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Abstract of the Dissertation

Analytical Approaches for Dynamic Scheduling in Cloud Environments

by

Seyyedahmad Javadi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2019

Scheduling is a critical component for applications running on a cluster of
nodes. Cloud resource capacity may vary dynamically due to resource con-
tention that complicate scheduling decisions, in addition to the traditional
challenge of varying workload demand and data popularity. To address these
issues, scheduler design decisions must be augmented with analytical tech-
niques to automatically adapt to varying workload and system conditions.
In this dissertation, we consider generic scheduling problems that arise in to-
day’s cloud data center applications. In particular, we identify three popular
scheduling scenarios and propose dynamic solutions for them.

First, many online application services are now provided by cloud-deployed
Virtual Machine (VM) clusters. Given that cloud resource capacity can vary
with time, request scheduling in cloud clusters from the tenant’s perspec-
tive is a challenging and open problem. Second, resource under-utilization is
common in cloud data centers. While running batch workloads in the back-
ground has been established as a common approach to improving resource
utilization, an important challenge is considering the tenants’ workloads as
a black-box. Third, customer facing online services rely on scalable and low-
latency data stores to maintain acceptable query tail latencies. An open
scheduling challenge is the assignment of newly created data segments to
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worker nodes to prevent load imbalance among them.
It is our thesis that using analytical approaches to perform dynamic

scheduling is critical to address the emerging performance challenges of cloud-
deployed applications. In support of our thesis, we address the above out-
lined challenges. First, we present DIAL, an interference-aware load bal-
ancing framework that can directly be employed by cloud tenants without
requiring any assistance from the provider. DIAL leverages ideas from queu-
ing theory and machine learning to infer the colocated load and adjust the
scheduling on individual VMs accordingly. Second, we present Scavenger,
a batch workload scheduler that opportunistically runs containerized batch
jobs next to tenants’ workloads to improve utilization without requiring in-
formation about the tenant workload. Third, we present an e�cient segment
assignment strategy, EASY, that leverages analytical modeling to predict the
future load induced by data segments, thus allowing for long-term balancing
of load across worker nodes.
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Chapter 1

Introduction

With the emergence of the cloud computing paradigm, many online services
and applications are now provided by cloud deployed resources. The cloud
o↵ers virtually unlimited and economical compute and storage resources to
end-users. These resources can be leased on an hourly basis, and are provided
by several cloud service providers, such as Amazon, Google, Microsoft, and
IBM.

Scheduling is a critical component for applications running on a cluster of
nodes. This is because scheduling decisions play a crucial role in determining
the end-to-end application tail latency. In emerging cloud environments,
scheduling decisions are complicated by the fact that underlying resource
capacity may vary dynamically due to resource contention, in addition to
the traditional challenge of varying workload demand and data popularity.

The primary cause of varying resource capacity in cloud environments
is multi-tenancy, which is a fundamental design principle of cloud comput-
ing. Under multi-tenancy, a Physical Machine (PM) is shared among multi-
ple cloud tenant Virtual Machines (VMs)/containers and potential provider
workloads. When the aggregate resource demand on the PM is high, we see
resource contention and performance interference between the hosted appli-
cations.

Interference is a common occurrence in data centers [168, 27], and is
prevalent in both public and private cloud deployments. Several studies [85,
42, 145, 161, 99, 94] have shown that tail response times for applications un-
der interference are significantly higher, to the tune of 3-10⇥, on AWS cloud
instances. Further, the studies reveal several instances of interference that
last for 30s or longer. Similar observations have also been made for other
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Figure 1.1: E↵ect of interference on application performance. During
the CPU contention (yellow shaded region) and network contention (green
shaded region) intervals, 90%ile response time increases by about 4⇥.

public cloud providers, including Azure [154], Google and Rackspace [74].
Likewise, interference is known to impact application performance on pri-
vate clouds [137, 109, 97, 70]. Interference can be caused by the contention
of any physical resource among co-located VMs, including CPU, network,
disk, memory, and last-level-cache (LLC). Furthermore, interference can be
caused by contention for several resources simultaneously [63] and is dynamic
due to resource demand variations in tenant and potential provider work-
loads [45, 169]. Our own experiments on OpenStack for a popular multi-tier
web benchmark, CloudSuite [39], highlight the impact of CPU and network
interference on tail response times, as shown in Figure 1.1. We discuss inter-
ference in detail later in Section 2.3.

