
Lecture 9:
Linear Sorting

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena


Topic: Problem of the Day



Problem of the Day

The nuts and bolts problem is defined as follows. You
are given a collection of n bolts of different widths, and n
corresponding nuts. You can test whether a given nut and bolt
together, from which you learn whether the nut is too large,
too small, or an exact match for the bolt. The differences in
size between pairs of nuts or bolts can be too small to see by
eye, so you cannot rely on comparing the sizes of two nuts or
two bolts directly. You are to match each bolt to each nut.



1. Give an O(n2) algorithm to solve the nuts and bolts
problem.

2. Suppose that instead of matching all of the nuts and bolts,
you wish to find the smallest bolt and its corresponding
nut. Show that this can be done in only 2n − 2
comparisons.

3. Match the nuts and bolts in expected O(n log n) time.



Questions?



Topic: Lower Bounds on Sorting



Can we sort in o(n lg n)?

Any comparison-based sorting program can be thought of as
defining a decision tree of possible executions.
Running the same program twice on the same permutation
causes it to do exactly the same thing, but running it on
different permutations of the same data causes a different
sequence of comparisons to be made on each.



(3,2,1)

a1 < a2

a2 < a3 a1 < a3

a1 < a3 a2 < a3(1,2,3)

(1,3,2) (2,3,1)

(2,1,3)

(3,1,2)

Claim: the height of this decision tree is the worst-case
complexity of sorting.



Lower Bound Analysis

Since any two different permutations of n elements requires
a different sequence of steps to sort, there must be at least n!
different paths from the root to leaves in the decision tree.
Thus there must be at least n! different leaves in this binary
tree.
Since a binary tree of height h has at most 2h leaves, we know
n! ≤ 2h, or h ≥ lg(n!).
By inspection n! > (n/2)n/2, since the last n/2 terms of the
product are each greater than n/2. Thus

log(n!) > log((n/2)n/2) = n/2 log(n/2)→ Θ(n log n)



Stirling’s Approximation

By Stirling’s approximation, a better bound is n! > (n/e)n

where e = 2.718.

h ≥ lg(n/e)n = n lg n− n lg e = Ω(n lg n)



Questions?



Topic: Bucketsort: Non-Comparison-Based
Sorting



Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative, questions of the form “is
x before y?”.
But how would you sort a deck of playing cards?
Most likely you would set up 13 piles and put all cards with
the same number in one pile.
With only a constant number of cards left in each pile, you can
use insertion sort to order by suite and concatenate everything
together.
If we could find the correct pile for each card in constant time,
and each pile gets O(1) cards, this algorithm takes O(n) time.



Bucketsort

Suppose we are sorting n numbers from 1 to m, where we
know the numbers are approximately uniformly distributed.
We can set up n buckets, each responsible for an interval of
m/n numbers from 1 to m

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

x
x

x x
x x

x x

Given an input number x, it belongs in bucket number
dxn/me.
If we use an array of buckets, each item gets mapped to the
right bucket in O(1) time.



Bucketsort Analysis

With uniformly distributed keys, the expected number of
items per bucket is 1. Thus sorting each bucket takes O(1)
time!
The total effort of bucketing, sorting buckets, and concatenat-
ing the sorted buckets together is O(n).
What happened to our Ω(n lg n) lower bound!



Worst-Case vs. Assumed-Case

Bad things happen to bucketsort when we assume the wrong
distribution.

1 m/n m/n+1 2m/n 2m/n+1 3m/n ... ... m

xx x

x
x

x
x

x

x

x
x

x

x
x

xx

xx

We might spend linear time distributing our items into
buckets and learn nothing.
Problems like this are why we worry about the worst-case
performance of algorithms!



Real World Distributions

The worst case “shouldn’t” happen if we understand the
distribution of our data.
Consider the distribution of names in a telephone book.

• Will there be a lot of Skiena’s?

• Will there be a lot of Smith’s?

• Will there be a lot of Shifflett’s?

Either make sure you understand your data, or use a good
worst-case or randomized algorithm!



The Shifflett’s of Charlottesville

For comparison, note that there are seven Shifflett’s (of
various spellings) in the 1000 page Manhattan telephone
directory.



Non-Comparison Sorts Don’t Beat the Bound

Radix sort works by partitioning on the lowest order
characters first, maintaining this order to break ties.
It takes time O(nm) to sort n strings of length m, or time
linear in the input size!
But m must be Ω(log n) before the strings are all distinct!
Sorting n arbitrary, distinct keys cannot be done better than
Θ(n log n).



Questions?


