
Lecture 13:
Geometry

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Geometry

This chapter will deal with programming problems associated
with “real” geometry – lines, points, circles, and so forth.
Although you did geometry in high school, it can be
surprisingly difficult to program even very simple things. One
reason is that floating point arithmetic introduces numerical
uncertainty.
Another difficulty of geometric programming is that certain
“obvious” operations you do with a pencil, such as finding the
intersection of two lines, requires non-trivial programming to
do correctly with a computer.

Degeneracy

Special cases ordegeneracies require extra attention when
doing geometric programming. For these reasons I recom-
mend you carefully study my code fragments before writing
your own.
There is more geometry to come next week, when we con-
sider problems associated with line segments and polygons a
field known ascomputational geometry,

Lines

Straight lines are the shortest distance between any two
points. Lines are of infinite length in both directions, as
opposed toline segments, which are finite. We limit our
discussion here to lines in the plane.
Every line l is completely represented by any pair of points
(x1, y1) and(x2, y2) which lie on it.
Lines are also completely described by equations such as
y = mx + b, wherem is the slope of the line andb is the
y-intercept, i.e., the unique point(0, b) where it crosses the
x-axis.

Line Type

Vertical lines cannot be described by such equations, how-
ever, because dividing by∆x means dividing by zero. The
equationx = c denotes a vertical line that crosses thex-axis
at the point(c, 0).
We use the more general formulaax + by + c = 0 as the
foundation of our line type because it covers all possible lines
in the plane:
typedef struct {

double a; /* x-coefficient */
double b; /* y-coefficient */
double c; /* constant term */

} line;

Multiplying these coefficients by any non-zero constant
yields an alternate representation for any line. We establish
a canonical representation by insisting that they-coefficient
equal 1 if it is non-zero. Otherwise, we set thex-coefficient
to 1:
points_to_line(point p1, point p2, line *l)
{

if (p1[X] == p2[X]) {
l->a = 1;
l->b = 0;
l->c = -p1[X];

} else {
l->b = 1;
l->a = -(p1[Y]-p2[Y])/(p1[X]-p2[X]);
l->c = -(l->a * p1[X]) - (l->b * p1[Y]);

}
}

point_and_slope_to_line(point p, double m, line *l)
{

l->a = -m;
l->b = 1;
l->c = -((l->a*p[X]) + (l->b*p[Y]));

}

Line Intersection

Two distinct lines have oneintersection point unless they are
parallel; in which case they have none. Parallel lines share
the same slope but have different intercepts and by definition
never cross.
bool parallelQ(line l1, line l2)
{

return ((fabs(l1.a-l2.a) <= EPSILON) &&
(fabs(l1.b-l2.b) <= EPSILON));

}

The intersection point of linesl1 : y = m1x + b1 andl2 : y2 =
m2x + b2 is the point where they are equal, namely,

x =
b2 − b1

m1 − m2

, y = m1

b2 − b1

m1 − m2

+ b1

Implementation

intersection_point(line l1, line l2, point p)
{

if (same_lineQ(l1,l2)) {
printf("Warning: Identical lines, all points intersect.\n");
p[X] = p[Y] = 0.0;
return;

}

if (parallelQ(l1,l2) == TRUE) {
printf("Error: Distinct parallel lines do not intersect.\n");
return;

}

p[X] = (l2.b*l1.c - l1.b*l2.c) / (l2.a*l1.b - l1.a*l2.b);

if (fabs(l1.b) > EPSILON) /* test for vertical line */
p[Y] = - (l1.a * (p[X]) + l1.c) / l1.b;

else
p[Y] = - (l2.a * (p[X]) + l2.c) / l2.b;

}

Angles

An angle is the union of two rays sharing a common endpoint.
The entire range of angles spans from0 to 2π radians or,
equivalently,0 to 360 degrees. Most trigonometric libraries
assume angles are measured in radians.
A right angle measures90o or π/2 radians.
Any two non-parallel lines intersect each other at a given
angle. Linesl1 : a1x+b1y+c1 = 0 andl2 : a2x+b2y+c2 = 0,
written in the general form, intersect at the angleθ given by:

tan θ =
a1b2 − a2b1

a1a2 + b1b2

For lines in slope-intercept form this reduces totan θ =
(m2 − m1)/(m1m2 + 1).
Two lines areperpendicular if they cross at right angles to
each other. The line perpendicular tol : y = mx + b is
y = (−1/m)x + b′, for all values ofb′.

