
Lecture 13:
Minimum Spanning Trees

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Topic: Problem of the Day

Problem of the Day

Your job is to arrange n rambunctious children in a straight
line, facing front. You are given a list of m statements of
the form “i hates j”. If i hates j, then you do not want put
i somewhere behind j, because then i is capable of throwing
something at j.

1. Give an algorithm that orders the line, (or says that it is
not possible) in O(m + n) time.

2. Suppose instead you want to arrange the children in
rows, such that if i hates j then i must be in a lower
numbered row than j. Give an efficient algorithm to find
the minimum number of rows needed, if it is possible.

Questions?

Topic: Minimum Spanning Trees

Weighted Graph Algorithms

Beyond DFS/BFS exists an alternate universe of algorithms
for edge-weighted graphs.
Our adjacency list representation quietly supported these
graphs:
typedef struct edgenode {

int y; /* adjacency info */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in list */

} edgenode;

typedef struct {
edgenode *edges[MAXV+1]; /* adjacency info */
int degree[MAXV+1]; /* outdegree of each vertex */
int nvertices; /* number of vertices in the graph */
int nedges; /* number of edges in the graph */
int directed; /* is the graph directed? */

} graph;

Minimum Spanning Trees

A tree is a connected graph with no cycles. A spanning tree is
a subgraph of G which has the same set of vertices of G and
is a tree.
A minimum spanning tree of a weighted graph G is the
spanning tree of G whose edges sum to minimum weight.
There can be more than one minimum spanning tree in a
graph→ consider a graph with identical weight edges.

Find the Minimum Spanning Tree

(a) (b)
(c)

Why Minimum Spanning Trees?

The minimum spanning tree problem has a long history – the
first algorithm dates back to 1926!
MST is taught in algorithm courses because:

• It arises in many graph applications.

• It is problem where the greedy algorithm always gives the
optimal answer.

• Clever data structures are necessary to make it work.

Greedy algorithms make the decision of what next to do by
selecting the best local option from all available choices.

Applications of Minimum Spanning Trees

Minimum spanning trees are useful in constructing networks,
by describing the way to connect a set of sites using the
smallest total amount of wire.
Minimum spanning trees provide a reasonable way for
clustering points in space into natural groups.
What are natural clusters in the friendship graph?

Minimum Spanning Trees and Net Partitioning

One of the war stories in the text describes how to partition
a graph into compact subgraphs by deleting large edges from
the minimum spanning tree.

(a) (b) (c) (d)

Minimum Spanning Trees and TSP

For points in the Euclidean plane, MST yield a good heuristic
for the traveling salesman problem:

8

5

4
3

2

10 11

9

6

7

1

The optimum traveling salesman tour is at most twice the
length of the minimum spanning tree.

Questions?

Topic: Prim’s Algorithm

Prim’s Algorithm

Prim’s algorithm starts from one vertex and grows the rest of
the tree an edge at a time.
As a greedy algorithm, which edge should we pick?
The cheapest edge with which can grow the tree by one vertex
without creating a cycle.

Prim’s Algorithm in Action

1

5

62

4

A

5

1

4

3

2

A

3

G Prim(G,A) Kruskal(G)

6

5

9

2

74

7

12

7

3

4

5

2

A

https://upload.wikimedia.org/wikipedia/
en/3/33/Prim-algorithm-animation-2.gif

https://upload.wikimedia.org/wikipedia/en/3/33/Prim-algorithm-animation-2.gif
https://upload.wikimedia.org/wikipedia/en/3/33/Prim-algorithm-animation-2.gif

Prim’s Algorithm (Pseudocode)

During execution each vertex v is either in the tree, fringe
(meaning there exists an edge from a tree vertex to v) or
unseen (meaning v is more than one edge away).

Prim-MST(G)
Select an arbitrary vertex s to start the tree from.
While (there are still non-tree vertices)

Pick min cost edge between tree/non-tree vertices
Add the selected edge and vertex to the tree Tprim.

This creates a spanning tree, since no cycle can be introduced.

But is it minimum?

Why is Prim Correct? (Proof by Contradiction)

• If Prim’s algorithm is not correct, these must be some
graph G where it does not give the minimum cost
spanning tree.

• If so, there must be a first edge (x, y) Prim adds, such that
the partial tree V ′ cannot be extended into a MST.

