
Lectures 8, 9, 10, and 11:
Homology Searching

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

String Comparison

The two “killer apps” of modern string processing algorithms
have been computational biology and searching the Internet.
While exact matchingalgorithms are more important in
text processing than biology, they are important (1) to
illustrate techniques, and (2) as a component of heuristicsfor
approximate matching.
Three primary classes of string matching problems arise, de-
termining whether preprocessing techniques are appropriate:

• Fixed texts, variable patterns– e.g. search the human
genome or the Bible.

Suffix trees/arrays are data structures to efficiently support
repeated queries on fixed strings.

• Variable texts, fixed patterns– e.g. search a news feed
for dirty words, or the latest Genbank entries for specific
motifs.

Such applications justify preprocessing the set of patterns
so as to speed search.

• Variable texts, variable patterns– e.g. the naiveO(nm)
brute force search algorithm.

Suffix trees solve this problem in linear time, but with
excessive complexity and overhead.

Efficient Exact String Matching

We have seen the naive brute force algorithm searching for
patternp in text t in O(mn) time, wherem = |p| andn = |t|.
The brute force algorithm can be viewed as sliding the pattern
across from left to right byone positionwhen we detect a
mismatch between the pattern and the text.
But in certain circumstances we can slide the pattern to the
right by more than one position:

pattern: ABCDABCE
text:ABCDABCD....

Since we know the last seven characters of the text must be
ABCDABC, we can shift the pattern four positions without
missing any matches.

The Knuth-Morris-Pratt Algorithm

Whenever a character match fails, we can shift the pattern
forward according to thefailure functionfail(q), which is
the length of the longest prefix ofP which is apropersuffix
of Pq

i: 1 2 3 4 5 6 7 8 9 10
P[i]: a b a b a b a b c a
fail[i]: 0 0 1 2 3 4 5 6 0 1

Given this prefix function we can match efficiently – on a
character match we increment the pointers, on a mismatch
we slide the pattern one step plus the failure function.

Example

a b b b a b a b a b a c a b a b a b a
a b *

*
*

a b a b a b a *
*

a b a b a b a

We match the pattern according to where we are in the text –
we never look backwards in the text.
The failure function for the pattern can be constructed
in O(m) preprocessing, and hence does not change the
asymptotic complexity.

Computing the Failure Function

The failure function can be constructed in linear time using
suffix trees, which is more instructive than the standard
simpler-to-program algorithm.
The failure function is defined by the match length between
each leaf and the entire string (suffix 1).

string a a b a a a b
match length 0 1 0 1 2 1 3
failure function 0 1 0 1 2 2 3

Each match applies over allprefixesof the match, so we take
the maximum match length at each position.

This can be done in linear time by scanning the fail-
ure array backwards and update the values asf [n] =
max(f [n], f [n + 1] − 1).

Time Complexity of KMP

If the pattern rejects near the beginning, we did not waste
much time in the search.
If the pattern rejects near the end (e.g. EEEEEEEH inEm,
there is an opportunity to slide it back many positions.
Note that we never move backwards through the text to
compare a character again – we slide thepattern forward
accordingly.
There are “improved” failure functions which do even
cleverer preprocessing to reduce the number of pattern shifts.
However, such improvements have little effect in practice and
are tricky to program correctly.

Amortized Analysis

The linearity of KMP follows from anamortizedanalysis.
Each time we move forward in the text we addc steps to our
account, while each mismatch costs us one step.
Provided the account never goes negative, we only didO(n)
work total since there were a total of≤ cn steps put in the
account.
Thus if many consecutive mismatches requires the pattern to
shift repeatedly, it is only because we have enough previous
forward moves to compensate.

The Boyer-Moore Algorithm

An alternate linear algorithm,Boyer-Moore, starts matching
from right side of the pattern instead of the left side:

pattern: ABCDABCD
text: ABCDABCE....

In this example, the last character in the window does not
occur anywhere in the pattern. Thus we can shift the pattern
m positions afteronecomparison.
Thus the best case time for Boyer-Moore issub-linear, i.e.
O(n/m). The worst-case isO(n+rm), wherer is the number
of times the pattern occurs in the text.

