
Lecture 14:
Shortest Paths

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Suppose we are given the minimum spanning tree T of a
given graph G (with n vertices and m edges) and a new edge
e = (u, v) of weight w that we will add to G. Give an efficient
algorithm to find the minimum spanning tree of the graph
G + e. Your algorithm should run in O(n) time to receive
full credit, although slower but correct algorithms will receive
partial credit.

Applications for Shortest Paths

Finding the shortest path between two nodes in a graph arises
in many different applications:

• Transportation problems – finding the cheapest way to
travel between two locations.

• Motion planning – what is the most natural way for a
cartoon character to move about a simulated environment.

• Communications problems – how look will it take for a
message to get between two places? Which two locations
are furthest apart, ie. what is the diameter of the network.

Shortest Paths and Sentence Disambiguation

In our work on reconstructing text typed on an (overloaded)
telephone keypad, we had to select which of many possible
interpretations was most likely.
We constructed a graph where the vertices were the possible
words/positions in the sentence, with an edge between
possible neighboring words.
The final system identified over 99% of characters correctly
based on grammatical and statistical constraints.

�

�

Token

�

�

Token

�

�

Token

�

�

Token

\4483" \63" \2" \7464"

� � �

� � �
- - -

�

�

Token

�

�

Token

�

�

Token

�

�

Token

\4483" \63" \2" \7464"

� � �

� � �
- - -

? ? ? ?

give

hive

of

me

a ping

ring

sing

give

hive

of

me

a
ping

ring

sing

. . . # 4 4 8 3 � 6 3 � 2 � 7 4 6 4 # . . .

GIVE ME A RING.

P

P

Pq
�

�

�1
P

P

Pq

INPUT

?

Blank Recognition

?

Candidate Construction

?

Sentence Disambiguating

?

OUTPUT

1

Weighting the Graph

P(W /#)

P(W /#)4

1

P(W /#)2

1

P(W /#)3

1

P(W /C)1

2

2

P(W /C)2

2

2

2P(W /W)1

2 1
P(#/W)

4
1

P(W /C)1

3

3

P(W /C)2

3

3

P(W /C)3

3

3

P(W /C)4

3

3

2Code C1Code C

#

1

1

3P(W /C)

1

1

2P(W /C)

1

1

1P(W /C)

#

3Code C

P(W /C)4

1

1

1

1

The weight of each edge is a function of the probability that
these two words will be next to each other in a sentence. ‘hive
me’ would be less than ‘give me’, for example.
Dynamic programming (the Viterbi algorithm) can be used to
find the shortest paths in the underlying DAG.

Shortest Paths: Unweighted Graphs

In an unweighted graph, the shortest path uses the minimum
number of edges, and can be found in O(n + m) time via
breadth-first search.
In a weighted graph, the weight of a path between two
vertices is the sum of the weights of the edges on a path.
BFS will not work on weighted graphs because visiting more
edges can be less distance, e.g. 1 + 1 + 1 + 1 + 1 + 1 + 1 < 10.
There can be an exponential number of shortest paths
between two nodes – so we cannot report all shortest paths
efficiently.

Negative Edge Weights

Negative cost cycles render the problem of finding the
shortest path meaningless, since you can always loop around
the negative cost cycle more to reduce the cost of the path.
Thus we will assume that all edge weights are positive. Other
algorithms deal correctly with negative cost edges.
Minimum spanning trees are unaffected by negative cost
edges.

Dijkstra’s Algorithm

The principle behind Dijkstra’s algorithm is that if
(s, . . . , x, . . . , t) is the shortest path from s to t, then
(s, . . . , x) had better be the shortest path from s to x.
This suggests a dynamic programming-like strategy, where
we store the distance from s to all nearby nodes, and use them
to find the shortest path to more distant nodes.

Initialization and Update

The shortest path from s to s, d(s, s) = 0. If all edge weights
are positive, the smallest edge incident to s, say (s, x), defines
d(s, x).
Soon as we establish the shortest path from s to a new node
x, we go through each of its incident edges to see if there is a
better way from s to other nodes thru x.

Pseudocode: Dijkstra’s Algorithm

known = {s}
for i = 1 to n, dist[i] =∞
for each edge (s, v), dist[v] = d(s, v)
last=s
while (last 6= t)

select v such that dist(v) = minunknown dist(i)
for each (v, x), dist[x] = min(dist[x], dist[v] + w(v, x))
last=v
known = known ∪ {v}

This is essentially the same as Prim’s algorithm.