Closest Point

A very useful subproblem is identifying the point on linel
which is closest to a given pointp. This closest point lies on
the line throughp which is perpendicular tol, and hence can
be found using the routines we have already developed:
closest_point(point p_in, line l, point p_c)
{

line perp; /* perpendicular to l through (x,y) */

if (fabs(l.b) <= EPSILON) { /* vertical line */
p_c[X] = -(l.c);
p_c[Y] = p_in[Y];
return;

}

if (fabs(l.a) <= EPSILON) { /* horizontal line */
p_c[X] = p_in[X];
p_c[Y] = -(l.c);
return;

}

point_and_slope_to_line(p_in,1/l.a,&perp); /* normal case */
intersection_point(l,perp,p_c);

}

Triangles

Each pair of rays with a common endpoint defines aninternal
angle of a radians and anexternal angle of 2π − a radians.
The three internal (smaller) angles of any triangle add up to
180o = π radians.
The Pythagorean theorem enables us to calculate the length
of the third side of anyright triangle given the length of the
other two. Specifically,|a|2 + |b|2 = |c|2, wherea andb are
the two shorter sides, andc is the longest side orhypotenuse.
We can go farther to analyze triangles using trigonometry.

Trigonometry

The trigonometric functionssine andcosine are defined as the
x- andy-coordinates of points on the unit circle centered at
(0, 0). Thetangent is the ratio of sine over cosine.
These functions enable us to relate the lengths of any two
sides of a right triangleT with the non-right angles ofT . The
non-hypotenuse edges can be labeled asopposite or adjacent
edges in relation to a given anglea. Then

cos(a) =
|adjacent|

|hypotenuse|
, sin(a) =

|opposite|
|hypotenuse|

, tan(a) =
|opposite
|adjacent

Use the famous Indian Chief Soh-Cah-Toa to remember
these relations. “Cah” meansCosine equalsAdjacent over
Hypotenuse, for example.

Solving Triangles

TheLaw of Sines provides the relationship between sides and
angles in any triangle. For anglesA, B, C, and opposing
edgesa, b, c

a

sin A
=

b

sin B
=

c

sin C
The Law of Cosines is a generalization of the Pythagorean
theorem beyond right angles. For any triangle with anglesA,
B, C, and opposing edgesa, b, c,

a2 = b2 + c2 − 2bc cos A

Solving triangles is the art of deriving the unknown angles
and edge lengths of a triangle given a subset of such
measurements.

Area of a Triangle

The areaA(T) of a triangleT is given byA(T) = (1/2)ab,
wherea is the altitude andb is the base of the triangle.
Another approach to computing the area of a triangle is
directly from its coordinate representation. Using linear
algebra and determinants, it can be shown that thesigned area
A(T) of triangleT = (a, b, c) is

2·A(T) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay 1
bx by 1
cx cy 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= axby−aybx+aycx−axcy+bxcy−cxby

This formula generalizes nicely to computed! times the
volume of a simplex ind dimensions.

Note that the signed areas can be negative, so we must take
the absolute value to compute the actual area. The sign
of this area can be used to build important primitives for
computational geometry.
double signed_triangle_area(point a, point b, point c)
{

return((a[X]*b[Y] - a[Y]*b[X] + a[Y]*c[X]
- a[X]*c[Y] + b[X]*c[Y] - c[X]*b[Y]) / 2.0);

}

double triangle_area(point a, point b, point c)
{

return(fabs(signed_triangle_area(a,b,c)));
}

Circles

A circle is defined as the set of points at a given distance (or
radius) from its center, (xc, yc). A circle can be represented
in two basic ways, either as triples of boundary points or
by its center/radius. For most applications, the center/radius
representation is most convenient:
typedef struct {

point c; /* center of circle */
double r; /* radius of circle */

} circle;

The equation of a circle of radiusr follows directly from its
center/radius representation,r =

√

(x − xc)2 + (y − yc)2.
Many important quantities associated with circles are easyto
compute. Specifically,A = πr2 andC = 2πr.

A tangent line l intersects the boundary ofc but not its
interior. The point of contact betweenc andl lies on the line
perpendicular tol through the center ofc.
We can compute the unknown tangent lengthx using the
Pythagorean theorem. Fromx, we can compute either the
tangent point or the anglea. The distanced from O to the
center is computed using the distance formula.
Two circlesc1 andc2 of distinct radiir1 andr2 will intersect
if and only if the distance between their centers is at most
r1 + r2.
The points of intersection form triangles with the two centers
whose edge lengths are totally determined (r1, r2, and the
distance between the centers), so the angles and coordinates
can be computed as needed.

111301 (Dog and Gopher)

Find a hole for a slow gopher to hide from a fast dog.
Is the closest holereally the safest spot for the gopher?

111302 (Rope Crisis in Ropeland!)

What is the length of the shortest rope between two points
around a circular post?

111305 (Birthday Cake)

How do you cut a circular cake such that both pieces are the
same areaand contain the same number of cherries?
There is always a solution to this problem if we remove the
constraint that the cutline have integer coordinates – can you
prove it?
Is there a more efficient solution than trying all possibleA, B
pairs?

111308 (How Big Is It?)

What is the tightest way to order a non-overlapping collection
of circles so as to minimize the ‘shadow’ of them?
Is it better to order the circles from largest to smallest, orto
interleave them?
Does the order evernot matter?
Will backtracking work for this problem?

