
Lecture 6:
Hashing

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Dictionary / Dynamic Set Operations

Perhaps the most important class of data structures maintain
a set of items, indexed by keys.

• Search(S, k) – A query that, given a set S and a key k,
returns a pointer x to an element in S such that key[x] =
k, or nil if no such element belongs to S.

• Insert(S,x) – A modifying operation that augments the set
S with the element x.

• Delete(S,x) – Given a pointer x to an element in the set S,
remove x from S. Observe we are given a pointer to an
element x, not a key.

• Min(S), Max(S) – Returns the element of the totally
ordered set S which has the smallest (largest) key.

• Logical Precessor(S,x), Successor(S,x) – Given an ele-
ment x whose key is from a totally ordered set S, returns
the next largest (smallest) element in S, or NIL if x is the
maximum (minimum) element.

There are a variety of implementations of these dictionary
operations, each of which yield different time bounds for
various operations.

Problem of the Day

You are given the task of reading in n numbers and then
printing them out in sorted order. Suppose you have access
to a balanced dictionary data structure, which supports each
of the operations search, insert, delete, minimum, maximum,
successor, and predecessor in O(log n) time.

• Explain how you can use this dictionary to sort in
O(n log n) time using only the following abstract opera-
tions: minimum, successor, insert, search.

• Explain how you can use this dictionary to sort in
O(n log n) time using only the following abstract opera-
tions: minimum, insert, delete, search.

• Explain how you can use this dictionary to sort in
O(n log n) time using only the following abstract opera-
tions: insert and in-order traversal.

Hash Tables

Hash tables are a very practical way to maintain a dictionary.
The idea is simply that looking an item up in an array is Θ(1)
once you have its index.
A hash function is a mathematical function which maps keys
to integers.

Collisions

Collisions are the set of keys mapped to the same bucket.
If the keys are uniformly distributed, then each bucket should
contain very few keys!
The resulting short lists are easily searched!

0 1 2 3 4 5 6 7 8 9 10 11

Chaining is easy, but devotes a considerable amount of
memory to pointers, which could be used to make the table
larger.

Hash Functions

It is the job of the hash function to map keys to integers. A
good hash function:

1. Is cheap to evaluate

2. Tends to use all positions from 0 . . .M with uniform
frequency.

The first step is usually to map the key to a big integer, for
example

h =
keylength∑

i=0
128i × char(key[i])

Modular Arithmetic

This large number must be reduced to an integer whose size
is between 1 and the size of our hash table.
One way is by h(k) = k mod M , where M is best a large
prime not too close to 2i − 1, which would just mask off the
high bits.
This works on the same principle as a roulette wheel!

Bad Hash Functions

The first three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

Good Hash Functions

The last three digits of the Social Security Number

0 1 2 3 4 5 6 87 9

Performance on Set Operations

With either chaining or open addressing:

• Search - O(1) expected, O(n) worst case

• Insert - O(1) expected, O(n) worst case

• Delete - O(1) expected, O(n) worst case

• Min, Max and Predecessor, Successor Θ(n+m) expected
and worst case

Pragmatically, a hash table is often the best data structure
to maintain a dictionary. However, the worst-case time is
unpredictable.
The best worst-case bounds come from balanced binary trees.

Hashing, Hashing, and Hashing
Udi Manber says that the three most important algorithms at
Google are hashing, hashing, and hashing.
Hashing has a variety of clever applications beyond just
speeding up search, by giving you a short but distinctive
representation of a larger document.

• Is this new document different from the rest in a large
corpus? – Hash the new document, and compare it to
the hash codes of corpus.

• Is part of this document plagerized from part of a
document in a large corpus? – Hash overlapping windows
of length w in the document and the corpus. If there is a
match of hash codes, there is possibly a text match.

• How can I convince you that a file isn’t changed? – Check
if the cryptographic hash code of the file you give me
today is the same as that of the original. Any changes
to the file will change the hash code.

Substring Pattern Matching

Input: A text string t and a pattern string p.
Problem: Does t contain the pattern p as a substring, and if
so where?
E.g: Is Skiena in the Bible?

Brute Force Search

The simplest algorithm to search for the presence of pattern
string p in text t overlays the pattern string at every position in
the text, and checks whether every pattern character matches
the corresponding text character.
This runs in O(nm) time, where n = |t| and m = |p|.

String Matching via Hashing

Suppose we compute a given hash function on both the
pattern string p and the m-character substring starting from
the ith position of t.
If these two strings are identical, clearly the resulting hash
values will be the same.
If the two strings are different, the hash values will almost
certainly be different.
These false positives should be so rare that we can easily
spend the O(m) time it take to explicitly check the identity
of two strings whenever the hash values agree.

The Catch

This reduces string matching to n − m + 2 hash value
computations (the n − m + 1 windows of t, plus one hash
of p), plus what should be a very small number of O(m) time
verification steps.
The catch is that it takes O(m) time to compute a hash func-
tion on an m-character string, and O(n) such computations
seems to leave us with an O(mn) algorithm again.

The Trick

Look closely at our string hash function, applied to the m
characters starting from the jth position of string S:

H(S, j) =
m−1∑
i=0

αm−(i+1) × char(si+j)

A little algebra reveals that

H(S, j + 1) = (H(S, j)− αm−1char(sj))α + sj+m

Thus once we know the hash value from the j position, we
can find the hash value from the (j + 1)st position for the
cost of two multiplications, one addition, and one subtraction.
This can be done in constant time.

Hashing as a Representation

Custom-designed hashcodes can be used to bucket items by a
cannonical representation.

• Which five letters of the alphabet can make the most
different words?

• Hash each word by the letters it contains: skiena →
aeikns! Observe that dog and god collide!

Proximity-preserving hashing techniques put similar items in
the same bucket.
Use hashing for everything, except worst-case analysis!

