
Lecture 12:
Depth-First Search

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena


Problem of the Day

Prove that in a breadth-first search on a undirected graph G,
every edge in G is either a tree edge or a cross edge, where a
cross edge (x, y) is an edge where x is neither is an ancestor
or descendent of y.



Connected Components

The connected components of an undirected graph are the
separate “pieces” of the graph such that there is no connection
between the pieces.
Many seemingly complicated problems reduce to finding
or counting connected components. For example, testing
whether a puzzle such as Rubik’s cube or the 15-puzzle can
be solved from any position is really asking whether the graph
of legal configurations is connected.
Anything we discover during a BFS must be part of the
same connected component. We then repeat the search from
any undiscovered vertex (if one exists) to define the next
component, until all vertices have been found:



Implementation

connected components(graph *g)
{

int c;
int i;

initialize search(g);

c = 0;
for (i=1; i<=g− >nvertices; i++)

if (discovered[i] == FALSE) {
c = c+1;
printf(”Component %d:”,c);
bfs(g,i);

}
}



Two-Coloring Graphs

The vertex coloring problem seeks to assign a label (or color)
to each vertex of a graph such that no edge links any two
vertices of the same color.
A graph is bipartite if it can be colored without conflicts while
using only two colors. Bipartite graphs are important because
they arise naturally in many applications.
For example, consider the graph of students and the courses
they are registered for. No edges go between student pairs or
course pairs, so the graph is bipartite.



Finding a Two-Coloring
We can augment breadth-first search so that whenever we
discover a new vertex, we color it the opposite of its parent.
twocolor(graph *g)
{

int i;

for (i=1; i<=(g− >nvertices); i++)
color[i] = UNCOLORED;

bipartite = TRUE;

initialize search(&g);

for (i=1; i<=(g− >nvertices); i++)
if (discovered[i] == FALSE) {

color[i] = WHITE;
bfs(g,i);

}
}



process edge(int x, int y)
{

if (color[x] == color[y]) {
bipartite = FALSE;
printf(”Warning: graph not bipartite, due to (%d,%d)”,x,y);

}

color[y] = complement(color[x]);
}

complement(int color)
{
if (color == WHITE) return(BLACK);
if (color == BLACK) return(WHITE);

return(UNCOLORED);
}

We can assign the first vertex in any connected component to
be whatever color/gender we wish.



Depth-First Search

DFS has a neat recursive implementation which eliminates
the need to explicitly use a stack.
Discovery and final times are a convenience to maintain.
dfs(graph *g, int v)
{

edgenode *p; (* temporary pointer *)
int y; (* successor vertex *)

if (finished) return; (* allow for search termination *)

discovered[v] = TRUE;
time = time + 1;
entry time[v] = time;

process vertex early(v);

p = g− >edges[v];
while (p ! = NULL) {

y = p− >y;



if (discovered[y] == FALSE) {
parent[y] = v;
process edge(v,y);
dfs(g,y);

}
else if ((!processed[y]) || (g− >directed))

process edge(v,y);

if (finished) return;

p = p− >next;
}

process vertex late(v);

time = time + 1;
exit time[v] = time;

processed[v] = TRUE;
}



The Key Idea with DFS

A depth-first search of a graph organizes the edges of the
graph in a precise way.
In a DFS of an undirected graph, we assign a direction to each
edge, from the vertex which discover it:

1

2 6

3

4

5

1

2

3

4

5

6



Edge Classification for DFS

Every edge is either:
3. A Forward  Edge

4.  A Cross Edge

to a different node

to a decendant1.  A Tree  Edge

2.  A  Back  Edge

to an ancestor

On any particular DFS or BFS of a directed or undirected
graph, each edge gets classified as one of the above.



Edge Classification Implementation

int edge classification(int x, int y)
{

if (parent[y] == x) return(TREE);
if (discovered[y] && !processed[y]) return(BACK);
if (processed[y] && (entry time[y]¿entry time[x])) return(FORWARD);
if (processed[y] && (entry time[y]¡entry time[x])) return(CROSS);

printf(”Warning: unclassified edge (%d,%d)”,x,y);
}



DFS: Tree Edges and Back Edges Only
The reason DFS is so important is that it defines a very nice
ordering to the edges of the graph.
In a DFS of an undirected graph, every edge is either a tree
edge or a back edge.
Why? Suppose we have a forward edge. We would have
encountered (4, 1) when expanding 4, so this is a back edge.

