
Lecture 14:
Computational Geometry

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Line Segments

Arbitrary closed curves or shapes can be represented by
ordered collections of line segments orpolygons.
A line segment s is the portion of a linel which lies between
two given points inclusive. Thus line segments are most
naturally represented by pairs of endpoints:
typedef struct {

point p1,p2; /* endpoints of line segment */
} segment;

The most important geometric primitive on segments, testing
whether a given pair of them intersect, proves surprisingly
complicated because of tricky special cases that arise.

Dealing with Degeneracy

The right way to deal with degeneracy is to base all
computation on a small number of carefully crafted geometric
primitives. Previously we implemented a general line data
type that successfully dealt with vertical lines; those of
infinite slope. We can reap the benefits by generalizing our
line intersection routines to line segments.
Segment intersection can also be cleanly tested using a
primitive to check whether three ordered points turn in a
counterclockwise direction.

Testing Intersection
bool segments_intersect(segment s1, segment s2)
{

line l1,l2; /* lines containing the input segments */
point p; /* intersection point */

points_to_line(s1.p1,s1.p2,&l1);
points_to_line(s2.p1,s2.p2,&l2);

if (same_lineQ(l1,l2)) /* overlapping or disjoint segments */
return(point_in_box(s1.p1,s2.p1,s2.p2) ||

point_in_box(s1.p2,s2.p1,s2.p2) ||
point_in_box(s2.p1,s1.p1,s1.p2) ||
point_in_box(s2.p1,s1.p1,s1.p2));

if (parallelQ(l1,l2)) return(FALSE);

intersection_point(l1,l2,p);

return(point_in_box(p,s1.p1,s1.p2) && point_in_box(p,s2.p1,s2.p2));
}

bool point_in_box(point p, point b1, point b2)
{

return((p[X] >= min(b1[X],b2[X])) && (p[X] <= max(b1[X],b2[X]))
&& (p[Y] >= min(b1[Y],b2[Y])) && (p[Y] <= max(b1[Y],b2[Y])));

}

We will use our line intersection routines to find an
intersection point if one exists.

Polygons

Polygons are closed chains of non-intersecting line segments.
We can implicitly represent polygons by listing then vertices
in order around the boundary of the polygon. Thus a segment
exists between theith and(i + 1)st points in the chain for
0 ≤ i ≤ n− 1. These indices are taken modn to ensure there
is an edge between the first and last point:
typedef struct {

int n; /* number of points in polygon */
point p[MAXPOLY]; /* array of points in polygon */

} polygon;

Convex Polygons

A polygon P is convex if any line segment defined by two
points within P lies entirely within P ; i.e., there are no
notches or bumps such that the segment can exit and re-enter
P . This implies that all internal angles in a convex polygon
must beacute; i.e., at most180o or π radians.
Actually computing the angle defined between three ordered
points is a tricky problem. We can avoid the need to know
actual angles in most geometric algorithms by using the
counterclockwise predicate ccw(a,b,c). This routine tests
whether pointc lies to the right of the directed line which goes
from pointa to pointb.

Testing Angle Direction

signed triangle area() can be used to compute these
predicates. Negative area results if pointc is to the left of

→

ab.
Zero area results if all three points are collinear.
bool ccw(point a, point b, point c)
{

double signed_triangle_area();

return (signed_triangle_area(a,b,c) > EPSILON);
}

bool cw(point a, point b, point c)
{

double signed_triangle_area();

return (signed_triangle_area(a,b,c) < EPSILON);
}

bool collinear(point a, point b, point c)
{

double signed_triangle_area();

return (fabs(signed_triangle_area(a,b,c)) <= EPSILON);
}

Convex Hulls

Convex hull is like sorting to computational geometry, a first
step to apply to unstructured data.
The convex hull C(S) of a set of pointsS is the smallest
convex polygon containingS.
The Graham’s scan algorithm for convex hull which we will
implement first sorts the points in angular order, and then
incrementally inserts the points into the hull in this sorted
order. Previous hull points rendered obsolete by the last
insertion are then deleted.
Observe that both the leftmost and lowest pointsmust lie on
the hull, because they cannot lie within some other triangleof
points.

