Lecture 5: Dictionaries

Steven Skiena

Department of Computer Science State University of New York Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/~skiena

Dictionary / Dynamic Set Operations

Perhaps the most important class of data structures maintain a set of items, indexed by keys.

- Search(S,k) A query that, given a set S and a key value k, returns a pointer x to an element in S such that key[x] = k, or nil if no such element belongs to S.
- Insert(S,x) A modifying operation that augments the set S with the element x.
- Delete(S,x) Given a pointer x to an element in the set S, remove x from S. Observe we are given a pointer to an element x, not a key value.

- Min(S), Max(S) Returns the element of the totally ordered set S which has the smallest (largest) key.
- Next(S,x), Previous(S,x) Given an element x whose key is from a totally ordered set S, returns the next largest (smallest) element in S, or NIL if x is the maximum (minimum) element.

There are a variety of implementations of these *dictionary* operations, each of which yield different time bounds for various operations.

Problem of the Day

What is the asymptotic worst-case running times for each of the seven fundamental dictionary operations when the data structure is implemented as

- A singly-linked unsorted list,
- A doubly-linked unsorted list,
- A singly-linked sorted list, and finally
- A doubly-linked sorted list.

Solution Blank

	singly	singly	doubly	doubly
	unsorted	sorted	unsorted	sorted
Search(L, k)				
Insert(L, x)				
Delete(L, x)				
Successor(L, x)				
Predecessor(L, x)				
Minimum(L)				
Maximum(L)				

Solution

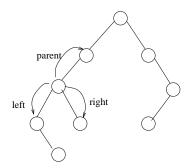
	singly	double	singly	doubly
Dictionary operation	unsorted	unsorted	sorted	sorted
Search(L, k)	O(n)	O(n)	O(n)	O(n)
Insert(L, x)	O(1)	O(1)	O(n)	O(n)
Delete(L, x)	$O(n)^*$	O(1)	$O(n)^*$	O(1)
Successor(L, x)	O(n)	O(n)	O(1)	O(1)
Predecessor(L, x)	O(n)	O(n)	$O(n)^*$	O(1)
Minimum(L)	O(n)	O(n)	O(1)	O(1)
Maximum(L)	O(n)	O(n)	$O(1)^*$	O(1)

Binary Search Trees

Binary search trees provide a data structure which efficiently supports all six dictionary operations.

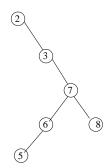
A binary tree is a rooted tree where each node contains at most two children.

Each child can be identified as either a left or right child.



Binary Search Trees

A binary search tree labels each node x in a binary tree such that all nodes in the left subtree of x have keys < x and all nodes in the right subtree of x have key's > x.



The search tree labeling enables us to find where any key is.

Implementing Binary Search Trees

```
typedef struct tree {
    item_type item;
    struct tree *parent;
    struct tree *left;
    struct tree *right;
} tree;
```

The parent link is optional, since we can store the pointer on a stack when we encounter it.

Searching in a Binary Tree: Implementation

```
tree *search_tree(tree *1, item_type x)
{
    if (l == NULL) return(NULL);

    if (l->item == x) return(l);

    if (x < l->item)
        return( search_tree(l->left, x) );
    else
        return( search_tree(l->right, x) );
}
```

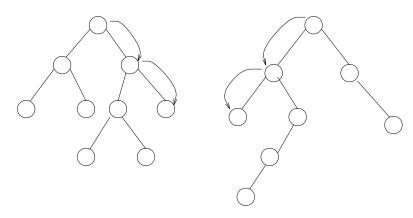
Searching in a Binary Tree: How Much

The algorithm works because both the left and right subtrees of a binary search tree *are* binary search trees – recursive structure, recursive algorithm.

This takes time proportional to the height of the tree, O(h).

Maximum and Minimum

Where are the maximum and minimum elements in a binary search tree?

