify preprocessing the set of padte
SO as to speed search.

e Variable texts, variable patterns e.g. the naivé&(nm)
brute force search algorithm.

Suffix trees solve this problem in linear time, but wit
excessive complexity and overhead.

Efficient Exact String Matching

We have seen the naive brute force algorithm searching
patternp in textt in O(mn) time, wherem = |p| andn = |t|.
The brute force algorithm can be viewed as sliding the patt
across from left to right byne positionwhen we detect a
mismatch between the pattern and the text.

But in certain circumstances we can slide the pattern to
right by more than one position:

pattern: ABCDABCE
t ext: ABCDABCD. . ..

Since we know the last seven characters of the text mus
ABCDABC, we can shift the pattern four positions withot
missing any matches.

The Knuth-Morris-Pratt Algorithm

Whenever a character match fails, we can shift the patt
forward according to théailure function fail(q), which is

the length of the longest prefix &t which is aproper suffix
of P,

| 1
Pli]: a
fail[1]: 0012
Given this prefix function we can match efficiently — on

character match we increment the pointers, on a misme
we slide the pattern one step plus the failure function.

Example

abbbabababacababahba
ab x

*

abababa~*

*

abababa

We match the pattern according to where we are in the te;
we never look backwards in the text.

The failure function for the pattern can be construct
iIn O(m) preprocessing, and hence does not change
asymptotic complexity.

Computing the Failure Function

The failure function can be constructed in linear time usi
suffix trees, which is more instructive than the stande
simpler-to-program algorithm.

The failure function is defined by the match length betwe
each leaf and the entire string (suffix 1).

string baaahb
match length 01213
failure function0 1 0 1 2 2 3

Each match applies over gifefixesof the match, so we take
the maximum match length at each position.

oo
=

This can be done in linear time by scanning the fa
ure array backwards and update the valuesfag =

maz(fn], fln+1] — 1).

Time Complexity of KMP

If the pattern rejects near the beginning, we did not wa
much time in the search.

If the pattern rejects near the end (e.g. EEEEEEEHW'h
there is an opportunity to slide it back many positions.
Note that we never move backwards through the text
compare a character again — we slide gagtern forward
accordingly.

There are “improved” failure functions which do eve
cleverer preprocessing to reduce the number of pattertssh
However, such improvements have little effect in practice a
are tricky to program correctly.

Amortized Analysis

The linearity of KMP follows from amamortizedanalysis.
Each time we move forward in the text we addteps to our
account, while each mismatch costs us one step.
Provided the account never goes negative, we onlyCidia)
work total since there were a total &f cn steps put in the
account.

Thus if many consecutive mismatches requires the patter
shift repeatedly, it is only because we have enough previ
forward moves to compensate.

The Boyer-Moore Algorithm

An alternate linear algorithnBoyer-Moore starts matching
from right side of the pattern instead of the left side:

pattern: ABCDABCD
t ext: ABCDABCE. . . .

In this example, the last character in the window does |
occur anywhere in the pattern. Thus we can shift the patt
m positions afteonecomparison.

Thus the best case time for Boyer-Mooresish-linear i.e.
O(n/m). The worst-case i©(n-+rm), wherer is the number
of times the pattern occurs in the text.

Alphabet Fall

The algorithm precomputes a table of sjzedescribing how
far to shift for a mismatch on each letter of the alphabet, |
depending upon the position of the rightmost occurrence
that letter in the pattern.

Further, since we know that the suffix of the pattern matct
up to the point of mismatch, we can precompute a ta
recording the next place where the suffix occurs in the patte
We can use thbiggerof the two shifts, since no intermediat
position can define a legal match.

Boyer-Mooremaybe the fastest algorithm for alphanumer
string matching in practice when implemented correctly.

Randomized String Matching

The Rabin-Karp algorithm computes an appropriate ha:
function on allm-length strings of the text, and does a bru
force comparison only if the hash value is the same for 1
text window and the pattern.

An appropriate hash function is

H(S) = ”f‘z‘ll 4'S; modg

which treats each string as andigit based number, mod;.
This hash function can be computaedrementallyin constant
time as we slide the window from left to right since

H(Sj41) = dH(S)) + Sj+1 — d™Sj—m,

Randomized Analysis

Further, if ¢ is a random prime the expected number
false positives is small enough to yieldandomizedinear

algorithm.

