
Lecture 5:
Arithmetic and Algebra

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

How Long is Long?

Today’s PCs are typically 32-bit machines, so standard
integer data types supports integers roughly in the range
±231 = ± 2,147,483,648. Thus we can safely count up to a
billion or so with standard integers on conventional machines.
We can get an extra bit by usingunsigned integers.
Most programming languages supportlong or evenlong
long integer types, which define 64-bit or occasionally 128-
bit integers. 263 = 9,223,372,036,854,775,808, so we are
talking very large numbers!

Floating Point Precision

The magnitude of numbers which can be represented as
float s is astonishingly large, particularly with double-
precision. This magnitude comes by representing the number
in scientific notation, asa × 2c. Sincea and c are both
restricted to a given number of bits, there is still only a limited
precision.
Thus don’t be fooled into thinking thatfloat s give you the
ability to count to very high numbers. Use integers and longs
for such purposes.

Representing Enormous-Precision Integers

Representing truly enormous integers requires stringing
digits together. Two possible representations are —

• Arrays of Digits – The easiest representation for
long integers is as an array of digits, where the initial
element of the array represents the least significant digit.
Maintaining a counter with the length of the number in
digits can aid efficiency by minimizing operations which
don’t affect the outcome.

• Linked Lists of Digits – Dynamic structures are necessary
if we arereally going to do arbitrary precision arithmetic,
i.e., if there is no upper bound on the length of the
numbers. Note, however, that 100,000-digit integers are
pretty long yet can be represented using arrays of only
100,000 bytes each.

What dynamic memoryreally provides is the freedom to use
space where you need it. If you wanted to create a large array
of high-precision integers, most of which were small,then
you would be better off with a list-of-digits representation.

Bignum Data Type

Our bignum data type is represented as follows:
#define MAXDIGITS 100 / * maximum length bignum * /

#define PLUS 1 / * positive sign bit * /
#define MINUS -1 / * negative sign bit * /

typedef struct {
char digits[MAXDIGITS]; / * represent the number * /
int signbit; / * PLUS or MINUS * /
int lastdigit; / * index of high-order digit * /

} bignum;

Addition
Adding two integers is done from right to left, with any
overflow rippling to the next field as a carry. Allowing
negative numbers turns addition into subtraction.
add_bignum(bignum * a, bignum * b, bignum * c)
{

int carry; / * carry digit * /
int i; / * counter * /

initialize_bignum(c);

if (a->signbit == b->signbit) c->signbit = a->signbit;
else {

if (a->signbit == MINUS) {
a->signbit = PLUS;
subtract_bignum(b,a,c);
a->signbit = MINUS;

} else {
b->signbit = PLUS;
subtract_bignum(a,b,c);
b->signbit = MINUS;

}
return;

}

c->lastdigit = max(a->lastdigit,b->lastdigit)+1;
carry = 0;

for (i=0; i<=(c->lastdigit); i++) {
c->digits[i] = (char)

(carry+a->digits[i]+b->digits[i]) % 10;
carry = (carry + a->digits[i] + b->digits[i]) / 10;

}

zero_justify(c);
}

Signbits

Manipulating the signbit is a non-trivial headache. We
reduced certain cases to subtraction by negating the numbers
and/or permuting the order of the operators, but took care to
replace the signs first.
The actual addition is quite simple, and made simpler by
initializing all the high-order digits to 0 and treating thefinal
carry over as a special case of digit addition.

