
Lectures 4, 5, 6, and 7:
Sequence Assembly

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Sequencing the Human Genome

The sequencing the human genome was a tremendous sci-
entific accomplishment, requiring large-scale collaboration
between computational and life sciences.
However, theintellectualbreakthrough that lead to successful
sequencing came from computer scientists, not life scientists.
We will study the basic technology underlying all sequencing
projects, and compare the somewhat different experimental
strategies employed by the two groups.

Find the Computer Scientists!

Progress in Genome Sequencing

Amazing progress in the scale of sequencing projects has
been achieved, largely through automation:

• Phage Phi-x174: 5kb, 1977.

• Bacteriophage lambda: 50kb, 1982.

• Haemophilus influenzae: 1.8Mb, July 1995.

• Drosophila: 180Mb, March 2000.

• Human: 3 billion bases, February 2001.

Interest now revolves around faster/cheaper rather than larger.

DNA Sequencing Machines

Traditional sequencing machines use the same basic princi-
ples as the original Gilbert-Sanger method. There has been
tremendous progress in automating the procedure, however.

Read lengths have gotten only slightly longer with time,
perhaps from 500 bp to 700 bp, and are now gettingshorter.

Gilbert-Sanger Method

The sample to be sequenced is replicated in four distinct bins,
using a distinct fluorescently labeled PCR primer. The bin
associated with a given basex is given a mixture of functional
and non-functional versions ofx, where non-functional bases
terminate transcription. This creates labeled fragments of all
sizes ending inx.
Using gel electrophoresis, the fragments are separated by
length. The presence or absence of a labeled band in each
lane denotes whether the sequence has the given base in each
position.

Modern capillary machines use smaller amounts of reagents
and avoid problems with wandering lanes.
In the good regions of a read, the base error rate should be
below 2%.

Short Read Sequencing

New sequencing technologies (Solexa, ABI/Solid, Helicos,
454/Illumina) work by imaging beads/molecules affixed to a
surface, watching as they give off light during DNA copying
operations.
These yield massive numbers of very short reads (25-35
bases) or large numbers of short reads (100-400 bases) at
relatively low cost.
These are particularly useful for sequencing variants; goal:
the $1,000 genome
De novo sequencing is still best done using longer “short”
(454) reads.

Fragment Assembly

In shotgun sequencing, whole genomes are sequenced by
making clones, breaking them into small pieces, and putting
the pieces together again based on overlaps.

A Fragment Assembly Program
finds a Common SuperString.

Unknown Sequence (Genome)

Genome-Level Shotgun Sequencing

Sequence Reconstruction

Reconstructed Sequence (Genome)
Sampling

Fragments

Note that the fragments arerandomlysampled, and thus no
positional information is available.

Gaps

Since we rely on fragment overlaps to identify their position,
we must sample sufficient fragments to ensure enough
overlaps.
Let T be the length of the target molecule being sequenced
usingn random fragments of lengthl, where we recognize
all overlaps of lengtht or greater.
The Lander-Watermanequation gives the expected number
of gapsg as

g = ne−n(l−t)/T

Where does thee come from?

Suppose we have as many fragments as bases, i.e.T = n and
each fragment is length 1. The probabilityp that basei is not
sampled is

p = (
n − 1

n
)n →

1

e

Coverage

Thecoverageof a sequencing project is the ratio of the total
sequenced fragment length to the genome length, i.e.nl/T .

5 7.5 10 12.5 15 17.5 20
Coverage

20

40

60

80

100

120

140

Gaps 1MB, 100MB, and 1GB Genomes

Gaps are very difficult and expensive to close in any
sequencing strategy, meaning that very high coverage is
necessary to use shotgun sequencing on a large genome.

Sequencing Strategies

The effectiveness of a genome sequencing strategy depends
upon the degree ofcoverage, the length of the inserts, and the
auxiliary mappinginformation available to help assembly.
The DNA fragments orclonesare replicated by inserting
them into a living organism, thecloning vector.
Small fragments (40,000 bp) can be cut and pasted into a
bacterialcosmid. Bigger fragments (up to 2,000,000 bp) can
be replicated as a bacterial or yeast artificial chromosome,a
BACor YAC.

