
Lecture 4:
Sorting

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Applications of Sorting

The key to understanding sorting is seeing how it can be used
to solve many important programming tasks:

• Uniqueness Testing– How can we test if the elements of
a given collection of itemsS are all distinct?

• Deleting Duplicates– How can we remove all but one
copy of any repeated elements inS?

• Median/Selection– How can we find thekth largest item
in setS?

• Frequency Counting – Which is the most frequently
occurring element inS, i.e., the mode?



• Reconstructing the Original Order– How can we restore
the original arrangement of a set of items after we permute
them for some application?

• Set Intersection/Union– How can we intersect or union
the elements of two containers?

• Finding a Target Pair – How can we test whether there
are two integersx, y ∈ S such thatx + y = z for some
targetz?

• Efficient Searching– How can we efficiently test whether
elements is in setS?



Basic Sorting Algorithms

What are the time complexities and number of data moves for
each algorithm?

• Selection Sort– This algorithm splits the input array into
sorted and unsorted parts, and with each iteration finds
the smallest element remaining in the unsorted region and
moves it to the end of the sorted region.

• Heapsort – Selection sort with the right data structure!

• Bubble sort – Percolate elements forward through
adjacent element swaps. No element is guaranteed to be
in the proper position until the end.



• Insertion Sort– This algorithm also maintains sorted and
unsorted regions of the array. In each iteration, the next
unsorted element moves up to its appropriate position in
the sorted region.

• Quicksort – This algorithm reduces the job of sorting
one big array into the job of sorting two smaller arrays
by performing apartition step. The partition separates
the array into those elements that are less than the
pivot/divider element, and those which are strictly greater
than this pivot/divider element.



Multicriteria Sorting

How can we break ties in sorting using multiple criteria, like
sorting first on last name breaking ties on first name?
One way is to use a complicated comparison function that
combines all the keys to break ties:
int suitor_compare(suitor *a, suitor *b)
{

int result; /* result of comparison */

if (a->height < b->height) return(-1);
if (a->height > b->height) return(1);

if (a->weight < b->weight) return(-1);
if (a->weight > b->weight) return(1);

if ((result=strcmp(a->last,b->last)) != 0)
return result;

return(strcmp(a->first,b->first));
}



Stable Sorting

Another way is to use repeated passes through astablesorting
function, one which is guaranteed to leave identical keys in
the same relative order they were in before the sorting.
If so, we could sort by first name, and then do stable sort by
last name and know the final results are sorted by both major
and minor keys.
STL provides a stable sorting routine, where keys of equal
value are guaranteed to remain in the same relative order.
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)



Sorting Library Functions in C

The stdlib.h contains library functions for sorting and
searching. For sorting, there is the functionqsort:
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

It sorts the firstnel elements of an array (pointed to by
base), where each element iswidth-bytes long. Thus we
can sort arrays of 1-byte characters, 4-byte integers, or 100-
byte records, all by changing the value ofwidth.
Binary search is also included:

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);



Comparison Functions

The ultimate desired order is determined by the function
compare. It takes as arguments pointers to twowidth-byte
elements, and returns a negative number if the first belongs
before the second in sorted order, a positive number if the
second belongs before the first, or zero if they are the same.



Sorting and Searching in C++

The C++ Standard Template Library (STL) includes methods
for sorting, searching, and more. Serious C++ users should
get familiar with STL.
To sort with STL, we can either use the default comparison
(e.g.,≤) function defined for the class, or override it with a
special-purpose comparison functionop:
void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)



STL Sorting Applications

Other STL functions implement some of the applications of
sorting, including,

• nth element – Return thenth largest item in the
container.

• set union, set intersection,
set difference – Construct the union, intersection,
and set difference of two containers.

predicate

• unique – Remove all consecutive duplicates.



Sorting and Searching in Java

Thejava.util.Arrays class contains various methods
for sorting and searching. In particular,
static void sort(Object[] a)
static void sort(Object[] a, Comparator c)

sorts the specified array of objects into ascending order
using either the natural ordering of its elements or a specific
comparatorc. Stable sorts are also available.
Methods for searching a sorted array for a specified object
using either the natural comparison function or a new
comparatorc are also provided:
binarySearch(Object[] a, Object key)
binarySearch(Object[] a, Object key, Comparator c)



110401 (Vito’s Family)

Find the most central location on a street, to minimize total
distance to certain neighbors.
Is the right version of average mean, median, or something
else?



110403 (Bridge)

How shouldn people of variable speeds cross a two-man
bridge at night when there is only one flashlight?
Does sorting the people by speed help determine who should
be paired up?



110405 (Shoemaker’s Problem)

How should a shoemaker order the jobs he does so as to
minimize total penalty costs for lateness, when different jobs
have different penalties?
Does it help to sort jobs by their length, or by their penalty,
or both?



110406 (CDVII)

Compute the total amount of tolls people owe in a world
where toll costs vary with time.
How do we pair up entry and exit records?


