
Lecture 18:
Applications of Dynamic Programming

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Topic: Problem of the Day

Problem of the Day

Eggs break when dropped from great enough height. Specif-
ically, there must be a floor f in any sufficiently tall building
such that an egg dropped from the f th floor breaks, but one
dropped from the (f − 1)st floor will not. If the egg always
breaks, then f = 1. If the egg never breaks, then f = n + 1.
You seek to find the critical floor f using an n-story building.
The only operation you can perform is to drop an egg off
some floor and see what happens. You start out with k eggs,
and seek to drop eggs as few times as possible. Broken eggs
cannot be reused.

Let E(k, n) be the minimum number of egg droppings that
will always suffice.

1. Show that E(1, n) = n.

2. Show that E(k, n) = Θ(n
1
k).

3. Find a recurrence for E(k, n). What is the running time
of the dynamic program to find E(k, n)?

Questions?

Topic: Problem of the Day

Problem of the Day

We wish to compute the laziest way to dial a given n-digit
number on a standard push button phone using two fingers.
We assume the two fingers start on the * and # keys, and the
effort to move a finger from one key to another is proportional
to the Euclidean distance between them.
Design an algorithm to that computes the method of dialing
that involves moving your figures the smallest amount of total
distance, where k is the number of distinct keys on the keypad
(k = 16 for standard telephones).
Try to use O(nk3) time.

Questions?

Topic: Dynamic Programming and
High-Density Bar Codes

Dynamic Programming and High Density Bar
Codes

Symbol Technology has developed a new design for bar
codes, PDF-417 that has a capacity of several hundred bytes.
What is the best way to encode text for this design?
They developed a complicated mode-switching data com-
pression scheme.

The PDF-417 Code

Latch commands permanently put you in a different mode.
Shift commands temporarily put you in a different mode.

s

l

l
s

s

l

sl

l

Mixed

a−z

A−Z

;<>@[\$/"*(
Punctuation

Alpha

Case
Lower

0−9, #$%=

Optimization

Symbol used a greedy algorithm to encode a string, making
local decisions only. But we realized that for any prefix, you
want an optimal encoding which might leave you in every
possible mode.
M [i, j] = min(M [i − 1, k]+ the cost of encoding the ith
character and ending up in node j).
Our simple dynamic programming algorithm improved the
capacity of PDF-417 by an average of 8%!

Questions?

Topic: The Book Partition Problem

Dividing the Work

Suppose the job scanning through a shelf of books is to be
split between k workers. To avoid the need to rearrange the
books or separate them into piles, we can divide the shelf into
k regions and assign each region to one worker.
What is the fairest way to divide the shelf up?
If each book is the same length, partition the books into equal-
sized regions,

100 100 100 | 100 100 100 | 100 100 100

But what if the books are not the same length? This partition
would yield

100 200 300 | 400 500 600 | 700 800 900

Which part of the job would you volunteer to do?
How can we find the fairest possible partition, i.e.

100 200 300 400 500 | 600 700 | 800 900

The Linear Partition Problem

Input: A given arrangement S of nonnegative numbers
{s1, . . . , sn} and an integer k.
Problem: Partition S into k ranges, so as to minimize the
maximum sum over all the ranges.

• Does a single fixed partition work for all instances of size
(n, k)?

• Does taking the average value of each part (∑n
i=1 si/k)

from the left always yield the optimal partition?

Recursive Idea

Consider a recursive, exhaustive search approach. Notice that
the kth partition starts right after we placed the (k − 1)st
divider.
Where can we place this last divider? Between the ith and
(i + 1)st elements for some i, where 1 ≤ i ≤ n.
What is the cost of this? The total cost will be the larger of
two quantities, (1) the cost of the last partition ∑n

j=i+1 sj and
(2) the cost of the largest partition cost formed to the left of i.
What is the size of this left partition? To partition the
elements {s1, . . . , si} as equally as possible. But this is a
smaller instance of the same problem!

Dynamic Programming Recurrence

Define M [n, k] to be the minimum possible cost over all
partitionings of {s1, . . . , sn} into k ranges, where the cost of
a partition is the largest sum of elements in one of its parts.
Thus defined, this function can be evaluated:

M [n, k] =
n

min
i=1

max(M [i, k − 1],
n∑

j=i+1
sj)

with the natural basis cases of

M [1, k] = s1, for all k > 0 and,

M [n, 1] =
n∑

i=1
si

Running Time

What is the running time?
It is the number of cells times the running time per cell.
A total of k · n cells exist in the table.
Each cell depends on n others, and can be computed in linear
time, for a total of O(kn2).

Questions?

Topic: Limitations of Dynamic Programming

When can you use Dynamic Programming?

Dynamic programming computes recurrences efficiently by
storing partial results. Thus dynamic programming is
efficient when there are few partial results to compute!

• There are n! permutations of an n-element set, so
we cannot hope to to store the best solution for each
subpermutation polynomially.

• There are 2n subsets of an n-element set, so we cannot
hope to store the best solution for each polynomially.

• But there are only n(n− 1)/2 continguous substrings of a
string, so we can use it for string problems.

• But there are only n possible subtrees of a rooted tree (cut
edge to the root) so we can use it optimization problems
on rooted trees.

Dynamic programming works best on objects which are
linearly ordered and cannot be rearranged – characters in a
string, matrices in a chain, points around the boundary of a
polygon, the left-to-right order of leaves in a search tree.
Whenever your objects are ordered in a left-to-right way, you
should smell dynamic programming!

The Principle of Optimality

To use dynamic programming, the problem must observe
the principle of optimality, that whatever the initial state is,
remaining decisions must be optimal with regard the state
following from the first decision.

• Dijkstra’s algorithm works because we care about the
length of the shortest path to x, not how we got there.

• Edit distance works because we care about the cheapest
way edit given prefixes, not how we got here.

This would not be true if we charged more for a deletion if
there were other deletions nearby.

Example: The Traveling Salesman Problem

Combinatorial problems may observe this property but still
use too much memory/time to be efficient.
Let T (i; j1, j2, . . . , jk) be the cost of the optimal tour from 1
to i that goes thru each of the other cities once

T (i; i1, j2, . . . , ji) = Min1≤m≤kC[i, jm] + T (jm; j1, j2, . . . , jk)

T (i, j) = C(i, j) + C(j, 1)

Here there can be any subset of j1, j2, . . . , jk instead of any
subinterval - hence exponential.
But it is O(n2n) instead of n!.

Questions?