Multiple Exact Patterns

Many applications require searching a text for occurremnde:
any one of many patterns, e.g. searching text for dirty wo
or searching a genome for any one of a set of known moti
Pattern matching withwvild card characters ACG?T) Is an
Important special case of multiple patterns.

Techniques fromautomata theoryome into play, since any
finite set of patterns can be modeledregular expressions
and many interesting infinite sets (e@.AT) x C') as well.
The standard UNIX tooQrep stands for “general regulat
expression pattern matcher”.

other

other

The Aho-Corasick algorithm builds a DFA from the set «
patterns and then walks through the text in linear time nigk
action when reaching any accepting state.

Approximate String Comparison

An important generalization of exact string matching

measuring thelistancebetween two or more strings.

These problems arise naturally in biology because DN/
protein sequences tend to be structurally conserved ac
species over the course of evolution, so functionally simi
genes in different organisms can be detected via approgin
string matching.

Computer science applications of approximate string mat
Ing included spell checking and file difference testing.

A reasonable distance on strings measure minimizes the
of the changeswvhich have to be made to convert one strir
to another.

Edit Operations

There are three natural types of changes:

e Substitution- Change a single character from patteto
a different character in text e.g. ‘shot’ to ‘spot’.

e Insertion— Insert a single character into patterto help
It match textt, e.g. ‘ago’ to ‘agoq’.

e Deletion— Delete a single character from patteno help
It match textt, e.g. ‘hour’ to ‘our’.

Edit Distance and Similarity Scores

Computer scientists usually measdrstancebetween strings
x andy by the minimum number of insertions, deletions, at
substitutions to transform to y.

Certain mathematical properties are expected of any diste
measure, ometric

1.d(x,y) > 0forall z, y.
2.d(x,y) =01iff z =y.
3.d(z.y) = d(y, x) (symmetry)

4.d(x,y) < d(z,z) + d(z,y) for all x, y, andz. (triangle
Inequality)

Biologists typically instead measure a sequestgilarity
scorewhich gets larger the more similar the sequences are
Similar algorithms can be used to optimize both measures

Pairwise String Alignment

An elegant algorithm for finding the minimum cost sequen
of changes to transform string to string1’ is based on the
observation that the correct action on the rightmost charsc
of S andT" can be computed knowing the costs of matchil
various prefixes:

#def i ne MATCH 0 symbol for ch *
#def i ne | NSERT 1 /+ synbol for insert *
2 symbol f

#def i ne DELETE /* r del */

int string_conpare(char *s, char *t, int i, int j)

{
int k; /* counter */
int opt[3]; /+ cost of the three options */
int | owest_cost; /* | onest t o/
if (i ==0) return(j = indel (" "));
if (j ==0) return(i = indel (" "));
opt [MATCH] = string_conpare(s,t,i-1,j-1) + match(s[i],t[j])
opt [I NSERT] = string_conpare(s,t,i,j-1) + indel (t[j])
opt [DELETE] = string_conpare(s,t,i-1,j) + indel(s[i])

| owest _cost = opt [MATCH] ;
for (k=INSERT; k<=DELETE; k++)
if (opt[k] < lowest_cost) |owest_cost = opt[K];

return(| owest_cost);

Exponential!

How much time does this program take? Exponential in 1
length of the strings!

Making this tractible requires realizing that we are repdbt
performing the same computations on each pair of prefixe

Dynamic Programming

The entire state of the recursive call is governed by thexinc
positions into the strings. Thus there are onfy) x |T|
different calls.

By storing the answers in a table and looking them up inste
of recomputing, the algorithm takes quadratic time.
Dynamic programmingis the algorithmic technique of
efficiently computing recurrence relations by storing iadrt
results. It is very powerful on angrderedstructures, like
character strings, permutations, and rooted trees.