Alphabet Fail

The algorithm precomputes a table of size|Σ| describing how
far to shift for a mismatch on each letter of the alphabet, i.e.
depending upon the position of the rightmost occurrence of
that letter in the pattern.
Further, since we know that the suffix of the pattern matched
up to the point of mismatch, we can precompute a table
recording the next place where the suffix occurs in the pattern.
We can use thebiggerof the two shifts, since no intermediate
position can define a legal match.
Boyer-Mooremaybe the fastest algorithm for alphanumeric
string matching in practice when implemented correctly.

Randomized String Matching

The Rabin-Karp algorithm computes an appropriate hash
function on allm-length strings of the text, and does a brute
force comparison only if the hash value is the same for the
text window and the pattern.
An appropriate hash function is

H(S) =
m−1∑

i=1
diSi modq

which treats each string as anm-digit base-d number, modq.
This hash function can be computedincrementallyin constant
time as we slide the window from left to right since

H(Sj+1) = dH(Sj) + Sj+1 − dmSj−m

Randomized Analysis

Further, if q is a random prime the expected number of
false positives is small enough to yield arandomizedlinear
algorithm.

Multiple Exact Patterns

Many applications require searching a text for occurrencesof
any one of many patterns, e.g. searching text for dirty words
or searching a genome for any one of a set of known motifs.
Pattern matching withwild card characters (ACG?T) is an
important special case of multiple patterns.
Techniques fromautomata theorycome into play, since any
finite set of patterns can be modeled byregular expressions,
and many interesting infinite sets (e.g.G(AT) ∗ C) as well.
The standard UNIX toolgrep stands for “general regular
expression pattern matcher”.

The Aho-Corasick algorithm builds a DFA from the set of
patterns and then walks through the text in linear time, taking
action when reaching any accepting state.

Approximate String Comparison

An important generalization of exact string matching is
measuring thedistancebetween two or more strings.
These problems arise naturally in biology because DNA /
protein sequences tend to be structurally conserved across
species over the course of evolution, so functionally similar
genes in different organisms can be detected via approximate
string matching.
Computer science applications of approximate string match-
ing included spell checking and file difference testing.
A reasonable distance on strings measure minimizes the cost
of the changeswhich have to be made to convert one string
to another.

Edit Operations

There are three natural types of changes:

• Substitution– Change a single character from patterns to
a different character in textt, e.g. ‘shot’ to ‘spot’.

• Insertion– Insert a single character into patterns to help
it match textt, e.g. ‘ago’ to ‘agog’.

• Deletion– Delete a single character from patterns to help
it match textt, e.g. ‘hour’ to ‘our’.

Edit Distance and Similarity Scores

Computer scientists usually measuredistancebetween strings
x andy by the minimum number of insertions, deletions, and
substitutions to transformx to y.
Certain mathematical properties are expected of any distance
measure, ormetric:

1. d(x, y) ≥ 0 for all x, y.

2. d(x, y) = 0 iff x = y.

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, andz. (triangle
inequality)

Biologists typically instead measure a sequencesimilarity
scorewhich gets larger the more similar the sequences are.
Similar algorithms can be used to optimize both measures.

Pairwise String Alignment

An elegant algorithm for finding the minimum cost sequence
of changes to transform stringS to stringT is based on the
observation that the correct action on the rightmost characters
of S andT can be computed knowing the costs of matching
various prefixes:
#define MATCH 0 /* symbol for match */
#define INSERT 1 /* symbol for insert */
#define DELETE 2 /* symbol for delete */

int string_compare(char *s, char *t, int i, int j)
{

int k; /* counter */
int opt[3]; /* cost of the three options */
int lowest_cost; /* lowest cost */

if (i == 0) return(j * indel(’ ’));
if (j == 0) return(i * indel(’ ’));

opt[MATCH] = string_compare(s,t,i-1,j-1) + match(s[i],t[j]);
opt[INSERT] = string_compare(s,t,i,j-1) + indel(t[j]);
opt[DELETE] = string_compare(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)

if (opt[k] < lowest_cost) lowest_cost = opt[k];

return(lowest_cost);
}

Exponential!

How much time does this program take? Exponential in the
length of the strings!
Making this tractible requires realizing that we are repeatedly
performing the same computations on each pair of prefixes.

Dynamic Programming

The entire state of the recursive call is governed by the index
positions into the strings. Thus there are only|S| × |T |
different calls.
By storing the answers in a table and looking them up instead
of recomputing, the algorithm takes quadratic time.
Dynamic programmingis the algorithmic technique of
efficiently computing recurrence relations by storing partial
results. It is very powerful on anyorderedstructures, like
character strings, permutations, and rooted trees.

