Lecture 8.
Backtracking

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.eduskiena

Backtracking

Backtracking is a systematic method to iterate through

the possible configurations of a search space. Itis a gen
algorithm/technigue which must be customized for ea
Individual application.

In the general case, we will model our solution as a vec
a = (ay,as, ..., a,), Where each element is selected from a
finite ordered ses;.

Such a vector might represent an arrangement wiagre
contains theth element of the permutation. Or the vect
might represent a given subsetwhereq; is true if and only

If the ith element of the universe is i

At each step in the backtracking algorithm, we start frc
a given partial solution, say, = (ay, as, ..., a;), and try to
extend it by adding another element at the end.

After extending it, we must test whether what we have so
IS a solution.

If not, we must then check whether the partial solution i$ s
potentially extendible to some complete solution.

If so, recur and continue. If not, we delete the last elem

from a and try another possibility for that position, if on
exists.

Implementation

We include a globat i ni shed flag to allow for premature
termination, which could be set in any application-speci
routine.

bool finished = FALSE; /+ found all solutions yet? */

backtrack(int a[], int k, data input)

{
i nt c[MAXCANDI DATES] ; /+* candi dates for next position */
i nt ncandi dat es; /+* next position candidate count =*/
int i; [+ counter =*/

if (is_a_solution(a,k,input))
process_sol ution(a,k, i nput)

el se {
k = k+1;
const ruct _candi dat es(a, k, i nput, ¢, &candi dat es) ;
for (i=0; i<ncandidates; i++) {
a[k] =c[i];
backtrack(a, k, i nput)
if (finished) return; /+ term nate early =/
}
}

Application-Specific Routines

The application-specific parts of this algorithm considits
three subroutines:

eisasolution(a,k,input) — This Boolean
function tests whether the firégt elements of vector
are a complete solution for the given problem. The I
argumentj nput , allows us to pass general informatio
Into the routine.

e construct _candi dat es(a, k, i nput, c, ncandi d:
— This routine fills an arrayc with the complete
set of possible candidates for thgh position of a,
given the contents of the first — 1 positions. The

number of candidates returned in this array is denoted
ncandi dat es.

e process _sol ution(a, k) — This routine prints,
counts, or somehow processes a complete solution ¢
It IS constructed.

Backtracking ensures correctness by enumerating all 90
bilities. It ensures efficiency by never visiting a state enc
than once.

Because a new candidates arrays allocated with each
recursive procedure call, the subsets of not-yet-constble
extension candidates at each position will not interferdgaw
each other.

Constructing All Subsets

We can construct th@" subsets ofn items by iterating
through all possible™ length+: vectors oftrue or false,

letting the:th element denote whether iteins or is not in
the subset.

Using the notation of the general backtrack algorittin =

(true, false), anda is a solution whenever > n.

is_a_solution(int a[], int k, int n)

{
return (k == n); [+ is k == n? «/
}
construct _candidates(int a[], int k, int n, int c[], int *ncandidates)
{
c[0] = TRUE;
c[1] = FALSE;
xncandi dates = 2;
}
process_solution(int a[], int k)
{
int i; [+ counter =*/
printf("{");
for (i=1; i<=k; i++)
if (a[i] == TRUE) printf(" %",i);
printf(" }\n");
}

Finally, we must instantiate the call bmckt r ack with the
right arguments.

gener at e_subsets(int n)

{
int a[NMAX] ; /* solution vector =*/

backtrack(a, 0, n);

Constructing All Permutations

To avoid repeating permutation elements, we must ensutre
thesth element is distinct from all elements before it.

