
Lecture 21:
Other Reductions

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Show that the dense subgraph problem is NP-complete:
Input: A graph G, and integers k and y.
Question: Does G contain a subgraph with exactly k vertices
and at least y edges?

The Main Idea

Suppose I gave you the following algorithm to solve the
bandersnatch problem:

Bandersnatch(G)
Convert G to an instance of the Bo-billy problem Y .
Call the subroutine Bo-billy on Y to solve this instance.
Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to
instances of another type such that answers are preserved is
called a reduction.

What Does this Imply?

Now suppose my reduction translates G to Y in O(P (n)):

1. If my Bo-billy subroutine ran in O(P ′(n)) I can solve the
Bandersnatch problem in O(P (n) + P ′(n′))

2. If I know that Ω(P ′(n)) is a lower-bound to compute
Bandersnatch, then Ω(P ′(n) − P (n′)) must be a lower-
bound to compute Bo-billy.

The second argument is the idea we use to prove problems
hard!

My Most Profound Tweet

An NP-completeness proof ensures that a dumb algorithm
that is slow isn’t a slow algorithm that is dumb.
Just because you use backtracking doesn’t mean your
problem has no fast algorithm.

Integer Partition (Subset Sum)

Instance: A set of integers S and a target integer t.
Problem: Is there a subset of S which adds up exactly to t?
Example: S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}
and T = 3754
Answer: 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = T
Observe that integer partition is a number problem, as
opposed to the graph and logic problems we have seen to date.

Integer Partition is NP-complete

To prove completeness, we show that vertex cover ∝ integer
partition. We use a data structure called an incidence matrix
to represent the graph G.

e4 e3 e2 e1 e0

v0

v4

v3

v2

v1

0 1 1 1 1

0 1 0 0 0

 1 0 1 0 0

1 0 0 1 0

0 0 0 0 1

e0

0

1

e3

e2e1

23
e4

How many 1′s are there in each column? Exactly two.
How many 1′s in a row? Depends on the vertex degree.

Using the Incidence Matrix
The reduction from vertex cover creates n+m numbers from
G.
• Each “vertex” number will be a base-4 realization of the

incidence matrix row, plus a high order digit:

xi = 4|E| +
|E|−1∑
j=0

b[i, j]× 4j

so V2 = 10100 becomes 45 + (44 + 42).

• Each column/edge will also get a number: yi = 4i.

• The target integer will be

t = k × 4|E| +
|E|−1∑
j=0

2× 4j

How?

Each column (digit) represents an edge. We want a subset of
vertices which covers each edge.
We can only use k x vertex/numbers, because of the high
order digit of the target, here T = 222222 = 2730

x0 101111 1109
x2 110100 1296
y0 000001 1
y1 000010 4
y3 001000 64
y4 010000 256
T 222222 2730

Why?

Because there are at exactly three 1s per column, no sum of
them can carry over to the next column (in base-4).
In any vertex cover, edge ei can be covered either once or
twice, but with the option of adding number yi we can always
cover it twice without adding vertex numbers.

V C in G→ Integer Partition in S

Given k vertices covering G, pick the k cooresponding
vertex/numbers. Each edge in G is incident on one or two
cover vertices. If it is one, includes the cooresponding
edge/number to give two per column.

Integer Partition in S → V C in G

• Any solution to S must contain exactly k vertex/numbers.
The target in that digit is k, so not more, and because there
are no carries not less.

• This subset of k vertex/numbers must contain at least one
edge ei per column i. We can always pick up the second
1 to match the target using yi.

Neat, sweet, and NP-complete!

Integer Programming

Instance: A set v of integer variables, a set of inequalities
over these variables, a function f (v) to maximize, and integer
B.
Question: Does there exist an assignment of integers to v such
that all inequalities are true and f (v) ≥ B?
Example:

v1 ≥ 1, v2 ≥ 0

v1 + v2 ≤ 3

f (v) : 2v2, B = 3

A solution to this is v1 = 1, v2 = 2.