DP Table

The table data structure keeps track of the cost of reaching
this position plus the last move which took us to this cell.
typedef struct {

int cost; /* cost of reaching this cell */
int parent; /* parent cell */

} cell;

cell m[MAXLEN][MAXLEN]; /* dynamic programming table */

General Edit Distance via Dynamic
Programming

Note how we use and update the table of partial results.
int string_compare(char *s, char *t)
{

int i,j,k; /* counters */
int opt[3]; /* cost of the three options */

for (i=0; i<MAXLEN; i++) {
row_init(i);
column_init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[1];
m[i][j].parent = 1;
for (k=2; k<=3; k++)

if (opt[k] < m[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

goal_cell(s,t,&i,&j);
return(m[i][j].cost);

}

To determine the value of cell(i, j), we need the the cells
(i − 1, j − 1), (i, j − 1), and(i − 1, j). Any evaluation order
with this property will do, including the row-major order we
used.

Standard String Edit Distance

The functionstring compare is very general, and must
be customized to a particular application.
It uses problem-specific subroutinesmatch andindel to
return the costs of character pair transitions:

row_init(int i)
{

m[0][i].cost = i;
if (i>0)

m[0][i].parent=INSERT;
else

m[0][i].parent = -1;
}

column_init(int i)
{

m[i][0].cost = i;
if (i>0)

m[i][0].parent=DELETE;
else

m[0][i].parent = -1;
}

The functionsrow init and column init to initialize
the boundary conditions.

int match(char c, char d)
{

if (c == d) return(0);
else return(1);

}

int indel(char c)
{

return(1);
}

The functiongoal cell returns the desired final cell of
interest in the matrix.
goal_cell(char *s, char *t, int *i, int *j)
{

*i = strlen(s) - 1;

*j = strlen(t) - 1;
}

Changing these functions lets us do substring matching,
longest common subsequence, and maximum monotone
subsequence as special cases.

String Matching Example: Cost Matrix

The cost matrix in convertingthou shalt notto you should
not:

y o u - s h o u l d - n o t
: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t: 1 1 2 3 4 5 6 7 8 9 10 11 12 13 13
h: 2 2 2 3 4 5 5 6 7 8 9 10 11 12 13
o: 3 3 2 3 4 5 6 5 6 7 8 9 10 11 12
u: 4 4 3 2 3 4 5 6 5 6 7 8 9 10 11
-: 5 5 4 3 2 3 4 5 6 6 7 7 8 9 10
s: 6 6 5 4 3 2 3 4 5 6 7 8 8 9 10
h: 7 7 6 5 4 3 2 3 4 5 6 7 8 9 10
a: 8 8 7 6 5 4 3 3 4 5 6 7 8 9 10
l: 9 9 8 7 6 5 4 4 4 4 5 6 7 8 9
t: 10 10 9 8 7 6 5 5 5 5 5 6 7 8 8
-: 11 11 10 9 8 7 6 6 6 6 6 5 6 7 8
n: 12 12 11 10 9 8 7 7 7 7 7 6 5 6 7
o: 13 13 12 11 10 9 8 7 8 8 8 7 6 5 6
t: 14 14 13 12 11 10 9 8 8 9 9 8 7 6 5

String Matching Example: Parent Matrix

y o u - s h o u l d - n o t
: -1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

t: 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
h: 3 1 1 1 1 1 1 2 2 2 2 2 2 2 2
o: 3 1 1 1 1 1 1 1 2 2 2 2 2 1 2
u: 3 1 3 1 2 2 2 2 1 2 2 2 2 2 2
-: 3 1 3 3 1 2 2 2 2 1 1 1 2 2 2
s: 3 1 3 3 3 1 2 2 2 2 1 1 1 1 1
h: 3 1 3 3 3 3 1 2 2 2 2 2 2 1 1
a: 3 1 3 3 3 3 3 1 1 1 1 1 1 1 1
l: 3 1 3 3 3 3 3 1 1 1 2 2 2 2 2
t: 3 1 3 3 3 3 3 1 1 1 1 1 1 1 1
-: 3 1 3 3 1 3 3 1 1 1 1 1 2 2 2
n: 3 1 3 3 3 3 3 1 1 1 1 3 1 2 2
o: 3 1 1 3 3 3 3 1 1 1 1 3 3 1 2
t: 3 1 3 3 3 3 3 3 1 1 1 3 3 3 1

