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Sequencing the Human Genome

The sequencing the human genome was a tremendous
entific accomplishment, requiring large-scale collaborat
between computational and life sciences.

However, thantellectualbreakthrough that lead to successf
sequencing came from computer scientists, not life s@enti
We will study the basic technology underlying all sequegci
projects, and compare the somewhat different experime
strategies employed by the two groups.
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Progress in Genome Seguencing

Amazing progress in the scale of sequencing projects
been achieved, largely through automation:

e Phage Phi-x174: 5kb, 1977.

e Bacteriophage lambda: 50kb, 1982.

e Haemophilus influenzae: 1.8Mb, July 1995.
e Drosophila: 180Mb, March 2000.

e Human: 3 billion bases, February 2001.

Interest now revolves around faster/cheaper rather tmgearla



DNA Sequencing Machines

Traditional sequencing machines use the same basic pri
ples as the original Gilbert-Sanger method. There has b
tremendous progress in automating the procedure, howey
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Read lengths have gotten only slightly longer with tim
perhaps from 500 bp to 700 bp, and are now getsimprter.




Gilbert-Sanger Method

The sample to be sequenced is replicated in four distinst b
using a distinct fluorescently labeled PCR primer. The |
associated with a given bases given a mixture of functional
and non-functional versions af where non-functional base:
terminate transcription. This creates labeled fragmehé#dl o
sizes ending irx.

Using gel electrophoresis, the fragments are separatec
length. The presence or absence of a labeled band in ¢
lane denotes whether the sequence has the given base in
position.



Modern capillary machines use smaller amounts of reage
and avoid problems with wandering lanes.

In the good regions of a read, the base error rate shoulc
below 2%.



Short Read Sequencing

New sequencing technologies (Solexa, ABI/Solid, Helicc
454/1llumina) work by imaging beads/molecules affixed ta
surface, watching as they give off light during DNA copyin
operations.

These yield massive numbers of very short reads (25
bases) or large numbers of short reads (100-400 base:
relatively low cost.

These are particularly useful for sequencing variantsj:gc
the $1,000 genome

De novo sequencing is still best done using longer “shao
(454) reads.



Fragment Assembly

In shotgun sequencingvhole genomes are sequenced |
making clones, breaking them into small pieces, and putt
the pieces together again based on overlaps.

Genome-Level Shotgun Sequencing
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Fragments A Fragment Assembly Program

finds a Common SuperString.

Note that the fragments arandomlysampled, and thus nc
positional information is available.



Gaps

Since we rely on fragment overlaps to identify their posific
we must sample sufficient fragments to ensure enol
overlaps.

Let 7" be the length of the target molecule being sequent
usingn random fragments of length where we recognize
all overlaps of length or greater.

The Lander-Watermarequation gives the expected numbt
of gapsg as

g = ne "0/



Where does thee come from?

Suppose we have as many fragments as base®$, +en and

each fragment is length 1. The probabilityhat base is not

sampled is
n—1., 1
w7

p=(



Coverage

The coverageof a sequencing project is the ratio of the tot
sequenced fragment length to the genome lengthyi &..

Gaps 1MB, 100MB, and 1GB Genones
140

Cover age
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Gaps are very difficult and expensive to close in a
seguencing strategy, meaning that very high coverage
necessary to use shotgun sequencing on a large genome



Sequencing Strategies

The effectiveness of a genome sequencing strategy dept
upon the degree aloveragethe length of the inserts, and th
auxiliary mappinginformation available to help assembly.
The DNA fragments orclonesare replicated by inserting
them into a living organism, theloning vector

Small fragments (40,000 bp) can be cut and pasted int
bacterialcosmid Bigger fragments (up to 2,000,000 bp) ce
be replicated as a bacterial or yeast artificial chromos@ms
BACor YAC



Clone Sizes and Double-Ended Reads

After sequencing both ends of a given insert, we knc
roughly how far apart they should be in the final assembly.
Selecting the right mix of insert sizes can simplify assgmb]
Small inserts give tight assembly constraints, but bigriisse
help us build a scaffolding across the entire genome.