1

2

3 4



No Cross Edges in DFS

Suppose we have a cross-edge
1

2

3 4 6

5 When expanding 2, we would discover

5, so the tree would look like:

1

2

3
4 5

6



DFS Application: Finding Cycles

Back edges are the key to finding a cycle in an undirected
graph.
Any back edge going from x to an ancestor y creates a cycle
with the path in the tree from y to x.
process edge(int x, int y)
{

if (parent[x] ! = y) { (* found back edge! *)
printf(”Cycle from %d to %d:”,y,x);
find path(y,x,parent);
finished = TRUE;

}
}



Articulation Vertices

Suppose you are a terrorist, seeking to disrupt the telephone
network. Which station do you blow up?

An articulation vertex is a vertex of a connected graph whose
deletion disconnects the graph.
Clearly connectivity is an important concern in the design of
any network.
Articulation vertices can be found in O(n(m+n)) – just delete
each vertex to do a DFS on the remaining graph to see if it is
connected.



A Faster O(n +m) DFS Algorithm

In a DFS tree, a vertex v (other than the root) is an articulation
vertex iff v is not a leaf and some subtree of v has no back
edge incident until a proper ancestor of v.

X

The root is a special case since 

it has no ancestors.

X is an articulation vertex since

the right subtree does not have 

a back edge to a proper ancestor.

Leaves cannot be

articulation vertices



Topological Sorting

A directed, acyclic graph has no directed cycles.
D

A

G
F

E
C

B

A topological sort of a graph is an ordering on the vertices so
that all edges go from left to right.
DAGs (and only DAGs) has at least one topological sort (here
G,A,B,C, F,E,D).



Applications of Topological Sorting

Topological sorting is often useful in scheduling jobs in their
proper sequence. In general, we can use it to order things
given precidence constraints.
Example: Dressing priority schedule



Example: Identifying errors in DNA fragment
assembly

Certain fragments are constrained to be to the left or right of
other fragments, unless there are errors.

A  B  R  A  C

A  C  A  D  A

A  D  A  B  R

D  A  B  R  A

R  A  C  A  D

A  B  R  A  C

R  A  C  A  D

A  C  A  D  A

A  D  A  B  R

D  A  B  R  A

A  B  R  A  C  A  D  A  B  R  A

Solution – build a DAG representing all the left-right
constraints. Any topological sort of this DAG is a consistant
ordering. If there are cycles, there must be errors.



Topological Sorting via DFS

A directed graph is a DAG if and only if no back edges are
encountered during a depth-first search.
Labeling each of the vertices in the reverse order that they are
marked processed finds a topological sort of a DAG.
Why? Consider what happens to each directed edge {x, y} as
we encounter it during the exploration of vertex x:



Case Analysis

• If y is currently undiscovered, then we then start a DFS
of y before we can continue with x. Thus y is marked
completed before x is, and x appears before y in the
topological order, as it must.

• If y is discovered but not completed, then {x, y} is a back
edge, which is forbidden in a DAG.

• If y is completed, then it will have been so labeled before
x. Therefore, x appears before y in the topological order,
as it must.



Topological Sorting Implementation
process vertex late(int v)
{

push(&sorted,v);
}

process edge(int x, int y)
{

int class;

class = edge classification(x,y);

if (class == BACK)
printf(”Warning: directed cycle found, not a DAG”);

}

We push each vertex on a stack soon as we have evaluated
all outgoing edges. The top vertex on the stack always has
no incoming edges from any vertex on the stack, repeatedly
popping them off yields a topological ordering.



Backtracking and Depth-First Search

Depth-first search uses essentially the same idea as backtrack-
ing.
Both involve exhaustively searching all possibilities by
advancing if it is possible, and backing up as soon as there
is no unexplored possibility for further advancement. Both
are most easily understood as recursive algorithms.



Strongly Connected Components

A directed graph is strongly connected iff there is a directed
path between any two vertices.
The strongly connected components of a graph is a partition
of the vertices into subsets (maximal) such that each subset is
strongly connected.

a b

c d g h

e f

Observe that no vertex can be in two maximal components,
so it is a partition.



There is an elegant, linear time algorithm to find the strongly
connected components of a directed graph using DFS which
is similar to the algorithm for biconnected components.