DP Table

The table data structure keeps track of the cost of react
this position plus the last move which took us to this cell.

t ypedef struct {
i nt cost; [+ cost of reaching this cell =/
int parent; [+ parent cell =/

} cell;

cell nf MAXLEN] [MAXLEN ; [+ dynam c progranming table «/

General Edit Distance via Dynamic
Programming

Note how we use and update the table of partial results.

int string_conpare(char *s, char xt)

int i,j,k; /* counters x/
int opt[3]; /+ cost of the three options */

for (i=0; i<MAXLEN;, i++) {
row_init(i);
colum_init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {
opt[MATCH = nfi-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = n{i][j-1].cost + indel (t[j]);
opt [DELETE] = n{i-1][j].cost + indel (s[i]);

nfi][j].cost = opt[1];
n{i][j].parent = 1;
for (k=2; k<=3; k++)
if (opt[k] < nfi][j].cost) {
n{i][j].cost = opt[K];
nfi][j].parent = k;
}
}

goal _cel I (s,t,& ,&);
return(nfi][j].cost);

To determine the value of cell, j), we need the the cells
(¢—1,5—1),(¢,5 — 1), and(z — 1, 7). Any evaluation order
with this property will do, including the row-major order we
used.

Standard String Edit Distance

The functionst ri ng_conpar e is very general, and musi
be customized to a particular application.

It uses problem-specific subroutineat ch andi ndel to
return the costs of character pair transitions:

row_init(int i) colum_init(int i)
{
nf0][i].cost =i; n{i][0].
if (i>0) if (i 0)
n{O][i]Ap nt =1 NSERT; n{ 1[0] . par ent =DELETE;
els

nTO][] pal =-4 nTO][] pal =-4

The functlonsr owinit and coI umc_l ni t to initialize
the boundary conditions.

int match(char c, char d) int indel (char c)

{

if (c ==d) return(0); return(1);
else return(1); }

}

The functiongoal _cel | returns the desired final cell of
Interest in the matrix.

goal _cell (char *s, char *t, int *i, int *j)
{

*i = strlen(s) - 1;
*j strlen(t) - 1;
}

Changing these functions lets us do substring matchi
longest common subsequence, and maximum monot
subsequence as special cases.

Cost Matrix

thou shalt notto you should

String Matching Example
The cost matrix in convertin

t

m0988765

o
— —
(o))

o

o
—l
[«] O O MN~ O O
[ee]

00 OMNMNUOLW O~

n

0 11 12 13 14
0 11 12 13 13
9 10 11 12 13
8 9 10 11 12

8 910 11

7

8

7

7

6

6

5

6

7

8

d

MNNNMNO OO~

1
1

— OO0~V OOOLW T OMN~0D
SOOMNMNOLOITIE I ONDD0
OMNMNMNOLLOUOLSTNOMST LN ON~NO
COOLOLTOHANMIEI OMN~0D

355554323456789m

TITITTOANNDTNDON~NOO O
—
SOMOMMMOANMSTOLONOOD O AN
—
ONANANNMNMTOHLOMNMNOOOO ANM
L B |

A A ANNMITOOMNO0OOODO A NMS
L B e |

O NMITOHON~NOVOODOANMT
L B e |

IX

Parent Matr

-1

String Matching Example

AN N

N -

N N

N N

AN N

AN N

N N

N

1 3 1 2 2 2 2 1 2 2 2 2 2 2

1 3 3

3
3
3
3

u:

1 2 2 2
1 1

1
1

2 2 2 2 1
1

1

2 2 2 2

1 3 3 3

1

12 2 2 2 2 2 1

1 3 3 3 3

2 2 2 2 2

1
1
1

1
1
1
1
1
1
1

1 3 3 3 3 3 11

13 3 3 3 3 11

3
3
3

1 3 3 3 3 3 1 1

1 3 3

1 2 2 2

3 3 1 1

1

1 3 3 3 3 3 11 1 3 1 2 2
1 3 3

3

n:

1 3 3 3 3 1 1
1 3 3 3 3 3 31

1

1 3 3 3

3

Reconstructing the Alignment

Once we have the dynamic programming matrix, we have
walk backwards through it to reconstruct the alignment.

Either explicit back pointers can be kept, or we can reme
decisions of how we got to the critical cells starting frore tt

reconstruct_path(char *s, char *t, int i, int j)
{
if (nfi][j].pal == -1) return;
f("[][J]p ==NATCH){
t t pth(,t,i-1,j-1);
mat h ot(t, i, J)
return;
}
f(rﬂ][J]p ::INSERT){
t _path(s,t,i,j-1);
t t(tj)
retu n;
}
f(rﬂ][J] p DELEI'E){

t tpth(-1,j);
dI t out(s,i);
return,

}

The actions we take on traceback are governed
mat ch_out , i nsert _out, anddel et e_out :

insert_out(char *t, int j) mat ch_out (char *s,char *t,int i,int j)
{
printf("1"); if (s[i] == t[j

}

j1) printf("™);
else printf("s");

{
}
del ete_out(char *s, int i)
{
I

printf("D");

The edit sequence from “thou-shalt-not” to “you-shoul
not” is DSMVMVWWM SMSMMWWM — meaning delete the first ‘t’,
replace the ‘h’ with ‘y’, match the next five characters befo
Inserting an ‘o’, replace ‘a’ with 'u’, replace the ‘t’ with'd’.