The internals of clones can be sequenced, but itis much i
expensive than end sequencing. Thus it is done only In
closing gaps.



Mapping Data

The high coverage necessary to sequence large genc
without gaps frightened most laboratories away from pt
shotgun sequencing strategies.

A different approach is to constructraap showing where

each clone lies on the human genome, and use this ma
guide end sequencing and assembly.

Mapping data can be based on (1) using hybridization
detect the presence or absence of a given short sequ&hge
In a given clone, or (2) usingestriction enzyme® cut each

clone at a given pattern, and looking for similar fragme
lengths.



A BA B A CA

With a good enough map, the required coverage might

down to 2 or 3.



The Algorithmics of Mapping

Note that the correct ordering is a Hamiltonian path on t
clones. Reconstructing clone order from mapping data te
to be an NP-complete.

However, the difficulty is due to errors and ambiguity |
the mapping data since the problem of recognizimgrval
graphscan be done in linear time!

WY —




Celera vs. the Public Consortium

The public consortium used a sequencing strategy base
mapping the clones first.

Celera used hundreds of high-throughput sequencing |
chines to obtain enough coverage to shotgun sequence
human genome.



Why is Assembly Difficult?

The most natural notion of assembly is to order the fragme
so as to form the shortest string containing all of them.
However, the problem of finding the shortest comm
superstring of a set of strings is NP-complete.

ABRAC ABRACADABRA

ABRAC

A CADA RACAD
ADABR ACADA
DABRA ADABR

RACAD DABRA



Even Worse

Even worse, we have to deal with significant errors in t
sequence fragments.

Even worse, genomes tend to have magyeats(approxi-
mate copies of the same sequence), which are very har
identify and reconstruct.

Due to repeats, the shortest common superstring Is typic
shorterthan the real sequence.



Overlap Detection

Even worse, the size of the problem is very large. Celer
Human Genome sequencing project contained roughly 2
million fragments, each about 550 bases long.

To decide what overlaps what, weould compare each
fragment against each other fragment ¥an®) dynamic
programming, but faster methods are needed.

(26.4 million)? x (550)* = 2.1 x 10*” operations!

Celera’s assembly involved 500 million trillion base to da
comparisons, requiring over 20,000 CPU hours.

Thus efficient overlap detection is critical, more crititian
the NP-complete part of the problem!



Errors and Overlap Detection

Overlap detection must be tolerant of sequencing error,
even an error rate of 2% means one should be able to-
fairly long exact matches in a long overlap.

Consider an overlap of length 100. Two errors in each re
mean four errors in this region. Even if spaced equally ap:
there must be an exact match of at least length 19.



Tries and Trees

There are several interesting data structures for speeqtin
exact pattern matches in strings..

A trie is a data structure which permits access to any str
s in ann word dictionary inO(|s|) time for constant-sized
alphabets.

This is optimal and independent of the dictionary size!
Note that binary search of anword dictionary would take
O(n|s|) time.

A trie has a node for each character position, with prefix
shared:



Searching In a trie is easy. just match the character
traverse down the correct path.

Building the trie is also easy: insert a new string by matghi
until you fail, then split the last node.



Suffix Trees

A very special set of patterns to put in a trie are the compl
set of allsuffixesf a string.

XYZXYZ$
YZXYZ$
ZXYZ$
XYZ$
YZ$

With such a tree, we can performsubstring searches
efficiently, since every substring is the prefix of some suffi;
Further, the set of all instances of a given substtiage the
leaves of the subtree rootedtatnd can be found by DFS.



Linear-Size Suffix Trees

A suffix tree can be stored in linear space, by collapsi
degree-1 nodes into paths, and paths into references tc
original string.

The incremental insertion algorithm to build a suffix tre
might take O(n?) time to build the tree, because findin
the split-point for each insertion might requif&n) time in
matching.