Reconstructing the Alignment

Once we have the dynamic programming matrix, we have to
walk backwards through it to reconstruct the alignment.
Either explicit back pointers can be kept, or we can remake
decisions of how we got to the critical cells starting from the
back.
reconstruct_path(char *s, char *t, int i, int j)
{

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {
reconstruct_path(s,t,i-1,j-1);
match_out(s, t, i, j);
return;

}
if (m[i][j].parent == INSERT) {

reconstruct_path(s,t,i,j-1);
insert_out(t,j);
return;

}
if (m[i][j].parent == DELETE) {

reconstruct_path(s,t,i-1,j);
delete_out(s,i);
return;

}
}

The actions we take on traceback are governed by
match out, insert out, anddelete out:
insert_out(char *t, int j)
{

printf("I");
}

delete_out(char *s, int i)
{

printf("D");
}

match_out(char *s,char *t,int i,int j)
{

if (s[i] == t[j]) printf("M");
else printf("S");

}

The edit sequence from “thou-shalt-not” to “you-should-
not” is DSMMMMMISMSMMMM – meaning delete the first ‘t’,
replace the ‘h’ with ‘y’, match the next five characters before
inserting an ‘o’, replace ‘a’ with ’u’, replace the ‘t’ with a‘d’.

Other Applications: Longest Common
Subsequence

By changing the relative costs for matching and substitution
we can get different alignments.
If we make the cost of substitution so high as to be
greater than the cost of inserting and deleting characters,
the returned alignment will seek only to match the largest
number of possible characters, returning thelongest common
subsequence.
int match(char c, char d)
{

if (c == d) return(0);
else return(MAXLEN);

}

This shows us that the exact replacement costs can have a big
impact on the optimal alignment.

By changing our traceback functions we get different
behavior:
insert_out(char *t,int j)
{
}

delete_out(char *s,int i)
{
}

match_out(char *s,char *t,
int i,int j)

{
if (s[i]==t[j])

printf("%c",s[i]);
}

abracadabra
abbababa
length of longest common subsequence = 6
abaaba

Substring Matching

Suppose we want to search for a short pattern (say ‘Skiena’
allowing mispellings) in a long text.
Using the approximate string matching function will achieve
little sensitivity, since most of the edit cost will be deleting
the body of the full text.
We can use the same basic edit distance function for this task,
but must adjust the initialization so that the substring matches
in the middle of the text are not discouraged:
row_init(int i) /* what is m[0][i]? */
{

m[0][i].cost = 0; /* NOTE CHANGE */
m[0][i].parent = -1; /* NOTE CHANGE */

}

Now the goal cell is the cheapest cell matching the entire
pattern:

goal_cell(char *s, char *t, int *i, int *j)
{

int k; /* counter */

*i = strlen(s) - 1;

*j = 0;

for (k=1; k<strlen(t); k++)
if (m[*i][k].cost < m[*i][*j].cost) *j = k;

}

Biological Sequence Comparison

Constructing a meaningful alignment of two sequences
requires using a appropriate function to measure the cost of
changing between each possible pair symbols.
In correcting text entered by a fast typist, we might penalize
pairs of symbols near each other on the keyboard less than
those on different sides, for example.
For genomic sequences, the weights/scores governing the
cost of changing between bases are given byPAM matrices
for “point accepted mutations”

DNA Matricies

DNA PAM matrices includeBlast similarityandtransition /
transversionmatrices.

A T C G A T C G
A 5 -4 -4 -4 A 0 5 5 1
T -4 5 -4 -4 T 5 0 1 5
C -4 -4 5 -4 C 5 1 0 5
G -4 -4 -4 5 G 1 5 5 0

The four nucleotide bases are classified as eitherpurines
(Adenine and Guanine) orpyrimidines (Cytosine and
Thymine).
Transitionsare mutations which stay within the class (e.g.
A→G or C→T), while transversionscross classes (e.g.
A→C, A→T etc.).
Transitions are more common than transversions.

Genetic Code Matrix

The following genetic code matrixcalculates the minimum
number of DNA base changes to go from a codon fori to a
codon forj.
Met→Tyr requires all 3 positions to change.

