23.2-6 Give an efficient algorithm to test if a graph is
bipartite.

Bipartite means the vertices can be colored red or black
such that no edge links vertices of the same color.

@ (W)

W)
®)

W)
®)

W)

Suppose we color a vertex red - what color must its
neighbors be? black!

We can augment either BFS or DFS when we first dis-
cover a new vertex, color it opposited its parents, and
for each other edge, check it doesn’t link two vertices
of the same color. The first vertex in any connected
component can be red or black!

Bipartite graphs arise in many situations, and special
algorithms are often available for them. What is the
interpretation of a bipartite “had-sex-with” graph?

How would you break people into two groups such
that no group contains a pair of people who hate each
other?



23.4-3 Given an O(n) algorithm to test whether an
undirected graph contains a cycle.

If you do a DFS, you have a cycle iff you have a back
edge. This gives an O(n + m) algorithm. But where
does the m go? If the graph contains more than n—1
edges, it must contain a cycle! Thus we never need
look at more than n edges if we are given an adjacency
list representation!



23.4-5 Show that you can topologically sort in O(n+m)
by repeatedly deleting vertices of degree 0.

The correctness of this algorithm follows since in a
DAG there must always be a vertex of indegree 0, and
such a vertex can be first in topological sort. Suppose
each vertex is initialized with its indegree (do DFS on
G to get this). Deleting a vertex takes O(degree v).
Reduce the indegree of each efficient vertex - and keep
a list of degree 0 vertices to delete next.

Time: Y ", O(deg(v;)) = O(n+ m)



Strongly Connected
Components

A directed graph is strongly connected iff there is a
directed path between any two vertices.

The strongly connected components of a graph is a
partition of the vertices into subsets (maximal) such
that each subset is strongly connected.

Observe that no vertex can be in two maximal compo-
nents, so it is a partition.

There is an amazingly elegant, linear time algorithm to
find the strongly connected components of a directed
graph, using DFS.



e Call DFS(o) to compute finishing times for each
vertex.

e Compute the transpose graph GT (reverse all edges
in G)

e Call DFS(GT), but order the vertices in decreasing
order of finish time.

e The vertices of each DFS tree in the forest of
DFS(GT) is a strongly connected component.

This algorithm takes O(n + m), but why does it com-
pute strongly connected components?

Lemma: If two vertices are in the same strong com-
ponent, no path between them ever leaves the compo-
nent.

X

® X must also bein
the strong component!

Lemma: In any DFS forest, all vertices in the same
strongly connected component are in the same tree.

Proof: Consider the first vertex v in the component to
be discovered. Everything in the component is reach-
able from it, so we will traverse it before finishing with
V.



What does DFS(GT, v) Do?

It tells you what vertices have directed paths to v,
while DFS(o,v) tells what vertices have directed paths
from v. But why must any vertex in the search tree of
DFS(GT, v) also have a path from u?

e

Because there is no edge from any previous DFS tree
into the last tree!! Because we ordered the vertices
by decreasing order of finish time, we can peel off the
strongly connected components from right to left just
be doing a DFS(GT).



Example of Strong
Components Algorithm

9,10,11,12 can reach 9, oldest remaining finished is 5.
5,6,7 can read 5, oldest remaining is 7.

7 can reach 7, oldest remaining is 1.

1,2,3 can reach 1, oldest remaining is 4.

4 can reach 4.

AR

DFG(G) 9isthelast vertex tofinish