Other Applications: Longest Common
Subsequence

By changing the relative costs for matching and substituti
we can get different alignments.

If we make the cost of substitution so high as to |
greater than the cost of inserting and deleting charact
the returned alignment will seek only to match the large
number of possible characters, returning lttregest common
subsequence

int match(char c, char d)

if (c ==d) return(0);
el se return(MAXLEN);
}

This shows us that the exact replacement costs can have i
Impact on the optimal alignment.

By changing our traceback functions we get differe
behavior:

insert_out(char *t,int j) mat ch_out (char *s, char =*t,
int i,int j)
}
if (slil==t[j])
del ete_out(char *s,int i) printf("%",s[i]);
{ }
}

abracadabra

abbababa

I ength of |ongest conmobn subsequence = 6
abaaba

Substring Matching

Suppose we want to search for a short pattern (say ‘Skie
allowing mispellings) in a long text.

Using the approximate string matching function will aclae
little sensitivity, since most of the edit cost will be debhef
the body of the full text.

We can use the same basic edit distance function for this t:
but must adjust the initialization so that the substringanas
In the middle of the text are not discouraged:

row_init(int i
{

n O] [i
) n{ O] [i

/+ what is n{0][i]? =/

)
].cost = 0; /* NOTE CHANGE */
].parent = -1; /+ NOTE CHANGE */

Now the goal cell is the cheapest cell matching the ent
pattern:

goal _cel |l (char *s, char *t, int *i, int *j)
int k; /= counter */

*i

strlen(s) - 1;

*]

for (k=1; k<strlen(t); k++)
if (nm*i][k].cost < nf*i][*j].cost) xj

Biological Sequence Comparison

Constructing a meaningful alignment of two sequenc
requires using a appropriate function to measure the cos
changing between each possible pair symbols.

In correcting text entered by a fast typist, we might pemali
pairs of symbols near each other on the keyboard less t
those on different sides, for example.

For genomic sequences, the weights/scores governing
cost of changing between bases are giverPB{ matrices

for “point accepted mutations”

DNA Matricies

DNA PAM matrices includeBlast similarityandtransition /
transversiommatrices.

A T C G A T C G
A 5-4-4-4 A 0 5 5 1
T-4 5 -4-4 T 5 0 1 5
C-4-4 5 -4 c 5 1 0 5
G-4-4-4 5 G 1 5 5 0

The four nucleotide bases are classified as eithaines

(Adenine and Guanine) ompyrimidines (Cytosine and
Thymine).

Transitionsare mutations which stay within the class (e.
A—G or C—T), while transversionscross classes (e.g
A—C, A—T etc.).

Transitions are more common than transversions.

The following genetic code matrixalculates the minimum
number of DNA base changes to go from a codon:ftr a

codon forj.

Met— Tyr requires all 3 positions to change.

Genetic Code Matrix

XANNNNNNNNNNNNNNNNNNNNNNN
DNNNNNNNNNAANNNNANANNN AN
NNNNNANNNANNNANNNNNNN—ANN
SNAAANNNNNNNNNANNANNO NN N
SANNAATAANANNNANANONNO NN NN
TANANNANNNANAANAANANO NN N - N
ONHANANNNNNNNNN—AAAO NN A NN N
SPNANNNNNNNAANNNAO AAM NN AN
LNANAN—TNNNNNANNOAANNNNNN
ENAAAANAANNNA—AONN—A—AAddNNN
ONNNAANNAANNNO ANNN NN NN
= NN AAAANNNAON A NNN—ANNNN
ZNANNANANNAOANNN AN NNNAN
DA N—ANNANN—AOANNNN—AN—ANNN AN
WANANATNNOANNANNNNNNN— NN
OAAAdNANN—TAONNNNAANNNANNNNN
FAdaNNANOANNAANANNNN—ANNNN
SAHNAANONNAANANNANNN—ANNNN
X¥ANNNNONANANAAAANNNNAN—ANN
ANHNONANANNNAAAANNAAANNN
OddoNNANNATNNNANNANNANNN
NHOAANNAATNNAANAAAATNN AN NN
COAANNAAAAANNNNNNNNNNNNN

CHNOUXY>HaWAZ_Oxu>0ISSINDX

Hydrophobicity Matrix

Amino acids differ to the extent that they likiydrophilic or

don’t like (hydrophobi¢ water.