A S G L K V T P E D N I Q R F Y C H M W Z B X
A 0 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
S 1 0 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 2 2 1 2 2 2
G 1 1 0 2 2 1 2 2 1 1 2 2 2 1 2 2 1 2 2 1 2 2 2
L 2 1 2 0 2 1 2 1 2 2 2 1 1 1 1 2 2 1 1 1 2 2 2
K 2 2 2 2 0 2 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 2 2
V 1 2 1 1 2 0 2 2 1 1 2 1 2 2 1 2 2 2 1 2 2 2 2
T 1 1 2 2 1 2 0 1 2 2 1 1 2 1 2 2 2 2 1 2 2 2 2
P 1 1 2 1 2 2 1 0 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2
E 1 2 1 2 1 1 2 2 0 1 2 2 1 2 2 2 2 2 2 2 1 2 2
D 1 2 1 2 2 1 2 2 1 0 1 2 2 2 2 1 2 1 2 2 2 1 2
N 2 1 2 2 1 2 1 2 2 1 0 1 2 2 2 1 2 1 2 2 2 1 2
I 2 1 2 1 1 1 1 2 2 2 1 0 2 1 1 2 2 2 1 2 2 2 2
Q 2 2 2 1 1 2 2 1 1 2 2 2 0 1 2 2 2 1 2 2 1 2 2
R 2 1 1 1 1 2 1 1 2 2 2 1 1 0 2 2 1 1 1 1 2 2 2
F 2 1 2 1 2 1 2 2 2 2 2 1 2 2 0 1 1 2 2 2 2 2 2
Y 2 1 2 2 2 2 2 2 2 1 1 2 2 2 1 0 1 1 3 2 2 1 2
C 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 0 2 2 1 2 2 2
H 2 2 2 1 2 2 2 1 2 1 1 2 1 1 2 1 2 0 2 2 2 1 2
M 2 2 2 1 1 1 1 2 2 2 2 1 2 1 2 3 2 2 0 2 2 2 2
W 2 1 1 1 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 0 2 2 2
Z 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 1 2 2
B 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 2 1 2 2 2 1 2
X 2

Hydrophobicity Matrix

Amino acids differ to the extent that they like (hydrophilic) or
don’t like (hydrophobic) water.
Hydrophobic residues do not want to be on the surface of a
protein.

R K D E B Z S N Q G X T H A C M P V L I Y F W
R 10 10 9 9 8 8 6 6 6 5 5 5 5 5 4 3 3 3 3 3 2 1 0
K 10 10 9 9 8 8 6 6 6 5 5 5 5 5 4 3 3 3 3 3 2 1 0
D 9 9 10 10 8 8 7 6 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1
E 9 9 10 10 8 8 7 6 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1
B 8 8 8 8 10 10 8 8 8 8 7 7 7 7 6 6 6 5 5 5 4 4 3
Z 8 8 8 8 10 10 8 8 8 8 7 7 7 7 6 6 6 5 5 5 4 4 3
S 6 6 7 7 8 8 10 10 10 10 9 9 9 9 8 8 7 7 7 7 6 6 4
N 6 6 6 6 8 8 10 10 10 10 9 9 9 9 8 8 8 7 7 7 6 6 4
Q 6 6 6 6 8 8 10 10 10 10 9 9 9 9 8 8 8 7 7 7 6 6 4
G 5 5 6 6 8 8 10 10 10 10 9 9 9 9 8 8 8 8 7 7 6 6 5
X 5 5 5 5 7 7 9 9 9 9 10 10 10 10 9 9 8 8 8 8 7 7 5
T 5 5 5 5 7 7 9 9 9 9 10 10 10 10 9 9 8 8 8 8 7 7 5
H 5 5 5 5 7 7 9 9 9 9 10 10 10 10 9 9 9 8 8 8 7 7 5
A 5 5 5 5 7 7 9 9 9 9 10 10 10 10 9 9 9 8 8 8 7 7 5
C 4 4 5 5 6 6 8 8 8 8 9 9 9 9 10 10 9 9 9 9 8 8 5
M 3 3 4 4 6 6 8 8 8 8 9 9 9 9 10 10 10 10 9 9 8 8 7
P 3 3 4 4 6 6 7 8 8 8 8 8 9 9 9 10 10 10 9 9 9 8 7
V 3 3 4 4 5 5 7 7 7 8 8 8 8 8 9 10 10 10 10 10 9 8 7
L 3 3 3 3 5 5 7 7 7 7 8 8 8 8 9 9 9 10 10 10 9 9 8
I 3 3 3 3 5 5 7 7 7 7 8 8 8 8 9 9 9 10 10 10 9 9 8
Y 2 2 3 3 4 4 6 6 6 6 7 7 7 7 8 8 9 9 9 9 10 10 8
F 1 1 2 2 4 4 6 6 6 6 7 7 7 7 8 8 8 8 9 9 10 10 9
W 0 0 1 1 3 3 4 4 4 5 5 5 5 5 6 7 7 7 8 8 8 9 10