(a) (b)

The Contradiction

• But if (x, y) is not in MST (G), then there must be a path
in MST (G) from x to y, because the tree is connected.

• Let (v1, v2) be the other edge on this path with one end in
V ′.

• Replacing (v1, v2) with (x, y) we get a spanning tree. with
smaller weight, since W (v, w) > W (x, y). Thus you did
not have the MST!!

• If W (v, w) = W (x, y), then the tree is the same weight,
but we couldn’t have made a fatal mistake picking (x, y).

Thus Prim’s algorithm is correct!

How Fast is Prim’s Algorithm?

That depends on what data structures are used. In the simplest
implementation, we can simply mark each vertex as tree and
non-tree and search always from scratch:

Select an arbitrary vertex to start.
While (there are non-tree vertices)

select minimum weight edge between tree and fringe
add the selected edge and vertex to the tree

This can be done in O(nm) time, by doing a DFS or BFS to
loop through all edges, with a constant time test per edge, and
a total of n iterations.

Prim’s Implementation

To do it faster, we must identify fringe vertices and the
minimum cost edge associated with it fast.

int prim(graph *g, int start) {
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int dist; /* cheapest cost to enlarge tree */
int weight = 0; /* tree weight */

for (i = 1; i <= g->nvertices; i++) {
intree[i] = false;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;
v = start;

while (!intree[v]) {

intree[v] = true;
if (v != start) {

printf("edge (%d,%d) in tree \n",parent[v],v);
weight = weight + dist;

}
p = g->edges[v];
while (p != NULL) {

w = p->y;
if ((distance[w] > p->weight) && (!intree[w])) {

distance[w] = p->weight;
parent[w] = v;

}
p = p->next;

}

dist = MAXINT;
for (i = 1; i <= g->nvertices; i++) {

if ((!intree[i]) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}

return(weight);
}

Prim’s Analysis

Finding the minimum weight fringe-edge takes O(n) time,
because we iterate through the distance array to find the
minimum
After adding a vertex v to the tree, by running through its
adjacency list in O(n) time we check whether it provides a
cheaper way to connect its neighbors to the tree. If so, update
the distance value.
The total time is n×O(n) = O(n2).

Questions?

Topic: Kruskal’s Algorithm

Kruskal’s Algorithm

Since an easy lower bound argument shows that every edge
must be looked at to find the minimum spanning tree, and the
number of edges m = O(n2), Prim’s algorithm is optimal on
dense graphs.
The complexity of Prim’s algorithm is independent of the
number of edges. Kruskal’s algorithm is faster on sparse
graphs
Kruskal’s algorithm is also greedy. It repeatedly adds the
smallest edge to the spanning tree that does not create a cycle.

Kruskal’s Algorithm in Action

1

5

62

4

A

5

1

4

3

2

A

3

G Prim(G,A) Kruskal(G)

6

5

9

2

74

7

12

7

3

4

5

2

A

Kruskal is Correct (Proof by Contradiction)

• If Kruskal’s algorithm is not correct, these must be
some graph G where it does not give the minimum cost
spanning tree.

• If so, there must be a first edge (x, y) Kruskal adds such
that the set of edges cannot be extended into a minimum
spanning tree.

• When we added (x, y) there no path between x and y, or
it would have created a cycle. Thus adding (x, y) to the
optimal tree it must create a cycle.

• But at least one edge in this cycle must have been added
after (x, y), so it must have heavier.

The Contradiction

Deleting this heavy edge leaves a better MST than the optimal
tree, yielding a contradiction!

1

2

(a) (b)

x y x y

v

v

Thus Kruskal’s algorithm is correct!

How fast is Kruskal’s algorithm?

What is the simplest implementation?

• Sort the m edges in O(m lgm) time.

• For each edge in order, test whether it creates a cycle the
forest we have thus far built – if so discard, else add to
forest. With a BFS/DFS, this can be done in O(n) time
(since the tree has at most n edges).

The total time is O(mn), but can we do better?

Fast Component Tests Give Fast MST

Kruskal’s algorithm builds up connected components. Any
edge where both vertices are in the same connected compo-
nent create a cycle. Thus if we can maintain which vertices
are in which component fast, we do not have test for cycles!