Infeasible Example

Example:
v1 ≥ 1, v2 ≥ 0

v1 + v2 ≤ 3

f (v) : 2v2, B = 5

Since the maximum value of f (v) given the constraints is
2× 2 = 4, there is no solution.

Integer Programming is NP-Hard

We use a reduction from Satisfiability
Any SAT instance has boolean variables and clauses. Our
Integer programming problem will have twice as many
variables as the SAT instance, one for each variable and its
compliment, as well as the following inequalities:
For each variable vi in the set problem, we will add the
following constraints:

• 1 ≤ Vi ≤ 0 and 1 ≤ V i ≤ 0

Both IP variables are restricted to values of 0 or 1, which
makes them equivalent to boolean variables restricted to
true/false.

• 1 ≤ Vi + V i ≤ 1

Exactly one IP variable associated with a given SAT
variable is 1. Thus exactly one of Vi and V i are true!

• For each clause Ci = {v1, v2, v3 . . . vn} in the SAT
instance, construct a constraint:

v1 + v2 + v3 + . . . vn ≥ 1

Thus at least one IP variable = 1 in each clause!
Satisfying the constraint equals satisfying the clause!

Our maximization function and bound are relatively unimpor-
tant: f (v) = V1 B = 0.
Clearly this reduction can be done in polynomial time.

Why?

Any SAT solution gives a solution to the IP problem – A
TRUE literal in SAT corresponds to a 1 in the IP. If the
expression is satisfied, at least one literal per clause must be
TRUE, so the sum in the inequality is ≥ 1.
Any IP solution gives a SAT solution – All variables of any
IP solution are 0 or 1. Set the literals corresponding to 1 to
be TRUE and those of 0 to FALSE. No boolean variable and
its complement will both be true, so it is a legal assignment
which satisfies the clauses.

Things to Notice

• The reduction preserved the structure of the problem.
Note that the reduction did not solve the problem – it just
put it in a different format.

• The possible IP instances which result are a small subset
of the possible IP instances, but since some of them are
hard, the problem in general must be hard.

• The transformation captures the essence of why IP is hard
- it has nothing to do with big coefficients or big ranges
on variables; for restricting to 0/1 is enough.

Convex Hull and Sorting

A nice example of a reduction goes from sorting numbers to
the convex hull problem:

We must translate each number to a point. We can map x to
(x, x2).

Why the Parabola?

5 11 13 17

Each integer is mapped to a point on the parabola y = x2.
Since this parabola is convex, every point is on the convex
hull. Further since neighboring points on the convex hull have
neighboring x values, the convex hull returns the points sorted
by x-coordinate, ie. the original numbers.

Convex Hull to Sorting Reduction

Sort(S)
For each i ∈ S, create point (i, i2).
Call subroutine convex-hull on this point set.
From the leftmost point in the hull,

read off the points from left to right.

Recall the sorting lower bound of Ω(n lg n). If we could do
convex hull in better than n lg n, we could sort faster than
Ω(n lg n) – which violates our lower bound.
Thus convex hull must take Ω(n lg n) as well!!!
Observe that any O(n lg n) convex hull algorithm also gives
us a complicated but correct O(n lg n) sorting algorithm as
well.

P versus NP

• A problem is in NP if a given answer can be checked in
polynomial time.

• A problem is in P if it can be solve in time polynomial in
the size of the input.

Satisfiability is in NP , since we can guess an assignment of
(true, false) to the literals and check it in polynomial time.
The precise distinction between P or NP is somewhat
technical, requiring formal language theory and Turing
machines to state correctly.
But the real issue is the difference between finding solutions
or verifying them.

Classifying Example Problems

• In P – Is there a path from s to t in G of length less than
k.

• In NP – Is there a TSP tour in G of length less than k.
Given the tour, it is easy to add up the costs and convince
me it is correct.

• Not in NP – How many TSP tours are there in G of length
less than k. Since there can be an exponential number of
them, we cannot count them all in polynomial time.

Don’t let this issue confuse you – the important idea here is
of reductions as a way of proving hardness.