PAM Matrices

This variety of possible matrix criteria make judging the
significance of an alignment tricky.
Most widely used arePAM matrices, for “point accepted
mutations”.
These were constructed by aligning very similar proteins, and
tabulating how often each substitution occurred.
The PAM1 matrix scores the transitions when the proteins
differ in 1% of the residues.
Raising this to higher powers gives us PAM matrices suited
for comparing more distantly related proteins.

Note the main diagonal on these plots of the PAM50 and
PAM250 matrices.
More modern than the PAM matrices are theBlosum
matrices, reflecting additional sequence alignment data.

Local Alignment

The critical problem of biological interest is in comparingtwo
long sequences and findinglocal areas of similarity.
Typical applications include (1) what regions have been
conserved between mouse and human, and (2) recognizing
coding regions in ‘split genes’.
Here using similarity scores is more meaningful than edit
distance. We wantd(i, j) to be the highest-scoring local
alignment ending atS[i] andT [j].
This way to compute this is typically called theSmith-
Watermanalgorithm.

Edit Distance vs. Smith-Waterman

It is the same basic algorithm as for edit distance, except:

• We maximize instead of minimize.

• We have the option of starting our local alignment fresh at
each cell in the matrix, i.e. 0 is always an allowable cost.

• We scan allmn cells at the end to see which gives us the
best score, not just those along the last row or column.

Smith-Waterman Program

int smith_waterman(char *s, char *t)
{

int i,j,k; /* counters */
int opt[3]; /* cost of the three options */
int match(); int indel();

for (i=0; i<=strlen(s); i++)
for (j=0; j<=strlen(t); j++)

cell_init(i,j);

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i],t[j]);
opt[INSERT] = m[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = 0;
m[i][j].parent = -1;
for (k=MATCH; k<=DELETE; k++)

if (opt[k] > m[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent = k;

}
}

goal_cell(s,t,&i,&j);
return(m[i][j].cost);

}

Supporting Routines

goal_cell(char *s, char *t, int *x, int *y)
{

int i,j; /* counters */

*x = *y = 0;

for (i=0; i<strlen(s); i++)
for (j=0; j<strlen(t); j++)

if (m[i][j].cost > m[*x][*y].cost) {

*x = i;

*y = j;
}

}

int match(char c, char d)
{

if (c == d) return(+5);
else return(-4);

}

int indel(char c)
{

return(-4);
}

cell_init(int i, int j)
{

m[i][j].cost = 0;
m[i][j].parent = -1;

}

Smith-Waterman Example

Note how the maximum score (31) is not achieved with the
exact matchpublic but includes the preceeding ‘e’.
This is because we score a match more than we penalize a
mismatch/indel.

b e a t _ r e p u b l i c a n s
: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r: 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0
_: 0 0 0 0 0 5 1 1 0 0 0 0 0 0 0 0 0
t: 0 0 0 0 5 1 1 0 0 0 0 0 0 0 0 0 0
h: 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
e: 0 0 5 1 0 0 0 5 1 0 0 0 0 0 0 0 0
_: 0 0 1 1 0 5 1 1 1 0 0 0 0 0 0 0 0
p: 0 0 0 0 0 1 1 0 6 2 0 0 0 0 0 0 0
u: 0 0 0 0 0 0 0 0 2 11 7 3 0 0 0 0 0
b: 0 5 1 0 0 0 0 0 0 7 16 12 8 4 0 0 0
l: 0 1 1 0 0 0 0 0 0 3 12 21 17 13 9 5 1
i: 0 0 0 0 0 0 0 0 0 0 8 17 26 22 18 14 10
c: 0 0 0 0 0 0 0 0 0 0 4 13 22 31 27 23 19
_: 0 0 0 0 0 5 1 0 0 0 0 9 18 27 27 23 19
g: 0 0 0 0 0 1 1 0 0 0 0 5 14 23 23 23 19
o: 0 0 0 0 0 0 0 0 0 0 0 1 10 19 19 19 19
o: 0 0 0 0 0 0 0 0 0 0 0 0 6 15 15 15 15
d: 0 0 0 0 0 0 0 0 0 0 0 0 2 11 11 11 11