In the context of resource contention and performance interference, we
specifically consider three significant scheduling challenges:

1. Cloud tenant VM’s variable resource capacity: Cloud tenant VM re-
source capacity can be impacted by the colocated VMs because of
interference. Prior work on interference mitigation has typically fo-
cused on provider-centric solutions. A popular approach is to profile
applications and co-schedule VMs that do not contend on the same
resource(s) [10, 15, 138, 97, 30]. However, since interference is dynamic
and can emerge unpredictably, statically co-scheduling VMs will not
su�ce. VM migration can help in this case, but interference is volatile
and short-lived, often lasting for only a couple minutes [85]; by contrast,
migration can take several minutes [96] and can incur overheads [32],
especially for stateful applications [31].

2



A critical challenge that has not been addressed with regards to inter-
ference is the lack of visibility and control between the provider and the
tenant, especially in public clouds [42]. Specifically, tenant VMs in the
public cloud can not, or should not, be profiled a priori by the provider
due to privacy concerns [99]. Further, providers are not always aware
of the cloud user’s Service Level Objective (SLO) requirements or the
user application’s bottleneck resources.

2. Background workload impact on cloud tenant VM performance: Servers
in cloud data centers often experience low resource utilization [31, 158].
A study focused on Amazon EC2 observed that cloud server usage
is often below 10% [81]. To increase server utilization, prior works
have proposed running provider’s batch workloads, such as Hadoop
or Spark jobs, next to users’ VMs opportunistically to leverage idle
resources [170, 82, 50]. While e↵ective, the key challenge with this
approach is interference, due to which the colocated tenant VMs’ per-
formance can degrade significantly.

Existing solutions often either (i) rely on historical usage patterns to
predict the resource demand of foreground VMs [169, 22], or (ii) bench-
mark tenants VM performance to carefully colocate background work-
loads [30, 31], or (iii) regulate the resource usage of background work-
loads to avoid SLO violations for the foreground VMs [82, 60]. Such
solutions are ine↵ective and, at times, infeasible in cloud environments
as tenants do not expect their VMs to be instrumented [99], and are
not required to share their performance SLO requirements with the
provider [42]. Even if foreground VMs can be profiled for a short time,
there is often significant variation in tenants workloads to be accu-
rately captured by a finite profiling run [63]. There is thus a need for
black-box background workload scheduling to simultaneously improve
resource utilization and avoid SLO violations for the tenant workloads.

3. Impact of hotspots and load imbalance on application tail latency:
cloud-deployed applications’ performance challenges are not limited to
the unpredictable performance of acquired cloud resources by the ten-
ants. Scheduling over a cluster of worker nodes to balance load while
respecting data locality is a classic scheduling challenge. To put this
challenge in context, we study Online Analytical Processing (OLAP)
systems and show how critical this challenge is.

3



In the big-data paradigm, OLAP systems typically split a big table
into several data segments and distribute these data segments among
a cluster of worker nodes. To serve a query, every worker node runs
the query on its’ assigned data segments, and then these local results
are integrated to compute the final response. In such systems, Segment
Assignment Strategy (SAS), which dictates which worker nodes host
a newly generated segment, plays a crucial role in preventing hotspots
that severely impact query tail latencies. The di↵erence in popularity
of di↵erent data segment and the specific mix of queries makes SAS a
challenging problem. Note that hotspot refers to having some highly-
loaded worker nodes while the other worker nodes are under-utilized. In
this case, intra-application resource contention is the underlying reason
for high tail latencies [65].

In this dissertation, we look at the above three challenges from the schedul-
ing perspective. Regarding the first challenge, we have a request scheduling
problem with the goal of having minimum tail latency for applications run-
ning on top a cluster of VMs facing unpredictable performance. Regard-
ing the second challenge, batch workloads need to be scheduled next to the
black-box foreground workloads (tenants’ VMs) with two competing goals:
(1) foreground workloads’ SLO are not violated, and (2) background work-
loads’ progress rate is maximized; the progress rate is directly correlated with
resource utilization. Regarding the third challenge, we have a data segment
scheduling problem with the goal of having a balanced load among the worker
nodes to prevent hotspots and high tail latency.

