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Shape and Structure of Molecules

The primary molecules of biological interest (DNA, RNA,
and proteins) all have fundamentally linear structures as a
consequence of how they are replicated.
However, the biologicalfunctionof these molecules depends
upon how they interact with other molecules.
These interactions depend heavily upon the shape of the
molecules involved.
Experimental methods for determining structures, such as x-
ray crystalography, are slow, expensive, tricky, and work only
in certain environmental conditions.
All this combines to make computational prediction of
structures an important and messy problem.



Why Shape?

Molecular shape/structure is determined by many factors:

• Molecular bonds

• Electrostatic forces (i.e. positive/negative charges)

• The size/shape of molecular subunits (amino acids and
nucleotide bases)

• Hydrophobicity of the associated bases

• The current environmental conditions (temperature, salin-
ity, acidity).



Levels of Structure

The difficulties of specifying structure leads to a hierarchy of
increasingly demanding notions of structure:

• Primary structure usually refers to the raw sequence
itself.

• Secondary structureusually refers to identifying certain
self-interacting features of the structure, such as which
bases bond with which other bases.

• Ternary structureis the complete ‘geometric’ description
of molecule; i.e. the positions of all the bases.

• Quadrary structureconcerns identifying how certain parts
of structures interact with other structures.



The interest in these different levels of abstraction is (1)that
sometimes it is much easier to get accurate predictions at
lower levels, and (2) accurate lower-level knowledge may be
more useful than less-precise higher-level knowledge.



DNA folding

DNA molecules usually come in the form of double-stranded
molecules, whosesecondarystructure is the famous ‘double
helix’ discovered by Watson and Crick.
The ternary structure of DNA is the shape of the chromo-
somes it folds into.
This is a non-trivial problem – the DNA in a typical human
cell would unfold to sequences 2 meters long!



When DNA is in single-stranded mode, other regulatory
proteins bind at certain sites to start transcription, defining
thequadrarystructure.
As a single-stranded molecule, DNA folds and behaves much
like RNA.



RNA Folding

RNA molecules, like proteins, are usually single strands
which fold back onto themselves into predefined 3D shapes
or structures.
The folding problem seeks the structure or shape of a given
sequence.
The shape of certain RNAs plays a major role in determining
its interaction with other molecules, for example tRNAs.
Folding occurs in both proteins and RNA, although the issues
are different.
Since RNA is single-stranded, its component bases tend to
bond with other bases analogously to the bonds formed in
double-stranded DNA (A-U, C-G).



What Does RNA Do?

Some RNA molecules havefunctionsin the organism other
than coding or information functions.
These functions are determined by their interaction with other
molecules, which in turn is determined largely by its 3D
structure.
For example, tRNA molecules transport amino acids during
the process of transcription.
It is widely believed that RNA molecules are the closest thing
to the molecules from which life originally evolved.
RNA molecules can perform the function of coding for
proteins (information storage) usually associated with DNA.



RNA molecules can have enzymatic functions usually asso-
ciated with proteins.
Thus it is easier to develop a scenario for the polymerization
of nucleic acids than proteins, under the geological conditions
of the young Earth.



Predicted RNA Secondary Structure

The set of all these pairs constitutes thesecondary structure
of an RNA molecule.



The Zuker-Turner RNA Folding Model

In this widely used model, binding pairs partition the RNA
strand into nested loops.
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Internal base
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Bulge
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Stacked pairs



A complicated energy function (derived from laboratory
experiments) is used to measure the binding strength of short
patterns.
Using dynamic programming Zuker, et.al has developed
successful RNA secondary structure prediction algorithms–
on average, 73% of known base pairs on domains of fewer
than 700 nucleotides.



Maximizing Binding Pairs

The simplest RNA folding model would seek the nested
decomposition into bonds such that we maximize the number
of bonds of complementary pairs.
We assume that the total binding energy is the sum of the
energy of each of the bonds.
We can optimize by dynamic programming.



Recurrence

LetE(i, j) be the maximum number of properly-nested bonds
which can be formed by the substring from theith throughjth
bases in the sequenceS.
Either(i, j) is a bond, or they might bond with bases between
i andj, so:

E(i, j) = max ( E(i + 1, j − 1) + α(i, j),
j−1
max
k=i

(E(i, k) + E(k + 1, j)))

whereα(i, j) is the score you get for matchingSi andSj.
As there aren2 cells and each can be filled in linear time, this
algorithm takesO(n3) time.