Gap Penalties

Gaps in sequence alignments occur for several reasons,
including (1) the deletion of introns from split genes, (2) the
insertion of mobile sequence elements such as transposons,
(3) because conserved parts of a protein may include several
relatively small docking sites.
Gap in alignments can be modeled as repeated base deletions,
where the penalty for a gap is just a linear function of its
length.
However, in many applications (e.g. exons/introns, extracting
good quotes for the back of a book jacket) the length of the
gap is relatively unimportant.

Affine Gap Costs

Thus a more meaningful model charges a fixed penalty for the
existence of each gap, plus another penalty depending upon
the length of the gap.
Affinegap penalties areA + Bt for gaps of lengtht, while
logarithmicgap penalties of the formA+B lg t are suggested
by empirical data.

Arbitrary Gap Weights

Suppose the gap cost is a completely general function of
length for which we cannot assume monotonicity or any other
property.
Then we must explicitly try every possible length dele-
tion/insertion at every possible position, i.e.V (i, j) takes the
best of the following options:

G(i, j) = V (i − 1, j − 1) + match(i, j)

E(i, j) =
j−1
max
k=0

V (i, k) + indel(j − k)

F (i, j) =
i−1

max
k=0

V (k, j) + indel(i − k)

Because we are doing a linear amount of work for each cell,
the time complexity goes toO(n2m + nm2) or O(n3) if n <
m.
This algorithm is often called Needleman-Wunsch.

Affine Gap Weights

By being clever we can avoid the extra linear cost of looking
for the start of the gap foraffinegap penalties, i.e. penalties
of the formA + Bt for gaps of lengtht
We will use the insertion and deletion recurrencesE andF
to encode the cost of being in gap mode, meaning we have
already paid the cost of initiating the gap.

V (i, j) = max(E(i, j), F (i, j), G(i, j))

G(i, j) = V (i − 1, j − 1) + match(i, j)

E(i, j) = max(E(i, j − 1), V (i, j − 1) − A) − B

F (i, j) = max(F (i − 1, j), V (i − 1, j) − A) − B

With constant amount of work per cell, this algorithm takes
O(mn) time, same as without gap costs.
The default in FASTA setsA = 10 andB = 2, so starting a
gap costs the equivalent of five deletions.
The special case ofconvex penalty functions (including
logarithmic costs) can be solved inO(nm log mn) time with
a more complicated algorithm.

Space Efficient Dynamic Programming

Quadratic space will kill you faster than quadratic time.
(30, 000)2 bytes equals one gigabyte, while(30, 000)2 opera-
tions takes 1000 seconds on a machine doing 1 million steps
per second.
The dynamic programming algorithms we have seen only
look at neighboring rows/columns to make their decision.
Computing thehighest cell scorein the matrix does not
require keeping more than then last column and the best value
to date, for a total ofO(n) space, wheren ≤ m.
Note that reconstructing the optimalalignmentdoes seem to
require keeping the entire matrix, however.
But Hirshberg found a clever way to reconstruct the align-

ment inO(nm) time using onlyO(n) space, by recomputing
the appropriate portions of the matrix.
For each cell, we drag along the row number where the
optimal path to in crossed the middle (m/2nd) column.
This requires onlyO(n) extra memory, one cell per row.
This works because the crossing pointk of the (m/2)nd
column means that the optimal alignment lies in the sub
matricesA from (1,1) to(m/2, k), andB from (m/2, k) to
(m, n).
Note that the number of cells inA andB totals only half of
the the originalmn cells.
Further, these dynamic programming algorithms are linear in
the number of cells they compute.