Hydrophobic residues do not want to be on the surface c

protein.

W0011334445555557778889m
F11224466667777888899mm9
Y22334466667777889999W_m8
— O MNOOOVONNNNNONODDDODOO O DM

-

SOMNMIIOMIONNNODNDONODIOOOOO D™~
— — -
P334466788888999w o OO M~
o o

—

10 10 1
10 10 1

SOMITTO©OD®O0DDDODO o 00 O M~
—

OSSO OODNNDNDNDIDDDNOODNDD O D ® DO ©
—
CLLVLOVLONNDDDDOOOODOD MWW ®MN~NL
Ao
TOOLOOLOONNODODODDOOOO OO ®WOWWMNMNL

Ao
FLOLLOLONNMNDODODDOOOOO®O®WOMOMWMNIMNLD
Ao
XOOOUONMNNODODDDOOOO OO W WMNMNL
Ao
OO OODODOOOODN®DMWOW®ONMNOO©L
RS R
COOOOODOOOONDHODW®®OMNNMNMNOO©
RS R
Z0000NNO0O000DDDDWWOONNNO O
RS R
NOONMNMNODNOOOODDODOOMNNMNNOOS
oo

E99NW.8876665555544433321
D99NW.8876665555544433321
Kmm998866655555433333210

XXYXQUWONNZOOXHFI<OZSa>a_>us3

PAM Matrices

This variety of possible matrix criteria make judging tfF
significance of an alignment tricky.

Most widely used ardPAM matrices for “point accepted

mutations”.

These were constructed by aligning very similar proteind, ¢
tabulating how often each substitution occurred.

The PAM1 matrix scores the transitions when the prote
differ in 1% of the residues.

Raising this to higher powers gives us PAM matrices suit
for comparing more distantly related proteins.

Note the main diagonal on these plots of the PAM50 a
PAM250 matrices.

More modern than the PAM matrices are tlsdosum
matrices, reflecting additional sequence alignment data.

Local Alignment

The critical problem of biological interest is in comparimgp
long sequences and findihgcal areas of similarity.

Typical applications include (1) what regions have be
conserved between mouse and human, and (2) recogni
coding regions in ‘split genes'.

Here using similarity scores is more meaningful than e
distance. We wanti(i,j) to be the highest-scoring loca
alignment ending af|:] andT'[j].

This way to compute this is typically called themith-
Watermanalgorithm.

Edit Distance vs. Smith-Waterman

It is the same basic algorithm as for edit distance, except:
¢ \We maximize instead of minimize.

¢ \We have the option of starting our local alignment fresh
each cell in the matrix, i.e. O is always an allowable co:

e \We scan allnn cells at the end to see which gives us ti
best score, not just those along the last row or column.

Smith-Waterman Program

int smth_waterman(char *s, char =*t)

{

int i,j,k; /* counters */
int opt[3]; /* cost of the three options */
int match(); int indel();

for (i=0; i<=strlen(s); i++)
for (j=0; j<=strlen(t); j++)
cell _init(i,j);

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {
opt [MATCH = n{i-1][j-1].cost + match(s[i],t[j]);
Opt [INSERT] = n{i][j-1].cost + indel (t[j]);
opt [DELETE] = n{i-1][j].cost + indel (s[i]);

nfi][j].cost = 0;
nfil[j].parent = -1;
for (k=MATCH, k<=DELETE; k++)
it (opt[k] > nfi][j].cost) {
nfi][j].cost = opt[K];
nfi][j].parent = k;

}

goal _cell(s,t,& ,&);
return(nfi][j].cost);

Supporting Routines

goal _cel |l (char *s, char *t, int *x, int *y)
int i, j; /+ counters /
*X = xy = 0;

for (i=0; i<strlen(s); i++)
for (j=0; j<strlen(t); j++)
if (nfi][j].cost > n{*x][*y].cost) {
*X =0
Yy =5
}
}

int match(char c, char d)

if (c ==d) return(+5);
else return(-4);