General RNA Folding Recurrences

More general recurrences are needed to properly account for
more general structures, such as (1) rewarding long runs of
matched/stacked pairs, and (2) penalizing different typesof
loops appropriately based on size.
Because of the internal loops term, these recurrences run in
O(n4). Faster recurrences are possible, especially when there
are simplifying assumptions about the form of the penalty
terms.



Pseudoknots

This model ignorespseudoknotsformed when bonds are
formed which do not respect nesting constraints, i.e.(i, j)
and(k, l) both form bonds even thoughi < k < j < l.
Such pseudoknots definitely occur in nature, but are usually
ignored in secondary structure prediction because (1) they
make the problem too hard computationally, and (2) they
might be better handled during ternary structure prediction.



Homology-Based Approaches

De novo RNA structure predictions are reasonably good but
not perfect.
Indeed, one problem with the dynamic programming ap-
proach (as stated) is that it returns only the singlebest
solution, when there might be widely varying structures with
almost as good energy scores.
A more accurate approach for determining the structure of
functional RNAs would be to usehomology information
across species, since the most important structural compo-
nents should be conserved in evolution.
Thus potential bonds which appear in multiple sequences are
more likely to be real bonds.



Protein Folding

Linear protein molecules rapidlyfold into predefined 3D
shapes or structures.
The properties of any protein is largely determined by its
structure.

Proteins can bedenaturedby heat or chemical agents, but
then fold back to their original shape.



Protein structures can be experimentally determined by
crystallizingthe protein and then using x-ray crystallography
or NMR to find the position of the atoms, but this is a very
difficult procedure.



Why is it Difficult?

The folded structure of a sequence is determined by the
sequence of successive solid bend angles, where each solid
angle can be represented by two planar angles.
Such a problem can be made discrete (at some loss of
accuracy) by limiting the number of ways to bend each joint
to, say, 7 solid angles.
Even so, a 100 residue protein then has a search space of7100

configurations.
Determining the shape of proteins from sequence is one of
today’s great computational challenges.



Primary, Secondary, and Tertiary Structures

The primary structure of a protein is simply its amino acid
sequence.
The secondarystructure of a protein is the labeling of each
residue with whether it is part of an (1)α-helix, (2) β-sheet,
or (3) a connectingloop.
Secondary structure prediction is important because the
helices and sheets determine the proteincore which is
typically conserved.
Different amino acids have different probabilities of appear-
ing in each of these structures. But beware, since there is
a sequence of 5 residues which appears in bothα-helix and
β-sheet.



Although the notion of secondary structure seems somewhat
ill-defined, there are reasonably successful prediction pro-
grams (say correctly labeling75% of all bases) based on ideas
like hidden Markov models.
The 3D or tertiary structure of a protein describes the
coordinates in space of each amino acid. This geometric
information helps determine whether two proteins interactor
dockwith each other.
Protein folding programs seek to determine the tertiary
structure of any protein from its sequence.



Lattice Models

Discrete, folding models provide insight into the statistics and
optimization of protein folding.
Grid models limit the position of the residues to discrete
points on a lattice.
The HP-model restricts attention to interactions between
hydrophobic and polar (hydrophilic) residues.

We seek the self-avoiding lattice walk which maximizes the
number of neighboring hydrophobic pairs.



The Hardness of Protein Folding

The computational difficulty of protein folding has led to
proofs that the problem of finding the minimum energy
configuration is NP-complete under a variety of models, e.g.
maximizing the number of adjacent hydrophobic pairs in a
3D lattice model.
Leventhal’s paradoxis that proteins correctly fold into their
pre-ordained shape less than a minute after being synthesized.
How does nature solve this NP-complete problem?



Around the Paradox

Possible reasons around this problem are (1) that the
theoretical models used to prove hardness are not what nature
is trying to optimize, (2) evolution may have selected for
proteins which fold easily, (3) proteins may well fold in
locally, not globally optimal ways.
Prions, infectious agents which work by “tricking” proteins
to fold in non-functional ways, are presumed responsible for
mad-cow disease.