Thus the total amount of recomputation done is
lg m∑

i=0
mn/2i = 2mn

so the total work remainsO(mn)

Heuristic String Comparison

Dynamic programming methods for sequence alignment give
the highest quality results.
However, quadraticO(nm) algorithms are only feasible for
comparing two modest sized sequences.
Comparing the human genome against mouse with a
quadratic algorithm (3, 000, 000, 0002 operations) at a billion
operations per second equals 285 years!
Comparing your target sequence against the entire database
is hopeless, even with special purpose hardware.
Heuristic algorithms (BLAST/FASTA) are used for an initial
scan of the database to find a small number of hits, and then
Smith-Waterman finds the optimal alignment.

FASTA

FASTAis a heuristic string alignment program which is based
upon finding short exact matches (k-mers) between the query
sequence and the database.
The trick is to choosek large enough that there are relatively
few hits, but small enough that we are likely to have an exact
k-mer match between related sequences.
Recommended values ofk are 2 for protein sequences and 6
for DNA sequences.
Note that there are at mostn − k + 1 distinct k-mers in a
sequence of lengthn.

A hash tableof all k-mers in the database can be built once
and used repeatedly for efficiently looking up thek-mers in
query strings.
A dynamic programming-like algorithm is used to align the
k-mer hits between query and database, but the problem is
much smaller since there are far fewer hits than bases.

BLAST

BLAST stands for “Basic Local Alignment Search Tool”.
BLAST also breaks the query intok-mers in order to search
a hash table, but for inputk-merq constructsall otherk-mers
which lie within a distancet of q.
By processing all these patterns into an automata, BLAST
can then make one linear-time pass through the database to
find all exact matches and group them in an alignment.
The window sizek is typically 3-5 for protein sequences and
12 for DNA sequences.
Conventional wisdom has BLAST as faster than FASTA, but
perhaps a little less accurate.

Using Blast

Several variants of theBasic Local Alignment Search Toolare
available at www.ncbi.nlm.nih.gov/BLAST/

• blastp– amino acid query sequence to protein sequence
database

• blastn – nucleotide query sequence to nucleotide se-
quence database

• blastx – nucleotide query sequence translated in all
reading frames against a protein sequence database

• tblastn – protein query sequence against nucleotide
sequence database translated in all reading frames

• tblastx – most intensive computationally; compares 6
frame translations of nucleotides query sequence against
6 frame translation of nucleotide sequence database

You can download your own local copy of the code and
databases, or use web resources.

Databases
Database choices include:

• nr – all non-redundant sequences (from particular
databases)

• est – expressed-sequence tags (RNA from expressed
genes) in human, mouse, etc.

• month– new releases from the past 30 days

• genomes– from Drosophila, yeast, E.coli, human, etc.

Your query sequence can be (1) an amino acid or nucleotide
sequence you type or paste in, or (2) the accession or GI
number of Genbank entry.
There are a wide range of output formats.

Advanced Search Parameters

You can select the organism you are interested in to limit your
search.
You can change theexpect valueE, the threshold for
reporting matches against a database sequence. The default
threshold of 10 means that 10 matches are expected to
be found merely by chance (Karlin and Altschul). Lower
expect thresholds are more stringent, leading to fewer chance
matches being reported.
The expect value decreases exponentially with the alignment
scoreS.
You can usefilter to masks sequences of low compositional
complexity, i.e. eliminate statistically significant but biologi-

cally uninteresting reports.
You can select the cost comparison matrix. The default
is BLOSUM62, but with this matrix fairly long alignments
are requires to rise above background. PAM matrices are
recommends if search for short alignments.

Significance Scores

To assess whether a given alignment constitutes evidence for
homology, it helps to know how strong an alignment can be
expected from chance alone.
A model for expected number ofhigh-scoring segment pairs
(HSPs) with score at leastS is

E = Kmne−λS

wherem andn are the sequence lengths andK andλ are
scaling parameters.
Doubling length of either sequence doublesE, as it should.
Doubling the score for an HSP to2x requires it to attain the
score x twice in a row, soE should decrease exponentially
with score.

The number of random HSPs with score≥ S is described by
a Poisson distribution, so the probability of finding exactly a
HSPs with score≥ S is given bye−EEa/a!.
Hence the probability of finding 0 HSPs ise−E, and the
probability of finding at least one isp = 1 − e−E. This is
thep-valueof the score.
A statistical method to measure significance is to generate
many random sequence pairs of the appropriate length and
composition, and calculate the optimal alignment score for
each.