To use the notation of the general backtrack algoritims=
{1,...,n} — a, anda is a solution whenevet = n:

construct _candidates(int a[], int k, int n, int c[], int *ncandidates)

{
int i; [+ counter =*/
bool in_pern NVAX] ; /+* who is in the pernutation? x/
for (i=1; i<NMAX; i++) in_pernii] = FALSE

for (i=0; i<k; i++) in_pernf a[i]] = TRUE

xncandi dates = 0;
for (i=1; i<=n; i++)
if (in_pernfi] == FALSE) {
c[*ncandidates] = i;
*ncandi dates = *ncandi dates + 1;

}

Completing the job of generating permutations requit
specifyingpr ocess_sol uti on andi s_a_sol uti on, as
well as setting the appropriate argumentsoeckt r ack.
All are essentially the same as for subsets:

process_solution(int a[], int k)

{
int i; [+ counter =/
for (i=1; i<=k; i++) printf(" %" ,a[i])
printf("\n");

}

is_a_solution(int a[], int k, int n)

{
return (k == n);

}

generate_pernutations(int n)

{
int a[NVAX] ; /+ solution vector =*/

backtrack(a, 0, n);

The Eight-Queens Problem

The eight queens problem is a classical puzzle of positgn
eight queens on ah x 8 chessboard such that no two quee
threaten each other.

Implementing abackt rack search requires us to thini
carefully about the most concise, efficient way to repres
our solutions as a vector. What is a reasonable represamt:
for ann-queens solution, and how big must it be?

To make a backtracking program efficient enough to so
Interesting problems, we must prune the search space
terminating every search path the instant it becomes de:
cannot lead to a solution.

Since no two queens can occupy the same column, we ki
that then columns of a complete solution must form
permutation of.. By avoiding repetitive elements, we reduc
our search space to just= 40,320 — clearly short work for
any reasonably fast machine.

The critical routine is the candidate constructor. V
repeatedly check whether thigh square on the given row
IS threatened by any previously positioned queen. If so,
move on, but if not we include it as a possible candidate:

Implmementation

construct _candidates(int a[], int k, int n, int c[], int *ncandidates)
{

int i,j; [+ counters */

bool | egal _nove; /+* mght the nove be |l egal ? */

*ncandi dates = 0;
for (i=1; i<=n; i++) {
| egal _nove = TRUE;
for (j=1; j<k; j++) {
if (abs((k)-j) == abs(i-a[j])) [/* diagonal threat =/
| egal _nove = FALSE;
if (i ==a[j]) /* colum threat =/
| egal _nove = FALSE;

if (legal _nmove == TRUE) {
c[*ncandi dates] = i;
*ncandi dates = *ncandi dates + 1;

The remaining routines are simple, particularly since wee ;
only interested in counting the solutions, not displayimg:

process_solution(int a[], int k)

{ int i; [+ counter =/
sol ution_count ++;

}

is_a_solution(int a[], int k, int n)

{

return (k == n);

}

Finding the Queens

The main program is as follows:

nqueens(i nt
{

int

n)

a[NMVAX] ; /+ solution vector */

sol ution_count = O;
backtrack(a, 0, n);
printf("n=% solution_count=%\n",n, solution_count);

and yields the following answers:

PRPOONOORWNRE

5333333333333
L L | | A L | R L 1}
[y
wWN RO

>
1

n=14

sol uti on_count =1

sol uti on_count =0

sol uti on_count =0

sol uti on_count =2

sol uti on_count =10

sol uti on_count =4

sol uti on_count =40

sol uti on_count =92

sol uti on_count =352
sol uti on_count =724
sol uti on_count =2680
sol uti on_count =14200
sol uti on_count =73712
sol uti on_count =365596

110801 (Little Bishops)

How many ways can we put down mutally non-attacking

bishops on am x n board?
Can we count the bishops without explicitly constructir

every configuration?

110802 (15-Puzzle Problem)

Can you find a minimum- or near-minimum length path

solve the 15-puzzle?
How do we prune quickly, and how do we eliminat

duplicates?

110806 (Garden of Eden)

Given a cellular automata stateand a transition rule, does
there exist a previous statesuch thats goes tot?

110807 (Colour Hash)

Does there exist a sequence of moves to reorder the piece

this puzzle?
What is the right representation of the puzzle?