De Novo Structure Prediction

De novo (or ab initio) prediction programs work by defining
a global energy functionand does a search of possible
bond-angle configurations to find one which minimizes total
energy.
The process is similar watching a restless sleeper folds into
the most comfortable (minimum energy) configuration.
The most important issues are (1) the energy function
selected, and (2) the optimization procedure employed to
search the space.



Optimization by Search

Reasonable energy minimization functions include hy-
drophobic/hydrophilic interactions, size and flexibilityprop-
erties of different amino acids, and electrostatic / Van der
Waals interactions of nearby atoms.
Standard optimization methods to employ aregradient de-
scent, simulated annealing, genetic algorithms, andparallel
computation.



Simulated Annealing

The inspiration for simulated annealing comes from cooling
molten materials down to solids. To end up with the globally
lowest energy state you must cool slowly so things cool
evenly.
In thermodynamic theory, the likelihood of a particular
particle jumping to ahigherenergy state is given by:

e(Ei−Ej)/(kBT )

whereEi, Ej denote the before/after energy states,kB is the
Boltzman constant, andT is the temperature.
Since minimizing energy is a combinatorial optimization
problem, we can mimic the physics for computing.



Simulated Annealing Algorithm

Simulated-Annealing()
Create initial solutionS
Initialize temperaturet
repeat

for i = 1 to iteration-lengthdo
Generate a random transition fromS to Si

If (C(S) ≤ C(Si)) thenS = Si

else if(e(C(S)−C(Si))/(k·t) > random[0, 1))
thenS = Si

Reduce temperaturet
until (no change inC(S))
ReturnS



Components of Simulated Annealing

• Concise problem representation– Both a representation
of the solution space and an appropriate and easily
computable cost functionC(s).

• Transition mechanism between solutions– Typical transi-
tion mechanisms include swapping the position of a pair
of items or inserting/deleting a single item.

• Cooling schedule– These parameters govern how likely
we are to accept a bad transition. At the beginning of
the search, we are eager to use randomness to explore
the search space widely, so the probability of accepting
a negative transition is high.



The Rosetta Method

The quite successfulRosetta stonemethod works by com-
puting possible folds for each subsequence of length 3-9
based on known structures and stitching them together using
simulated annealing.
It assumes that the distribution of conformations sampled for
a given short segment of the sequence is reasonably well
approximated by the distribution of structures adopted by
that sequence and closely related sequences in known protein
structures.
Fragment libraries for short segments of the chain are
extracted from the protein structure database.



At no point is knowledge of the overall native structure used
to select fragments or fix segments of the structure.
The conformational space defined by these fragments is then
searched using a Monte Carlo procedure with an energy
function that favors compact structures with paired strands
and buried hydrophobic residues.
A total of 1,000 independent simulations are carried out
for each query sequence, and the resulting structures are
clustered. One selection method was simply to choose
the centers of the largest clusters as the highest-confidence
models.



Keeping Score

How can we judge how well a protein prediction program
works?
One measure is to align the correct and predicted 3d
structures and compute the average (RMS) deviation per
residue.
Finding this alignment is not trivial, and misses the fact that
the core structure is what is most important.
The CASP project/competition regularly invites structurepre-
dictions of proteins about to be experimentally determined,
and determines the winner on a more ad hoc basis.



Threading Approaches

Since de novo structure prediction is hard, many programs
use known 3D structures as a crutch to help folding new
sequences.
This makes sense since all proteins likely descend from a
small number of original structures.
Two amino acid sequences with> 20−30% identical residues
likely have similar three dimensional structures.
Thus there may only be a small number of different
folds/substructures common to all proteins, and we will likely
see them all after determining a given number of structures.
In general,threadingor inverse foldingprograms are more
accurate than de novo prediction programs.



The Threading Problem

The input is (1) a protein sequence, (2) a core model
describing the position of the core residues and allowable
lengths of loops, and (3) a scoring function to evaluate the
given threading.
Reasonable factors in the cost model include (1) the similarity
of the base at each position to the original, (2) the length and
similarities of the loops,and (3) pairwise interactions between
bases at core positions.
Without modeling pairwise interactions, this becomes a
simple dynamic programming-type problem.
However, incorporating pairwise interactions turns the prob-
lem NP-complete.



Why is Threading Hard?

A pairwise interacting optimization function requires tabulat-
ing the possible substructures for every base assignment, so
dynamic programming becomes less feasible.
Thus exhaustive search/heuristics are used in threading
programs, but the options are much more constrained than
for de novo folding algorithms.