Clone Sizes and Double-Ended Reads

After sequencing both ends of a given insert, we know
roughly how far apart they should be in the final assembly.
Selecting the right mix of insert sizes can simplify assembly.
Small inserts give tight assembly constraints, but big inserts
help us build a scaffolding across the entire genome.
The internals of clones can be sequenced, but it is much more
expensive than end sequencing. Thus it is done only in the
closing gaps.

Mapping Data

The high coverage necessary to sequence large genomes
without gaps frightened most laboratories away from pure
shotgun sequencing strategies.
A different approach is to construct amap showing where
each clone lies on the human genome, and use this map to
guide end sequencing and assembly.
Mapping data can be based on (1) using hybridization to
detect the presence or absence of a given short sequence (STS)
in a given clone, or (2) usingrestriction enzymesto cut each
clone at a given pattern, and looking for similar fragment
lengths.

A AAB B CA

With a good enough map, the required coverage might go
down to 2 or 3.

The Algorithmics of Mapping

Note that the correct ordering is a Hamiltonian path on the
clones. Reconstructing clone order from mapping data tends
to be an NP-complete.
However, the difficulty is due to errors and ambiguity in
the mapping data since the problem of recognizinginterval
graphscan be done in linear time!

Celera vs. the Public Consortium

The public consortium used a sequencing strategy based on
mapping the clones first.
Celera used hundreds of high-throughput sequencing ma-
chines to obtain enough coverage to shotgun sequence the
human genome.

Why is Assembly Difficult?

The most natural notion of assembly is to order the fragments
so as to form the shortest string containing all of them.
However, the problem of finding the shortest common
superstring of a set of strings is NP-complete.

A B R A C
A C A D A
A D A B R
D A B R A
R A C A D

A B R A C

R A C A D

A C A D A

A D A B R

D A B R A

A B R A C A D A B R A

Even Worse

Even worse, we have to deal with significant errors in the
sequence fragments.
Even worse, genomes tend to have manyrepeats(approxi-
mate copies of the same sequence), which are very hard to
identify and reconstruct.
Due to repeats, the shortest common superstring is typically
shorterthan the real sequence.

Overlap Detection

Even worse, the size of the problem is very large. Celera’s
Human Genome sequencing project contained roughly 26.4
million fragments, each about 550 bases long.
To decide what overlaps what, wecould compare each
fragment against each other fragment viaO(n2) dynamic
programming, but faster methods are needed.

(26.4 million)2 × (550)2 = 2.1 × 1020 operations!

Celera’s assembly involved 500 million trillion base to base
comparisons, requiring over 20,000 CPU hours.
Thus efficient overlap detection is critical, more criticalthan
the NP-complete part of the problem!

Errors and Overlap Detection

Overlap detection must be tolerant of sequencing error, but
even an error rate of 2% means one should be able to find
fairly long exact matches in a long overlap.
Consider an overlap of length 100. Two errors in each read
mean four errors in this region. Even if spaced equally apart,
there must be an exact match of at least length 19.

Tries and Trees

There are several interesting data structures for speedingup
exact pattern matches in strings..
A trie is a data structure which permits access to any string
s in an n word dictionary inO(|s|) time for constant-sized
alphabets.
This is optimal and independent of the dictionary size!
Note that binary search of ann word dictionary would take
O(n|s|) time.
A trie has a node for each character position, with prefixes
shared:

t

h

e

i

r

r

e

w

a

s

h

e

n

Searching in a trie is easy: just match the character and
traverse down the correct path.
Building the trie is also easy: insert a new string by matching
until you fail, then split the last node.

Suffix Trees

A very special set of patterns to put in a trie are the complete
set of allsuffixesof a string.

X Y Z X Y Z $

 Y Z X Y Z $

 Z X Y Z $

 X Y Z $

 Y Z $

 Z $

 $

XYZ

YZ Z

$
(7, 7)

 7(3, 3)

$

(7, 7)

XYZ$

 63 5 2 4 1

XYZ $

(2, 3)

With such a tree, we can performsubstring searches
efficiently, since every substring is the prefix of some suffix.
Further, the set of all instances of a given substringt are the
leaves of the subtree rooted att, and can be found by DFS.