Graham Scan

The main loop inserts the points in increasing angular order
around this initial point. Because of this ordering, the newly
inserted point must sit on the hull of the thus-far-inserted
points.
This new insertion may form a triangle containing former
hull points which now must be deleted. These points-to-be-
deleted will sit at the end of the chain.
The deletion criteria is whether the new insertion makes an
obtuse angle with the last two points on the chain. So long as
the angle is too large, the last point on the chain has to go.

convex_hull(point in[], int n, polygon *hull)
{

int i; /* input counter */
int top; /* current hull size */
bool smaller_angle();

if (n <= 3) { /* all points on hull! */
for (i=0; i<n; i++)

copy_point(in[i],hull->p[i]);
hull->n = n;
return;

}

sort_and_remove_duplicates(in,&n);
copy_point(in[0],&first_point);
qsort(&in[1], n-1, sizeof(point), smaller_angle);

copy_point(first_point,hull->p[0]);
copy_point(in[1],hull->p[1]);
copy_point(first_point,in[n]); /* sentinel for wrap-around */
top = 1;
i = 2;
while (i <= n) {

if (!ccw(hull->p[top-1], hull->p[top], in[i]))
top = top-1; /* top not on hull */

else {
top = top+1;
copy_point(in[i],hull->p[top]);
i = i+1;

}
}
hull->n = top;

}

Avoiding Degeneracy

The beauty of this implementation is how naturally it avoids
most of the problems of degeneracy.
A particularly insidious problem is when three or more input
points are collinear. We resolve this by breaking ties in
sorting by angle according to the distance from the initial hull
point.
bool smaller_angle(point *p1, point *p2)
{

if (collinear(first_point,*p1,*p2)) {
if (distance(first_point,*p1) <= distance(first_point,*p2))

return(-1);
else

return(1);
}

if (ccw(first_point,*p1,*p2))
return(-1);

else
return(1);

}

The remaining degenerate case concerns repeated points. To
eliminate this problem, we remove duplicate copies of points
when we sort to identify the leftmost-lowest hull point:
sort_and_remove_duplicates(point in[], int *n)
{

int i; /* counter */
int oldn; /* number of points before deletion */
int hole; /* index marked for potential deletion */
bool leftlower();

qsort(in, *n, sizeof(point), leftlower);

oldn = *n;
hole = 1;
for (i=1; i<(oldn-1); i++) {

if ((in[hole-1][X]==in[i][X]) && (in[hole-1][Y]==in[i][Y]))
(*n)--;

else {
copy_point(in[i],in[hole]);
hole = hole + 1;

}
}
copy_point(in[oldn-1],in[hole]);

}

bool leftlower(point *p1, point *p2)
{

if ((*p1)[X] < (*p2)[X]) return (-1);
if ((*p1)[X] > (*p2)[X]) return (1);

if ((*p1)[Y] < (*p2)[Y]) return (-1);
if ((*p1)[Y] > (*p2)[Y]) return (1);

return(0);
}

There are a few final things to note aboutconvex hull.
Observe the beautiful use of sentinels to simplify the code.
Finally, note that we sort the points by angle without ever
actually computing angles. Theccw predicate is enough to
do the job.

Area of a Polygon

We can compute the area of any triangulated polygon by
summing the area of all triangles. This is easy to implement
using the routines developed in the text.
However, there is an even slicker algorithm based on the
notion of signed areas for triangles, which we used as the
basis for ourccw routine. By properly summing the signed
areas of the triangles defined by an arbitrary pointp with
each segment of polygonP we get the area ofP , because
the negatively signed triangles cancel the area outside the
polygon. This computation simplifies to the equation

A(P) =
1

2

n−1∑

i=0

(xi · yi+1 − xi+1 · yi)

where all indices are taken modulo the number of vertices.
double area(polygon *p)
{

double total = 0.0; /* total area so far */
int i, j; /* counters */

for (i=0; i<p->n; i++) {
j = (i+1) % p->n;
total += (p->p[i][X]*p->p[j][Y]) - (p->p[j][X]*p->p[i][Y]);

}

return(total / 2.0);
}

111401 (Herding Frosh)

Fence in a set of points with the smallest amount of thread,
including enough to tie the ends.
What problem is this?

111403 (Chainsaw Massacre)

Find the largest empty rectangular area in a field of trees.
Are the trees better represented by anl × w matrix or in the
compressed format of the input?

111404 (Hotter Colder)

Find the area of the region of possible locations for an object
given certain “hotter-colder” constraints.
How should we represent the region of possibilities?
Is it always a convex polygon?

111408 (Nice Milk)

Maximize the wet area of a polygon withk dips into a depth-t
milk dish?
Does some form of greedy algorithm maximize wet area or
must we use exhaustive search?

