
Lecture 1:
Getting Started

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena



Course Goals

To provide a challenging, self-motivating course for good
students to learn what makes programming/computer science
fun and exciting.
To strengthen the algorithmic/procedural intuition of students
raised in a world of object-oriented programming.
To provide an enthusiastic cadre of good students for the
ACM Programming Team, and perhaps strengthen student
culture.
Should you be taking this course? It depends upon your
interests, background, skills, and anticipated graduation date.



Administrivia

Make sure I get your name andemailaddress written clearly,
as well as whether you intend to take this course for credit.
Be sure to register onboth the Programming Challenges
and Univ. de. Valladolid robot judges. All programs
must eventually be submitted overhttp://www.programming-
challenges.com, but this way you can work even if there is
trouble with one judge.
Get the textbook as soon as possible, for we will be following
it very closely.



Class Participation!

This course will require class participation!
The first lecture of each week will introduce the problems and
relevant theory.
The second class period we will discussyour efforts to solve
them.
No effort and/or no discussion equals boring class!
Think John Cage’s masterpiece4’33” . . .



About the ACM Contest

The International Programming Contest stresses teamwork (3
people with 1 or 2 computers per team) as well as individual
efforts, since small programs are best written by one person,
perhaps after group discussions.
Many of the problems are well-known exercises couched in
different guises.
The judges provide very little feedback about why your
program is wrong. Often you must debug it by reading the
specifications again.



ACM ICPC Scoring

The team score is the number of problems solved correctly
over the course of the contest, typically 5 hours.
Ties are broken by the cumulative elapsed time taken to
correct submissions, with time penalties given for each
incorrect submission of an (ultimately) correctly solved
problem.
Stony Brook typically does very well in the Greater New York
Region, reaching the finals in 2006 and 2009!



Feedback from the Judge

Be aware that the judges are often very picky as to what
denotes a correct solution. It is very important to interpret the
problem specifications properly and not make assumptions.
The judge is likely to return one of the following verdicts:

• Accepted (AC)– Congratulations!

• Presentation Error (PE) – Check for spaces, left/right
justification, line feeds, etc.

• Accepted (PE)– Your program has a minor presentation
error, but the judge is letting you off with a warning. Stop
here and declare victory!



• Wrong Answer (WA) – Your program returned an
incorrect answer to one or more secret test cases.

• Compile Error (CE) – The compiler could not figure
out how to compile your program. The resulting compiler
messages will be returned to you. Warning messages are
ignored by the judge.

• Runtime Error (RE) – Your program failed during
execution due to a segmentation fault, floating point
exception, or similar problem. Check for invalid pointer
references or division by zero.

• Submission Error (SE)– You did not correctly specify
one or more of the information fields, perhaps giving an
incorrect user ID or problem number.



• Time Limit Exceeded (TL)– Your program took too much
time on at least one of the test cases, so you likely have a
problem with efficiency.

• Memory Limit Exceeded (ML)– Your program tried to
use more memory than the judge’s default settings.

• Output Limit Exceeded (OL)– Your program tried to
print too much output, perhaps trapped in a infinite loop.

• Restricted Function (RF)– Your source program tried
to use an illegal system function such asfork() or
fopen(). Behave yourself.



Languages

Both robot judges accept programs in C, C++, Pascal and
Java. You may use whatever language you wish.
C++ is still the most popular language.
Be aware that many students have had difficulty using Java on
the judges, largely due to version incompatibility, although
this is improving.
Using standard IO in Java is somewhat difficult – a 35-line
standard IO template can be downloaded from the judge.



Verdict by Language

It is interesting to tabulate the judge’s verdicts by program-
ming language:

Lang Total AC PE WA CE RE TL ML OL RF
C 451447 31.9% 6.7% 35.4% 8.6% 9.1% 6.2% 0.4% 1.1% 0.6%
C++ 639565 28.9% 6.3% 36.8% 9.6% 9.0% 7.1% 0.6% 1.0% 0.7%
Java 16373 17.9% 3.6% 36.2% 29.8% 0.5% 8.5% 1.0% 0.5% 2.0%
Pascal 149408 27.8% 5.5% 41.8% 10.1% 6.2% 7.2% 0.4% 0.4% 0.5%
All 1256793 29.7% 6.3% 36.9% 9.6% 8.6% 6.8% 0.5% 1.0% 0.6%



110101 (The 3n+1 problem)

The Collatz or Hailstone number sequences, a famous open
problem in number theory. Why doesn’t it ever cycle?



110102 (Minesweeper)

You are asked to compute adjacencies from mine positions,
which is in principle straightforward. But what about
computing mine locations from partial adjacency counts? It
is NP-complete!



110103 (The Trip)

How do we minimize the flow of money in balancing
expenses after a trip? Who gets the extra pennies if the total
does not divide evenly?



110106 (Interpreter)

Build an interpreter program for a very simple computer
architecture. How do we extract digits from the integers to
make parsing easier?