It is our thesis that using analytical approaches to perform dynamic
scheduling is critical to address the above three challenges. Accordingly,
this dissertation makes three contributions:

1. Dynamic Interference-Aware Load balancing (DIAL) [63]: DIAL is
a dynamic user-centric scheduler for mitigating interference in load-
balanced cloud deployments. We consider a generic cloud-deployed ap-
plication that has a tier of worker nodes hosted on multiple VMs and
experiencing unpredictable interference from colocated VMs (owned
by other cloud tenants). The incoming load is distributed among the
worker nodes via one or more load balancers. This generic model is
widely applicable, for example, for web applications (where workers
are web or application servers), online analytical processing (OLAP)
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systems like Pinot [66], etc. The key idea behind DIAL is to infer
contention in colocated VMs and adapt the load scheduling of incom-
ing requests among user VMs. We introduce a model for interference,
based on queueing theory [56, 72], to understand the impact on the
performance of contention at shared physical resources. DIAL then
optimizes the time-varying load distribution among worker VMs to re-
duce tail latency.

We implement and experimentally evaluate DIAL for two specific ap-
plication classes:

(a) Web applications: We implement DIAL on HAProxy [55], and
evaluate DIAL’s benefits using two popular web applications with
varying workload under CPU, network, disk, and cache interfer-
ence on OpenStack and AWS clouds. Our experimental results
show that DIAL reduces 90%ile response times by as much as
70% compared to interference-oblivious load balancers. Further,
compared to existing interference-aware solutions, DIAL reduces
tail response times by as much as 48%.

(b) OLAP Systems: We implement DIAL for a popular and open-
source OLAP system called Pinot that has been used in produc-
tion clusters at LinkedIn and Uber. Our experimental results on a
KVM cluster show that DIAL can reduce 95%ile query completion
times by 16-40% under CPU and LLC contention.

2. Provider-centric resource manager for background workloads (Scav-
enger) [64]: Scavenger dynamically regulates the resource usage of
background jobs to complement the resource demand of black-box
foreground workloads. We consider a cloud environment with cus-
tomer VMs as the foreground workload and Spark (within the YARN
framework [139]) as the background workload running on containers.
Scavenger is a reactive workload scheduler, and complements proactive
schedulers such as Borg [141]. Scavenger does not make any assump-
tions about the foreground workload and does not require any prior
information about them. We do not profile their resource usage of-
fline and do not instrument them. Instead, we treat the foreground
workload as a black box and react to their resource demand in an on-
line manner. This makes Scavenger’s scheduling application-agnostic
in practice and easy to deploy.
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We implement Scavenger as a daemon running on the server with less
than 1% overhead. Our experimental results on two di↵erent testbeds
using latency sensitive foreground workloads from CloudSuite [39] and
TailBench [67], colocated with Spark batch jobs, show that Scavenger
can satisfactorily balance the trade-o↵ between foreground performance
isolation and increasing the server resource usage. Without Scavenger,
foreground performance degradation is often higher than 50%, and can
be as high as 10–20⇥. With Scavenger, the average performance degra-
dation is less than 10%. Scavenger consistently increases server memory
and CPU usage by more than 100%.

3. E�cient segment Assignment StrategY (EASY) [65]: EASY is our pro-
posed load-aware data segment assignment solution for Online Analyt-
ical Processing (OLAP) systems. EASY addresses the traditional chal-
lenge of varying workload demand and data popularity for Pinot which
is a popular distributed near-realtime OLAP solution extensively used
at LinkedIn and Uber for serving user queries and for internal analysis.

We implement EASY on top of Pinot and experimentally evaluate
EASY using a realistic Pinot benchmark. Our results show that EASY
significantly improves the load balance among worker nodes, reduc-
ing query tail latencies by up to 6–21% when compared to the default
SAS of Pinot and Druid. Importantly, EASY requires few changes and
creates negligible overhead.

The rest of this dissertation is organized as follows. Chapter 2 discusses
the cloud computing related concepts that we use repeatedly in this disser-
tation. Chapter 3 discusses related work and motivates our work further by
explaining the design challenges that have not yet been fully addressed. Our
three contributions, DIAL, Scavenger, and EASY are illustrated by Chap-
ter 4, 5, and 6, respectively. Finally we conclude with a summary of this
dissertation in Chapter 7.
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Chapter 2

Background

This dissertation deals with cloud computing resources and workloads, and
related concepts. We thus start with an overview of these concepts in this
chapter. The chapter also motivates our work by analyzing production re-
source usage traces.