Linear-Size Suffix Trees

A suffix tree can be stored in linear space, by collapsing
degree-1 nodes into paths, and paths into references to the
original string.
The incremental insertion algorithm to build a suffix tree
might takeO(n2) time to build the tree, because finding
the split-point for each insertion might requireO(n) time in
matching.
However, there are more sophisticated algorithms (Weiner’s,
Ukkonen’s, McCreight’s) which can build theentire treein
linear time.

Exploiting Suffix Trees: Longest Common
Substring

Given two stringss1 ands2, what is the longestcontiguous
substrings they have in common.
Example:livestock and sealiver
The naiveO(nm) algorithm fully tests each alignment ofs1

againsts2.
In 1970, Knuth conjectured that a linear-time algorithm was
impossible. Can you prove him wrong?

Longest Common Substring Algorithm

Build a suffix tree of the lengthn+m+1 concatenated string
s′ = s1#s2, where# does not occur in either string.
Label each leaf node of the suffix tree with the name of the
string it is contained in. Label each internal node with the
union of the labels of its descendents.
By doing a DFS on theO(n+m+1) node tree, we can find the
deepest node which has both ans1 ands2 descendant. This
defines the longest common substring!

Exploiting Suffix Trees: Palindromes

A palindromereads the same forwards and backwards:A
man, a plan, a canal – Panamaor Madam I’m Adam.
In DNA sequence analysis, a palindrome is a sequence equal
to its reverse complement, e.g.GAATTC.
Such palindromes bind/fold to createsecondary structuresin
sequences, which often have biological significance.

External base
Internal base

Hairpin loop

Bulge

Multibranched loop

Stacked pairs

Finding Palindromes

How can we find the longest self-binding substring in a DNA
sequence? Use the longest common substring algorithm with
s1 as the input sequence ands2 as its reverse complement
sequence!
This does not guarantee that the lcs of these strings starts/ends
in the same place, so does not necessarily find a palindrome.
However, after we augment the suffix tree so as to answer
lowest common ancestorqueries in constant time. . .
. . . we can find the longest sub-palindrome in linear time by
asking the ‘length’ of the LCA ofS[i] andS[i + n + 1] for
each1 ≤ i ≤ n.

Exploiting Suffix Trees: Circular String
Linearization

Certain genomic structures (plasmids) have closed circular
DNA molecules rather than linear molecules.
To look such a molecule up in a database, we much find a
canonicalplace to break it to leave a linear string.
The most obvious place to break it uniquely is so as to always
leave thelexicographicallysmallest string, i.e. the string
which appears first in sorted order.
Building and sorting alln such strings takesO(n2) time. Can
you do better?

Linear Time Linearization

Break the string arbitrarily to create a linear stringL.
Now build the suffix tree for stringS = LL#. This is linear
in the size of the input.
Example:L = gcttcaat soS = gcttcaatgcttcaat#.
Do a traversal down from the root, always picking the
lexicographically smallest character. Assume that# is at the
end of the alphabet.

Suffix Arrays

The suffix array is an amazing data structure for efficiently
searching whetherS is a substring of stringT .
For a given stringT , we construct the lexicographically sorted
array of all itssuffixes.
ForT = mississippi, the suffix array is:

11 : i
8 : ippi
5 : issippi
2 : ississippi
1 : mississippi

10 : pi
9 : ppi
7 : sippi
4 : sissippi
6 : ssippi
3 : ssissippi

Searching in a Suffix Array

Since every substring is the prefix of some suffix, Substring
search now reduces to binary search in this array. Example:
is “sip” a substring ofT?
Binary search in a suffix array takesO(m lg n), wheren is the
length ofT andm the length of the matched substring.
With auxilliary data, this can be improved toO(lg n + m).
Note that we can just as easily findall the occurrences of a
given stringS in T by binary searching just before/afterS.

Building and Storing Suffix Arrays

Amazingly we need only store the original string and the
sorted start positions to do the search! Thejth character of
theith prefix is atT [start[i] + j − 1].
But how fast can be built the suffix array of ann character
string?
Radix sortingn strings ofn characters can be done inO(n2),
linear in the size of the input.