Zero Justification

The zero justify operation adjustslastdigit to
avoid leading zeros. It is harmless to call after every
operation, particularly as it corrects for−0:
zero_justify(bignum * n)
{

while ((n->lastdigit > 0) && (n->digits[n->lastdigit]==0))
n->lastdigit --;

if ((n->lastdigit == 0) && (n->digits[0] == 0))
n->signbit = PLUS; / * hack to avoid -0 * /

}

Subtraction

Subtraction is trickier than addition because it requires
borrowing. To ensure that borrowing terminates, it is best
to make sure that the larger-magnitude number is on top.
subtract_bignum(bignum * a, bignum * b, bignum * c) {

int borrow; / * anything borrowed? * /
int v; / * placeholder digit * /
int i; / * counter * /

if ((a->signbit == MINUS) || (b->signbit == MINUS)) {
b->signbit = -1 * b->signbit;
add_bignum(a,b,c);
b->signbit = -1 * b->signbit;
return;

}
if (compare_bignum(a,b) == PLUS) {

subtract_bignum(b,a,c);
c->signbit = MINUS;
return;

}
c->lastdigit = max(a->lastdigit,b->lastdigit);
borrow = 0;
for (i=0; i<=(c->lastdigit); i++) {

v = (a->digits[i] - borrow - b->digits[i]);
if (a->digits[i] > 0)

borrow = 0;
if (v < 0) {

v = v + 10;
borrow = 1;

}
c->digits[i] = (char) v % 10;

}
zero_justify(c);

}

Comparison

Deciding which of two numbers is larger requires a compari-
son operation. Comparison proceeds from highest-order digit
to the right, starting with the sign bit:
compare_bignum(bignum * a, bignum * b)
{

int i; / * counter * /

if ((a->signbit==MINUS) && (b->signbit==PLUS)) return(P LUS);
if ((a->signbit==PLUS) && (b->signbit==MINUS)) return(M INUS);
if (b->lastdigit > a->lastdigit) return (PLUS * a->signbit);
if (a->lastdigit > b->lastdigit) return (MINUS * a->signbit);

for (i = a->lastdigit; i>=0; i--) {
if (a->digits[i] > b->digits[i])

return(MINUS * a->signbit);
if (b->digits[i] > a->digits[i])

return(PLUS * a->signbit);
}
return(0);

}

Multiplication

Multiplication seems like a more advanced operation than
addition or subtraction. A people as sophisticated as the
Romans had a difficult time multiplying, even though their
numbers look impressive on building cornerstones and Super
Bowls.
The Roman’s problem was that they did not use a radix (or
base) number system. Certainly multiplication can be viewed
as repeated addition and thus solved in that manner, but it will
be hopelessly slow. Squaring 999,999 by repeated addition
requires on the order of a million operations, but is easily
doable by hand using the row-by-row method we learned in
school.

Schoolhouse Multiplication

multiply_bignum(bignum * a, bignum * b, bignum * c)
{

bignum row; / * represent shifted row * /
bignum tmp; / * placeholder bignum * /
int i,j; / * counters * /

initialize_bignum(c);

row = * a;

for (i=0; i<=b->lastdigit; i++) {
for (j=1; j<=b->digits[i]; j++) {

add_bignum(c,&row,&tmp);

* c = tmp;
}
digit_shift(&row,1);

}

c->signbit = a->signbit * b->signbit;
zero_justify(c);

}

Each operation involves shifting the first number one more
place to the right and then adding the shifted first number
d times to the total, whered is the appropriate digit of the
second number.
We might have gotten fancier than using repeated addition,
but since the loop cannot spin more than nine times per digit,
any possible time savings will be relatively small.

Digit Shift

Shifting a radix-number one place to the right is equivalent
to multiplying it by the base of the radix, or 10 for decimal
numbers:
digit_shift(bignum * n, int d) / * multiply n by 10ˆd * /
{

int i; / * counter * /

if ((n->lastdigit == 0) && (n->digits[0] == 0)) return;

for (i=n->lastdigit; i>=0; i--)
n->digits[i+d] = n->digits[i];

for (i=0; i<d; i++) n->digits[i] = 0;

n->lastdigit = n->lastdigit + d;
}

Exponentiation

Exponentiation is repeated multiplication, and hence subject
to the same performance problems as repeated addition on
large numbers. The trick is to observe that

an = an÷2
× an÷2

× anmod2

so it can be done using only a logarithmic number of
multiplications.