However, there are more sophisticated algorithms (Wesne
Ukkonen’s, McCreight’s) which can build thentire treein
linear time.



Exploiting Suffix Trees: Longest Common
Substring

Given two stringss; and sy, what is the longestontiguous
substrings they have in common.

Example:livestock and sdever

The naiveO(nm) algorithm fully tests each alignment ef
againstss.

In 1970, Knuth conjectured that a linear-time algorithm w
Impossible. Can you prove him wrong?



Longest Common Substring Algorithm

Build a suffix tree of the length + m + 1 concatenated string
s’ = s1#s,, Where# does not occur in either string.

Label each leaf node of the suffix tree with the name of t
string it is contained in. Label each internal node with tl
union of the labels of its descendents.

By doing a DFS on th&(n+m+1) node tree, we can find the
deepest node which has both ganand s, descendant. This
defines the longest common substring!



Exploiting Suffix Trees: Palindromes

A palindromereads the same forwards and backwards:
man, a plan, a canal — Pananta Madam I'm Adam

In DNA seguence analysis, a palindrome is a sequence e
to its reverse complement, e GAATTC

Such palindromes bind/fold to createcondary structures
sequences, which often have biological significance.




Finding Palindromes

How can we find the longest self-binding substring in a DN
sequence? Use the longest common substring algorithm
s1 as the input sequence anrg as its reverse complemen
sequence!

This does not guarantee that the Ics of these strings stiadis/
In the same place, so does not necessatrily find a palindro
However, after we augment the suffix tree so as to ans
lowest common ancestqueries in constant time. ..

...we can find the longest sub-palindrome in linear time
asking the ‘length’ of the LCA ofS[i| and S|i + n + 1] for
eachl <i <n.



Exploiting Suffix Trees: Circular String
Linearization

Certain genomic structureplasmids have closed circular
DNA molecules rather than linear molecules.

To look such a molecule up in a database, we much fin
canonicalplace to break it to leave a linear string.

The most obvious place to break it uniquely is so as to alw:s
leave thelexicographically smallest string, i.e. the strinc
which appears first in sorted order.

Building and sorting alh such strings take®(n?) time. Can

you do better?



Linear Time Linearization

Break the string arbitrarily to create a linear strihg

Now build the suffix tree for string = LL#. This is linear
In the size of the input.

Example:L = gcttcaat SOS = gcttcaatgcettcaat#.

Do a traversal down from the root, always picking tt
lexicographically smallest character. Assume thas at the
end of the alphabet.



Suffix Arrays

The suffix arrayis an amazing data structure for efficientl
searching whethe¥ is a substring of strind’".
For a given string’, we construct the lexicographically sorte
array of all itssuffixes
Forl = mississippi, the suffix array Is:
11 i
o ippi
. i ssippi
. i ssissippi
: m ssissippi
o
: ppi _
. sippi
. Sissippi
. SSi ppi
: ssissippi

=
WO PAr~NOOFLDNOU PR



Searching in a Suffix Array

Since every substring is the prefix of some suffix, Substri
search now reduces to binary search in this array. Exam
IS “sip” a substring off'?

Binary search in a suffix array takégm lg n), wheren is the
length of7” andm the length of the matched substring.
With auxilliary data, this can be improved @(1gn + m).
Note that we can just as easily fiadl the occurrences of a
given stringS in T' by binary searching just before/aft&r



Building and Storing Suffix Arrays

Amazingly we need only store the original string and tl
sorted start positions to do the search! Tlie character of
theith prefix is atl[start[i| + j — 1].

But how fast can be built the suffix array of ancharacter
string?

Radix sortingn strings ofn characters can be donednn?),
linear in the size of the input.



Building Suffix Arrays Efficiently

But what is really amazing is that suffix arrays can be built
both linear time and space!

First, build asuffix treein O(n) time.

Performing a lexicographic depth first search of a suffix tr
yields a suffix array.