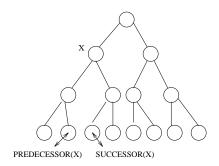


Finding the Minimum

```
tree *find_minimum(tree *t)
{
    tree *min; (* pointer to minimum *)
    if (t == NULL) return(NULL);
    min = t;
    while (min->left != NULL)
        min = min->left;
    return(min);
}
```

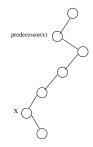
Finding the max or min takes time proportional to the height of the tree, O(h).

Where is the Predecessor: Internal Node



If X has two children, its predecessor is the maximum value in its left subtree and its successor the minimum value in its right subtree.

Where is the Successor: Leaf Node

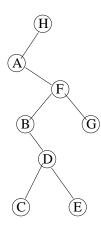


If it does not have a left child, a node's predecessor is its first left ancestor.

The proof of correctness comes from looking at the in-order traversal of the tree.

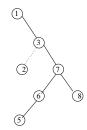
In-Order Traversal

```
void traverse_tree(tree *1)
{
    if (l != NULL) {
        traverse_tree(l->left);
        process_item(l->item);
        traverse_tree(l->right);
    }
}
```



Tree Insertion

Do a binary search to find where it should be, then replace the termination NIL pointer with the new item.



Insertion takes time proportional to the height of the tree, O(h).

```
insert_tree(tree **1, item_type x, tree *parent)
{
    tree *p; (* temporary pointer *)

    if (*l == NULL) {
        p = malloc(sizeof(tree)); (* allocate new node *)
        p->item = x;
        p->left = p->right = NULL;
        p->parent = parent;
        *l = p; (* link into parent's record *)
        return;
    }

    if (x < (*l)->item)
```

insert_tree(&((*l)->left), x, *l);

insert_tree(&((*l)->right), x, *l);

else

Tree Deletion

Deletion is trickier than insertion, because the node to die may not be a leaf, and thus effect other nodes.

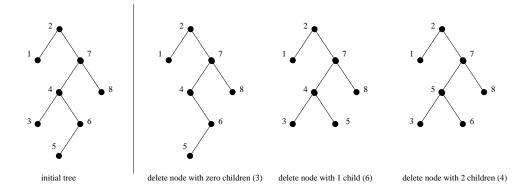
There are three cases:

Case (a), where the node is a leaf, is simple - just NIL out the parents child pointer.

Case (b), where a node has one chld, the doomed node can just be cut out.

Case (c), relabel the node as its successor (which has at most one child when z has two children!) and delete the successor!

Cases of Deletion



Binary Search Trees as Dictionaries

All six of our dictionary operations, when implemented with binary search trees, take O(h), where h is the height of the tree.

The best height we could hope to get is $\lg n$, if the tree was perfectly balanced, since

$$\sum_{i=0}^{\lfloor \lg n \rfloor} 2^i \approx n$$

But if we get unlucky with our order of insertion or deletion, we could get linear height!

Worst Case and Average Height

insert(a)
insert(b)
insert(c)

insert(d)

A B

Tree Insertion Analysis

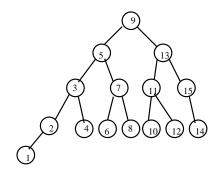
In fact, binary search trees constructed with random insertion orders on average have $\Theta(\lg n)$ height.

The worst case is linear, however.

Our analysis of Quicksort will later explain why the expected height is $\Theta(\lg n)$.

Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to maintain:



If we insert the key 1, we must move every single node in the tree to rebalance it, taking $\Theta(n)$ time.

Balanced Search Trees

Therefore, when we talk about "balanced" trees, we mean trees whose height is $O(\lg n)$, so all dictionary operations (insert, delete, search, min/max, successor/predecessor) take $O(\lg n)$ time.

Extra care must be taken on insertion and deletion to guarantee such performance, by rearranging things when they get too lopsided.

Red-Black trees, AVL trees, 2-3 trees, splay trees, and B-trees are examples of balanced search trees used in practice and discussed in most data structure texts.