Dijkstra Example

4

5

2

A

1

6

42

A

3

G Dijkstra(G,A)

5

3

5

9

2

74

7

12

7

Dijkstra’s Implementation

See how little changes from Prim’s algorithm!
dijkstra(graph *g, int start) (* WAS prim(g,start) *)
{

int i; (* counter *)
edgenode *p; (* temporary pointer *)
bool intree[MAXV]; (* is the vertex in the tree yet? *)
int distance[MAXV]; (* distance vertex is from start *)
int v; (* current vertex to process *)
int w; (* candidate next vertex *)
int weight; (* edge weight *)
int dist; (* best current distance from start *)

for (i=1; i<=g− >nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
p = g− >edges[v];
while (p ! = NULL) {

w = p− >y;
weight = p− >weight;

(* CHANGED *) if (distance[w] > (distance[v]+weight)) {
(* CHANGED *) distance[w] = distance[v]+weight;
(* CHANGED *) parent[w] = v;

}
p = p− >next;

}

v = 1;
dist = MAXINT;
for (i=1; i<= g− >nvertices; i++)

if ((intree[i] == FALSE) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}

Prim’s/Dijkstra’s Analysis

Finding the minimum weight fringe-edge takes O(n) time –
just bump through fringe list.
After adding new vertex v to the tree, running through its
adjacency list to update the cost of adding fringe vertices if
we found a cheaper way through v can be done in O(n) time.
The total time is n× n = O(n2).

Better Data Structures = Improved Time

An O(m lg n) implementation of Dijkstra’s algorithm would
be faster for sparse graphs, and comes from using a heap of
the vertices (ordered by distance), and updating the distance
to each vertex (if necessary) in O(lg n) time for each edge out
from freshly known vertices.
Even better, O(n lg n + m) follows from using Fibonacci
heaps, since they permit one to do a decrease-key operation
in O(1) amortized time.

Problem of the Day

Let G = (V,E) be an undirected weighted graph, and let T be
the shortest-path spanning treerooted at a vertex v. Suppose
now that the edge weights in G are increased by a constant
number k. Is T still the shortest-path-spanning tree from v?

All-Pairs Shortest Path

Notice that finding the shortest path between a pair of vertices
(s, t) in worst case requires first finding the shortest path from
s to all other vertices in the graph.
Many applications, such as finding the center or diameter of
a graph, require finding the shortest path between all pairs of
vertices.
We can run Dijkstra’s algorithm n times (once from each
possible start vertex) to solve all-pairs shortest path problem
in O(n3). Can we do better?

Dynamic Programming and Shortest Paths

The four-step approach to dynamic programming is:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute this recurrence in a bottom-up fashion.

4. Extract the optimal solution from computed information.

Initialization

From the adjacency matrix, we can construct the following
matrix:

D[i, j] =∞, if i 6= j and (vi, vj) is not in E
D[i, j] = w(i, j), if (vi, vj) ∈ E
D[i, j] = 0, if i = j

This tells us the shortest path going through no intermediate
nodes.

The Floyd-Warshall Algorithm

An alternate recurrence yields a more efficient dynamic
programming formulation. Number the vertices from 1 to n.
Let d[i, j]k be the shortest path from i to j using only vertices
from 1, 2, . . . , k as possible intermediate vertices.
This path from i to j either goes through vertex k, or it
doesn’t.
What is d[j, j]0? With no intermediate vertices, any path
consists of at most one edge, so d[i, j]0 = w[i, j].

Recurrence Relation

Adding a new vertex k helps if and only if a path goes through
it, so for 1 ≤ k ≤ n:

d[i, j]k = min(d[i, j]k−1, d[i, k]k−1 + d[k, j]k−1)

Computing the values of this recursive equation defines an
algorithm for finding the all pairs shortest-path costs.

Floyd-Warshall Example

Implementation

The following algorithm implements it:

do = w
for k = 1 to n

for i = 1 to n
for j = 1 to n
d[i, j]k = min(d[i, j]k−1, d[i, k]k−1 + d[k, j]k−1)

This obviously runs in Θ(n3) time, which is asymptotically
no better than n calls to Dijkstra’s algorithm.
However, the loops are so tight and it is so short and simple
that it runs better in practice by a constant factor.

Transitive Closure

The transitive closure C of a directed graph A adds edge (i, j)
to C if there is a path from i to j in A.

Transitive closure propagates the logical consequences of
facts in a database, e.g. Is x related to y?

