
23.2-6 Give an e�cient algorithm to test if a graph isbipartite.Bipartite means the vertices can be colored red or blacksuch that no edge links vertices of the same color.
R

R

R

W

W

W

WSuppose we color a vertex red - what color must itsneighbors be? black!We can augment either BFS or DFS when we �rst dis-cover a new vertex, color it opposited its parents, andfor each other edge, check it doesn't link two verticesof the same color. The �rst vertex in any connectedcomponent can be red or black!Bipartite graphs arise in many situations, and specialalgorithms are often available for them. What is theinterpretation of a bipartite \had-sex-with" graph?How would you break people into two groups suchthat no group contains a pair of people who hate eachother?

23.4-3 Given an O(n) algorithm to test whether anundirected graph contains a cycle.If you do a DFS, you have a cycle i� you have a backedge. This gives an O(n+m) algorithm. But wheredoes the m go? If the graph contains more than n� 1edges, it must contain a cycle! Thus we never needlook at more than n edges if we are given an adjacencylist representation!

23.4-5 Show that you can topologically sort in O(n+m)by repeatedly deleting vertices of degree 0.The correctness of this algorithm follows since in aDAG there must always be a vertex of indegree 0, andsuch a vertex can be �rst in topological sort. Supposeeach vertex is initialized with its indegree (do DFS onG to get this). Deleting a vertex takes O(degree v).Reduce the indegree of each e�cient vertex - and keepa list of degree 0 vertices to delete next.Time: Pni=1O(deg(vi)) = O(n+m)

Strongly ConnectedComponentsA directed graph is strongly connected i� there is adirected path between any two vertices.The strongly connected components of a graph is apartition of the vertices into subsets (maximal) suchthat each subset is strongly connected.
a b

c d g h

e f

Observe that no vertex can be in two maximal compo-nents, so it is a partition.
There is an amazingly elegant, linear time algorithm to�nd the strongly connected components of a directedgraph, using DFS.

� Call DFS(�) to compute �nishing times for eachvertex.� Compute the transpose graph GT (reverse all edgesin G)� Call DFS(GT), but order the vertices in decreasingorder of �nish time.� The vertices of each DFS tree in the forest ofDFS(GT) is a strongly connected component.This algorithm takes O(n+m), but why does it com-pute strongly connected components?Lemma: If two vertices are in the same strong com-ponent, no path between them ever leaves the compo-nent.
u

z

y

x

x must also be in

the strong component!Lemma: In any DFS forest, all vertices in the samestrongly connected component are in the same tree.Proof: Consider the �rst vertex v in the component tobe discovered. Everything in the component is reach-able from it, so we will traverse it before �nishing withv.

What does DFS(GT , v) Do?It tells you what vertices have directed paths to v,while DFS(�,v) tells what vertices have directed pathsfrom v. But why must any vertex in the search tree ofDFS(GT , v) also have a path from u?
v

G GTBecause there is no edge from any previous DFS treeinto the last tree!! Because we ordered the verticesby decreasing order of �nish time, we can peel o� thestrongly connected components from right to left justbe doing a DFS(GT).

Example of StrongComponents Algorithm
a b

c d g h

e f

9;10; 11;12 can reach 9, oldest remaining �nished is 5.5;6; 7 can read 5, oldest remaining is 7.7 can reach 7, oldest remaining is 1.1;2; 3 can reach 1, oldest remaining is 4.4 can reach 4.
1 5 9

1062

3 4 7 8 11 12

DFG(G) 9 is the last vertex to finish