}

int indel (char c)
return(-4);

}

cell _init(int i, int j)

¢ nfi][j].cost = 0;

i1l
nil[j].parent = -1;

Smith-Waterman Example

Note how the maximum score (31) is not achieved with t

exact matchpubl i ¢ but includes the preceeding ‘e’.
This is because we score a match more than we penali:

000000000000000000000
1111111

000000000000000000000
1111111

000000000000000000000
1111111

000000000000000000000
11111111

0000000000000000000000
111111
000000000000000000000
000000000000000000000
000000000000000000000
OOOOOOOOOOOOOOOOOOOOO

000000000000000000000

000000000000000000000

000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000

00000000000000000000

Lol i ias58 0 Imoos

Gap Penalties

Gaps in sequence alignments occur for several reas
iIncluding (1) the deletion of introns from split genes, (B¢t

Insertion of mobile sequence elements such as transpos
(3) because conserved parts of a protein may include sev
relatively small docking sites.

Gap in alignments can be modeled as repeated base delet
where the penalty for a gap is just a linear function of |
length.

However, in many applications (e.g. exons/introns, exingc

good quotes for the back of a book jacket) the length of 1
gap is relatively unimportant.

Affine Gap Costs

Thus a more meaningful model charges a fixed penalty for
existence of each gap, plus another penalty depending L
the length of the gap.

Affinegap penalties arél + Bt for gaps of lengtht, while

logarithmicgap penalties of the forrA + Blg t are suggested
by empirical data.

Arbitrary Gap Weights

Suppose the gap cost is a completely general function
length for which we cannot assume monotonicity or any otl
property.

Then we must explicitly try every possible length del
tion/insertion at every possible position, iJé(z, j) takes the
best of the following options:

G(i,j) =V (i—1,7 — 1)+ match(i,j)

E(,j) = %@%V(i, k) + indel(j — k)

F(i,j) = @%V(/{,) + indel(i — k)

Because we are doing a linear amount of work for each ¢
the time complexity goes t0(n’m + nm?) or O(n?) if n <

m.
This algorithm is often called Needleman-Wunsch.

Affine Gap Weights

By being clever we can avoid the extra linear cost of lookil
for the start of the gap faaffinegap penalties, i.e. penaltie:
of the form A + Bt for gaps of lengtht

We will use the insertion and deletion recurrenéesnd F°
to encode the cost of being in gap mode, meaning we h
already paid the cost of initiating the gap.

V(i,j) = max(E(i,7), F(i,7), G(1, 7))
G(i,j)=V(i—1,7— 1)+ match(i,j)

E(i,j) = max(E(i,j —1),V({i,j — 1) — A) — B

F(i,j) =max(F(i —1,5),V(i—1,7) — A) — B

With constant amount of work per cell, this algorithm tak
O(mn) time, same as without gap costs.

The default in FASTA setsl = 10 and B = 2, so starting a
gap costs the equivalent of five deletions.

The special case o€onvex penalty functions (including
logarithmic costs) can be solved i nm log mn) time with
a more complicated algorithm.

Space Efficient Dynamic Programming

Quadratic space will kill you faster than quadratic time.
(30,000)* bytes equals one gigabyte, whilg), 000)* opera-
tions takes 1000 seconds on a machine doing 1 million st
per second.

The dynamic programming algorithms we have seen o
look at neighboring rows/columns to make their decision.
Computing thehighest cell scoran the matrix does not
require keeping more than then last column and the best vz
to date, for a total o (n) space, where < m.

Note that reconstructing the optimaignmentdoes seem to
require keeping the entire matrix, however.

But Hirshberg found a clever way to reconstruct the alig

ment inO(nm) time using onlyO(n) space, by recomputing
the appropriate portions of the matrix.

For each cell, we drag along the row number where 1
optimal path to in crossed the middbe (2nd) column.

This requires only)(n) extra memory, one cell per row.
This works because the crossing pointof the (m/2)nd
column means that the optimal alignment lies in the s
matricesA from (1,1) to(m/2, k), and B from (m/2, k) to
(m,n).

Note that the number of cells iIA and B totals only half of
the the originainn cells.

Further, these dynamic programming algorithms are linea
the number of cells they compute.