Building Suffix Arrays Efficiently

But what is really amazing is that suffix arrays can be built in
both linear time and space!
First, build asuffix treein O(n) time.
Performing a lexicographic depth first search of a suffix tree
yields a suffix array.
Suffix arrays use many times less space than suffix trees (say
3n vs. 17n bytes), which is often the dominating factor in
large text search problems.

Constructing the Overlap Graph

Through clever use of suffix arrays, the entire overlap graph
can be built in near-linear time.
After building the array of all suffixes of all fragments,
potential overlaps will share a prefix of a suffix, and hence
be near each other in sorted order.
Accepting a fragment pair as overlapping may require several
significant long matches.
Since there are4k possible DNA sequences of lengthk, and
n places for suchk-mers to start if|T | = n, matches start to
get significant ifk > log4 n.
For human, longer than 16-mers start to get interesting, so we
can expect to find significant exact matches.

Complications

Several engineering issues arise in building any assembler:

• Chimera detection– Certain fragments are, in fact
concatenations of sequences from two different regions.

• Multiple sequence alignment– We can remove single base
sequencing errors by voting in overlapped regions.

• Identifying repeat regions– Mapping data and ad hoc
algorithms are essential to help resolve repeats.

• Integrating distance and clone constraints into assembly
– This requires careful laboratory work (preferably
automated) to ensure accurate input.

Gel Reading Programs

Calling sequence bases from sequence trace data is not a
trivial problem for several reasons, including (1) varying
density of the gel along a lane, (2) varying density of the
gel across lanes, (3) separation between bands shrinks as we
move along the lane.
Phred, by Phil Green, is the most famous base-calling
program for automated sequencer traces. It assigns an error
probability to each base called and yielded 40-50% lower
errors than the software included with Applied Biosystems
(ABI) sequencing machines.

Phred’s base-calling pipeline consists of several phases:

1. It predicts peak locations using the assumption that
fragments should be locally evenly spaced. This helps
determine the correct number of bases in a region where
peaks are not well resolved, noisy or displaced.

2. Observed peaks are identified in the trace and matched to
the predicted peak locations. Some are omitted and some
are split, yielding the main base sequence.

3. Unmatched peaks are analyzed to see if they represent
bases, and if so is inserted into the sequence.

The quality scoreQ is based on an estimate of the probability
of errorp, whereQ = −10 log10 p.

Genome-Scale Assemblers

Assemblers for bacterial-sized genomes and beyond (such as
those used by TIGR and Celera) must use sophisticated data
structures to avoid comparing every pair of fragments.
Typically, an initial assembly of ‘unitigs’ of high-quality, long
overlaps is constructed.
The expected number of fragments at every position is a
function of coverage. Stacks of fragments which are too high
likely indicate improperly combined repeat regions.

Sequence Scaffolds

These unitigs are assembled into a ‘scaffold’ of pieces. Most
reads are in ‘mate pairs’, since the left and right ends of
clones of sizes up to 10 kb or so have both been sequenced.
The scaffold is assembled using this pairing and distance
information.
Other less high-quality reads and unitigs can now be
positioned on this scaffold. Remaining gaps can be closed
by sequencing the clones spanning different contigs of the
scaffold.

Other Sequencing Tricks

Celera used the public consortium’s Human sequence data
from Genbank. To avoid being fooled by its assembly, they
computationally shredded this sequence into artificial reads
and incorporated this as raw data into its own project.
Certain sequencing projects do not attempt to sequence full
genomic DNA. To identify the genes, they translate back the
RNAtranscripts of genes intocDNAand sequence this.
Although the genes are a very important part of what we are
looking for, a drawback such expressed sequence tags (ESTs)
is that more highly expressed genes are significantly over-
represented, making it hard to find rare genes.

Population Sequencing

Sequencing a mixed population (i.e. fragments from multiple
individuals of a given species) should not compromise
assembly because of the overwhelming in-species similarity,
while differences in bases helps study variation (single
nucleotide polymorphisms or SNPs)
Once a quality human reference genome become known, the
sequence variants of an individual can largely be identifiedby
aligning short-reads to this target genome and noting single-
base mismatches.