• Same component(v1, v2) – Do vertices v1 and v2 lie in the
same connected component of the current graph?

• Merge components(C1, C2) – Merge the given pair of
connected components into one component.

Fast Kruskal Implementation

Put the edges in a heap
count = 0
while (count < n− 1) do

get next edge (v, w)
if (component (v) 6= component(w))

add to T
component (v)=component(w)

If we can test components in O(log n), we can find the MST
in O(m logm)!
Question: Is O(m log n) better than O(m logm)?

Questions?

Topic: The Union-Find Data Structure

Union-Find Programs

We need a data structure for maintaining sets which can test
if two elements are in the same and merge two sets together.
These can be implemented by union and find operations,
where

• Find(i) – Return the label of the root of tree containing
element i, by walking up the parent pointers until there is
no where to go.

• Union(i,j) – Link the root of one of the trees (say
containing i) to the root of the tree containing the other
(say j) so find(i) now equals find(j).

Union-Find “Trees”

We are interested in minimizing the time it takes to execute
any sequence of unions and finds.
A simple implementation is to represent each set as a tree,
with pointers from a node to its parent. Each element is
contained in a node, and the name of the set is the key at
the root:

4 23 4

1 2 3 4 5 6 7

3 411

3

6 2

7

5

(l)

4

(r)

Union-Find Data Structure

typedef struct {
int p[SET_SIZE+1]; /* parent element */
int size[SET_SIZE+1]; /* number of elements in subtree i */
int n; /* number of elements in set */

} union_find;

void union_find_init(union_find *s, int n) {
int i; /* counter */

for (i = 1; i <= n; i++) {
s->p[i] = i;
s->size[i] = 1;

}
s->n = n;

}

Worst Case for Union Find

In the worst case, these structures can be very unbalanced:

For i = 1 to n/2 do
Union(i,i+1)

For i = 1 to n/2 do
Find(1)

Who’s The Daddy?

We want the limit the height of our trees which are affected
by union’s.
When we union, we can make the tree with fewer nodes the
child.

s

FIND(S)

t

S

UNION (s, t)

Since the number of nodes is related to the height, the height
of the final tree will increase only if both subtrees are of equal

height!
If Union(t, v) attaches the root of v as a subtree of t iff the
number of nodes in t is greater than or equal to the number in
v, after any sequence of unions, any tree with h/4 nodes has
height at most blg hc.

Proof

By induction on the number of nodes k, k = 1 has height 0.
Let di be the height of the tree ti

d1

d2T2

k2 nodes
k1 nodes

T1

k = k1+ k2 nodes

d is the height

If (d1 > d2) then d = d1 ≤ blog k1c ≤ blg(k1+k2)c = blog kc
If (d1 ≤ d2), then k1 ≥ k2.
d = d2+1 ≤ blog k2c+1 = blog 2k2c ≤ blog(k1+k2)c = log k

Can we do better?

We can do unions and finds in O(log n), good enough for
Kruskal’s algorithm. But can we do better?
The ideal Union-Find tree has depth 1:

N-1 leaves

... ...

On a find, if we are going down a path anyway, why not
change the pointers to point to the root?

1

2

3

4 5 6 8 9

7 11
12

13

14
10

FIND(4)

1

4 3 7 10
14

13

12
115 6 8 9

2

This path compression will let us do better than O(n log n)
for n union-finds.
O(n)? Not quite . . . Difficult analysis shows that it takes
O(nα(n)) time, where α(n) is the inverse Ackerman function
and α(number of atoms in the universe)= 5.

Same Component Test

bool same_component(union_find *s, int s1, int s2) {
return (find(s, s1) == find(s, s2));

}

int find(union_find *s, int x) {
if (s->p[x] == x) {

return(x);
}
return(find(s, s->p[x]));

}

Merge Components Operation

void union_sets(union_find *s, int s1, int s2) {
int r1, r2; /* roots of sets */

r1 = find(s, s1);
r2 = find(s, s2);

if (r1 == r2) {
return; /* already in same set */

}

if (s->size[r1] >= s->size[r2]) {
s->size[r1] = s->size[r1] + s->size[r2];
s->p[r2] = r1;

} else {
s->size[r2] = s->size[r1] + s->size[r2];
s->p[r1] = r2;

}
}

Questions?