Division

Although long division is an operation feared by schoolchil-
dren and computer architects, it too can be handled with a
simpler core loop than might be imagined.
Division by repeated subtraction is again far too slow to work
with large numbers, but the basic repeated loop of shifting the
remainder to the left, including the next digit, and subtracting
off instances of the divisor is far easier to program than
“guessing” each quotient digit as we were taught in school:

Division Code

divide_bignum(bignum * a, bignum * b, bignum * c)
{

bignum row; / * represent shifted row * /
bignum tmp; / * placeholder bignum * /
int asign, bsign; / * temporary signs * /
int i,j; / * counters * /

initialize_bignum(c);

c->signbit = a->signbit * b->signbit;

asign = a->signbit;
bsign = b->signbit;

a->signbit = PLUS;
b->signbit = PLUS;

initialize_bignum(&row);
initialize_bignum(&tmp);

c->lastdigit = a->lastdigit;

for (i=a->lastdigit; i>=0; i--) {
digit_shift(&row,1);
row.digits[0] = a->digits[i];
c->digits[i] = 0;
while (compare_bignum(&row,b) != PLUS) {

c->digits[i] ++;
subtract_bignum(&row,b,&tmp);
row = tmp;

}
}

zero_justify(c);

a->signbit = asign;
b->signbit = bsign;

}

Computing the Remainder

This routine performs integer division and throws away the
remainder. If you want to compute the remainder ofa ÷ b,
you can always doa − b(a ÷ b).

Numerical Bases and Conversion

The digit representation of a given radix-number is a function
of which numericalbase is used. Particularly interesting
numerical bases include:

• Binary – Base-2 numbers are made up of the digits 0 and
1. They provide the integer representation used within
computers, because these digits map naturally to on/off or
high/low states.

• Octal – Base-8 numbers are useful as a shorthand to
make it easier to read binary numbers, since the bits
can be read off from the right in groups of three. Thus
101110012 = 3718 = 24910. Why do programmers think
Christmas is Halloween? Because 31 Oct = 25 Dec!

• Decimal – We use base-10 numbers because we learned
to count on our ten fingers.

• Hexadecimal – Base-16 numbers are an even easier
shorthand to represent binary numbers, once you get over
the fact that the digits representing 10 through 15 are “A”
to ‘’F.”

• Alphanumeric – Occasionally, one sees even higher
numerical bases. Base-36 numbers are the highest you
can represent using the 10 numerical digits with the 26
letters of the alphabet. Any integer can be represented in
base-X provided you can displayX different symbols.

Base Conversion

There are two distinct algorithms you can use to convert base-
a numberx to a base-b numbery —

• Left to Right – Here, we find the most-significant digit of
y first. It is the integerdl such that

(dl + 1)bk > x ≥ dlb
k

where1 ≤ dl ≤ b − 1. In principle, this can be found by
trial and error, although you must to be able to compare
the magnitude of numbers in different bases. This is
analogous to the long-division algorithm described above.

• Right to Left – Here, we find the least-significant digit
of y first. This is the remainder ofx divided by b.
Remainders are exactly what is computed when doing
modular arithmetic. The cute thing is that we can compute
the remainder ofx on a digit-by-digit basis, making it easy
to work with large integers.

Right-to-left translation is similar to how we translated
conventional integers to our bignum presentation. Taking the
long integer mod 10 (using the%operator) enables us to peel
off the low-order digit.

110502 (Reverse and Add)

Does repeatedly adding a number to its digit-reversal
eventually end on a palindrome?

110503 (The Archeologists’ Dilemma)

What is the smallest power of 2 begining with the given digit
sequence?

110504 (Ones)

How many digits is the smallest multiple ofn such that the
resulting digit sequence is all 1s? Why is this possible for
every non-multiple of 2 and 5?

110505 (A multiplication game)

What is the right strategy for a two-person digit multiplication
game?
Is it recursive/minimax?