NP-Completeness Proof

An NP-completeness proof is based on max cut in graphs,
where a protein of length2n, namely(01)n is threaded along
ann-residue core (graph) with maximum loop lengths of 1.
Thus every vertex gets assigned a 0 or 1. If the cost function
scores one for every graph edge with different residues, the
maximum cut maximizes the score.



Protein Shapes

The tertiary structure of a protein specifies the location of
each carbon atom along its backbone.
The secondary structure (helices and sheets) captures some
notion of shape, but it does not suffice to accurately predict
whether two proteins bind ordocktogether.
Predicting protein interactions arises critically in searching
databases for potential drugs (rational drug design).
In protein docking, we seek to (1) predict the binding between
two different proteins, or a protein and a flexibleligand, and
(2) identify the orientation maximizing the interaction.



Protein Representations

A variety of different representations can be used for
geometric protein structures:

• 3D points in space.

• An arrangement of spheres in space.

• A chain of bond angle pairs.

• A cloud of unit bond vectors.

All are somewhat of a fiction since molecules vibrate, move,
and bend.
This flexibility limits our ability to use standard geometric
algorithms and concepts.



Geometric Notions of Shape

The idea of theshapedefined by a set of points is inherently
difficult to define.
Theconvex hullof a set of points defines the smallest convex
polygon which contain all of them.

The convex hull fails to pick up the cavities and protrusions
which inherently make shapes interesting.



Structures based on connecting points to their nearest
neighbors can recover if the points have been sampled
densely enough.



Alpha Hulls

The alpha-hull is a generalization of the convex hull, where
the shape is defined by spheres of radius alpha, for some given
value ofα.
An edge (face) between two (three) points isalpha exposed
if there is a sphere of radius alpha which contact these points
and contain no internal points.



As alpha decreases, concavities get cut out from the convex
hull.
The theory gives you little insight into which value ofα
defines your shape, except by trial and error.



Alpha Shape Examples

Two different alpha-shapes Gramacidin A, the latter high-
lighting the tunnel through the molecule:

The entire spectrum of alpha-hulls can be constructed in
O(n log n) time in the plane, the same as for convex hulls.



Myoglobin molecule with heme binding pocket:

HIV protease with inhibitor binding site:



Protein-Protein Docking

Typically, both proteins are modeled as rigid bodies, with the
geometry used to constrain the possible sites of interaction.
Energy computations are performed at geometrically possible
binding sites.
The “right” way to solve such problems is to construct the
six dimensionalconfiguration spaceof allowable positions
of the second protein, and perform energy calculations at
vertices/edges of the allowable region.



Protein-Ligand Docking

Modeling the interactions between a rigid protein and a small
but flexible ligand is more complicated, since every hinge in
the ligand increases the dimensionality of the problem.
Rough geometric interactions with parts of a ligand can be
used to predict possible binding sites, but detailed energy
calculations are needed to make precise predictions.



Docking Criteria

Preliminary screenings of possible docking sites can be based
on maximizing the number ofcontact pairsor RMS distance.
The docking problem is not purely geometric, since attrac-
tive/repulsive forces have strong effects.
The best docking seeks to maximize the surface area and
attractive forces while minimizing the energy loss due to
solvent interaction.
Small ligands tend to bind in big pockets.



Motion Planning

Finding the best docking is a difficult algorithmic problem
because it involves sixdegrees of freedom, the three possible
translations (x, y, andz) and three possible rotations.
Binding flexible ligands is analogous to motion planning for
articulated robot arms.
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Motion Planning Algorithms

Motion planning with many degrees of freedom becomes
difficult as the complexity of the surfaces defining the
conformation space grows.
A good general approach is torandomly samplepoints in the
configuration space, and add edges between nearby collision-
free points with collision-free straight line paths.



Heuristic Approaches

One approach to simplifying continuous geometric problems
is to insist that all sites lie on a 3D grid.
The finer the grid, the more accurate the predictions, though
at greater computational cost.
Another approach to discretization is to analyze the possible
positions of isolated spheres which contact the surface, with
pockets identified where there are many intersecting spheres.
Geometric hashingstores all possible point triplets (triangles)
in both ligand and receptor. The sets of triangles which match
defines molecular orientations of interest.
Note that conventional hashing techniques do not really
apply, since we are looking for approximate matches.