Suffix arrays use many times less space than suffix trees
3n vs. 17n bytes), which is often the dominating factor i
large text search problems.



Constructing the Overlap Graph

Through clever use of suffix arrays, the entire overlap gre
can be built in near-linear time.

After building the array of all suffixes of all fragments
potential overlaps will share a prefix of a suffix, and hen
be near each other in sorted order.

Accepting a fragment pair as overlapping may require séve
significant long matches.

Since there are” possible DNA sequences of lengthand
n places for suctk-mers to start if 7’| = n, matches start to
get significant ift > log, n.

For human, longer than 16-mers start to get interesting,esc
can expect to find significant exact matches.



Complications

Several engineering issues arise in building any assemble

e Chimera detection— Certain fragments are, in fac
concatenations of sequences from two different region

e Multiple sequence alignment\We can remove single bas:
sequencing errors by voting in overlapped regions.

e Identifying repeat regions- Mapping data and ad hoc
algorithms are essential to help resolve repeats.

e Integrating distance and clone constraints into assem|
— This requires careful laboratory work (preferab
automated) to ensure accurate input.



Gel Reading Programs

Calling sequence bases from sequence trace data is r
trivial problem for several reasons, including (1) varyir
density of the gel along a lane, (2) varying density of tl
gel across lanes, (3) separation between bands shrinks a
move along the lane.

Phred by Phil Green, is the most famous base-calli
program for automated seguencer traces. It assigns an ¢
probability to each base called and yielded 40-50% low
errors than the software included with Applied Biosyster
(ABI) sequencing machines.



Phred’s base-calling pipeline consists of several phases:

1. It predicts peak locations using the assumption tl
fragments should be locally evenly spaced. This he
determine the correct number of bases in a region wh
peaks are not well resolved, noisy or displaced.

2. Observed peaks are identified in the trace and matche
the predicted peak locations. Some are omitted and sc
are split, yielding the main base seguence.

3. Unmatched peaks are analyzed to see if they repre:
bases, and if so is inserted into the sequence.

The quality scoré) is based on an estimate of the probabili
of errorp, where@) = —101log;( p.



Genome-Scale Assemblers

Assemblers for bacterial-sized genomes and beyond (suc
those used by TIGR and Celera) must use sophisticated
structures to avoid comparing every pair of fragments.
Typically, an initial assembly of ‘unitigs’ of high-quajitiong
overlaps is constructed.

The expected number of fragments at every position is
function of coverage. Stacks of fragments which are too hi
likely indicate improperly combined repeat regions.



Sequence Scaffolds

These unitigs are assembled into a ‘scaffold’ of pieces.tM
reads are in ‘mate pairs’, since the left and right ends
clones of sizes up to 10 kb or so have both been sequen
The scaffold is assembled using this pairing and distat
Information.

Other less high-quality reads and unitigs can now

positioned on this scaffold. Remaining gaps can be clo:
by seqguencing the clones spanning different contigs of
scaffold.



Other Sequencing Tricks

Celera used the public consortium’s Human sequence (
from Genbank. To avoid being fooled by its assembly, th
computationally shredded this sequence into artificiatise:
and incorporated this as raw data into its own project.
Certain sequencing projects do not attempt to sequence
genomic DNA. To identify the genes, they translate back 1
RNAtranscripts of genes inttDNAand seguence this.
Although the genes are a very important part of what we |
looking for, a drawback such expressed sequence tags (E.
IS that more highly expressed genes are significantly o\
represented, making it hard to find rare genes.



Population Sequencing

Sequencing a mixed population (i.e. fragments from muti
Individuals of a given species) should not compromi
assembly because of the overwhelming in-species sinyilal
while differences in bases helps study variation (Sing
nucleotide polymorphisms or SNPS)

Once a quality human reference genome become known,
sequence variants of an individual can largely be identbied
aligning short-reads to this target genome and noting a#n(
base mismatches.