Thus the total amount of recomputation done is

lgm :
> mn/2" =2mn
i=0

so the total work remain®@(mn)

Heuristic String Comparison

Dynamic programming methods for sequence alignment ¢
the highest quality results.

However, quadrati©(nm) algorithms are only feasible for
comparing two modest sized sequences.

Comparing the human genome against mouse with
quadratic algorithm3; 000, 000, 000? operations) at a billion
operations per second equals 285 years!

Comparing your target sequence against the entire data
IS hopeless, even with special purpose hardware.
Heuristic algorithms (BLAST/FASTA) are used for an initic
scan of the database to find a small number of hits, and t
Smith-Waterman finds the optimal alignment.

FASTA

FASTAIs a heuristic string alignment program which is bas
upon finding short exact matchésifners) between the quer
sequence and the database.

The trick is to choosé large enough that there are relativel
few hits, but small enough that we are likely to have an ex;
k-mer match between related sequences.

Recommended values bfare 2 for protein sequences and
for DNA sequences.

Note that there are at most— k& + 1 distinct k-mers in a
sequence of length.

A hash tableof all £-mers in the database can be built on
and used repeatedly for efficiently looking up theners in
guery strings.

A dynamic programming-like algorithm is used to align tt
k-mer hits between query and database, but the probler
much smaller since there are far fewer hits than bases.

BLAST

BLAST stands for “Basic Local Alignment Search Tool”.
BLAST also breaks the query infemers in order to search
a hash table, but for inpitmerq constructsall otherk-mers
which lie within a distance of g.

By processing all these patterns into an automata, BLA
can then make one linear-time pass through the databas
find all exact matches and group them in an alignment.
The window sizeé: is typically 3-5 for protein sequences an
12 for DNA sequences.

Conventional wisdom has BLAST as faster than FASTA,
perhaps a little less accurate.

Using Blast

Several variants of thBasic Local Alignment Search Toanle
available at www.ncbi.nlm.nih.gov/BLAST/

e blastp— amino acid query sequence to protein sequel
database

e blastn — nucleotide query sequence to nucleotide ¢
guence database

e blastx — nucleotide query sequence translated in
reading frames against a protein sequence database

e tblastn — protein query sequence against nucleoti
sequence database translated in all reading frames

e tblastx — most intensive computationally; compares
frame translations of nucleotides query sequence aga
6 frame translation of nucleotide sequence database

You can download your own local copy of the code al
databases, or use web resources.

Databases
Database choices include:

e Nr — all non-redundant sequences (from particul
databases)

e est — expressed-sequence tags (RNA from expres:
genes) in human, mouse, etc.

e month— new releases from the past 30 days
e genomes- from Drosophila, yeast, E.coli, human, etc.

Your guery sequence can be (1) an amino acid or nucleo
sequence you type or paste in, or (2) the accession or
number of Genbank entry.

There are a wide range of output formats.

Advanced Search Parameters

You can select the organism you are interested in to limit yc
search.

You can change theexpect valueFE, the threshold for
reporting matches against a database sequence. The de
threshold of 10 means that 10 matches are expectec
be found merely by chance (Karlin and Altschul). Lowe
expect thresholds are more stringent, leading to feweraghs
matches being reported.

The expect value decreases exponentially with the alighn
scoreS.

You can usdilter to masks sequences of low composition
complexity, i.e. eliminate statistically significant bublogi-

cally uninteresting reports.

You can select the cost comparison matrix. The defa
IS BLOSUMG62, but with this matrix fairly long alignments
are requires to rise above background. PAM matrices
recommends if search for short alignments.

Significance Scores

To assess whether a given alignment constitutes evidence
homology, it helps to know how strong an alignment can
expected from chance alone.

A model for expected number digh-scoring segment pairs
(HSPs) with score at leastis

E = Kmne ™

wherem andn are the sequence lengths aRdand A\ are
scaling parameters.

Doubling length of either sequence doublgsas it should.
Doubling the score for an HSP fix requires it to attain the
score x twice in a row, sd@ should decrease exponentiall
with score.

The number of random HSPs with scoreS is described by
a Poisson distribution, so the probability of finding exaeil
HSPs with score> S is given bye *E¢/al.

Hence the probability of finding 0 HSPs is#, and the
probability of finding at least one is = 1 — e *. This is
the p-valueof the score.

A statistical method to measure significance is to genel
many random sequence pairs of the appropriate length
composition, and calculate the optimal alignment score
each.