We first briefly discuss cloud computing in Section 2.1. In particular, we
discuss virtualization technology in Section 2.1.1 and private versus public
clouds in Section 2.1.2. We then describe cloud workloads used in our exper-
iments in Section 2.2. The workloads are categorized into latency-sensitive
(Section 2.2.1) and batch applications (Section 2.2.2). The main challenge
we encounter in cloud computing performance management is performance
interference; thus we discuss performance interference in Section 2.3. Accord-
ingly, Section 2.3.1 illustrates interference with more details, Section 2.3.2
discusses reasons for interference, and Section 2.3.3 illustrates prevalence of
interference in public and private clouds. To motivate the need for better
scheduling approaches, we provide an analysis of resource usage in Section
2.4 illustrating the current state of cloud data centers’ resource utilization.
The analysis covers three traces, namely Google traces (Section 2.4.1), Azure
traces (Section 2.4.2) and Alibaba traces (Section 2.4.3).
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2.1 Cloud Computing

Cloud computing is often referred to as the practice of delivering comput-
ing services (e.g., servers and storage) over the Internet. Cloud computing
has shifted the traditional ways of computing drastically and gained tens of
billions of dollars of market by o↵ering services from bare metal servers to
serverless computing. Many online services and applications, such as Net-
flix [16] and Expedia [37], are now provided by cloud-deployed Virtual Ma-
chines (VMs). The main benefits of cloud computing include, but not limited
to, low cost, elasticity, and the ability to pay-as-you-go.

Virtualization is often referred to as the underlying technology that em-
powers cloud computing to share physical resources among multiple tenants;
thus Section 2.1.1 briefly overviews the core concepts of virtualization. Be-
sides, cloud services can be deployed in four di↵erent ways, namely private
cloud, community cloud, public cloud, and hybrid cloud [89] from which we
focus on private and public clouds, discussed briefly in Section 2.1.2.

2.1.1 Virtualization Technology

Virtualization technology allows cloud providers to run users’ applications
in isolated environments, with high flexibility from computing and storage
perspectives, by running multiple VMs or containers on the same Physical
Machines (PMs). The software layer which is responsible for managing re-
sources and sharing them among VMs is called the hypervisor. There are two
types of hypervisors, as shown in Figure 2.1: (1) type-1, bare metal hypervi-
sors, that run directly on top of hardware, and (2) type-2, hosted hypervisors,
that operate as complex applications on top of the existing Operating Sys-
tems (OSs). In both types, hypervisors act as the Virtual Machine Manager
(VMM) and allocate resources to VMs as well as monitor and control their
usage.

Figure 2.1 also shows a simplified picture of current commodity servers.
Current processors consist of several CPU cores, each of which has its L1
and L2 caches, while they share Last Level Cache (LLC) or L3 cache [8].
Having many cores enables a high degree of parallelism where di↵erent pro-
cesses/threads can be scheduled to be run at the same time. Hardware
vendors also provide special support for virtualization technology such as
hyperthreading which increases the degree of parallelism by launching two

8



Figure 2.1: Types of hypervisors and a simplified view of a multicore system.

hardware/hyper-threads per CPU core.
Due to the enormous benefits of virtualization and the significant atten-

tion gained by it, several platform virtualization software (hypervisors) have
been developed such as KVM, Xen, VMWare ESX and Hyper-V, to name
a few. To conduct our experiments, we use the Kernel-based Virtual Ma-
chine (KVM), which is a virtualization infrastructure for the Linux kernel.
KVM is a full virtualization solution for Linux on x86 hardware containing
virtualization extensions (Intel VT or AMD-V), and thus users can run mul-
tiple VMs running unmodified Linux or Windows images. KVM converts
Linux into a type-1 (bare-metal) hypervisor and since it is is part of the
Linux kernel, it has all the required operating system-level components to
run VMs such as a memory manager, process scheduler, input/output (I/O)
stack, device drivers, security manager, a network stack, just to name a few.
Every VM is implemented as a regular Linux process, scheduled by the stan-
dard Linux scheduler, with dedicated virtual hardware like a network card,
graphics adapter, CPU(s), memory, and disks.

Cloud deployment is a challenging task that needs software technologies
beyond hypervisors. Accordingly, to provide all the required technologies
from networking management to a dashboard, several enterprise and open-
source cloud frameworks have been developed among which OpenStack [101]
is very popular and has been used in production systems. OpenStack is
an open-source cloud framework that embraces a modular architecture to
provide a set of core services that facilitates scalability and elasticity as core
design principles. The main components of OpenStack are as follows:

• Compute: This service manages virtual machine instances using di↵er-
ent hypervisors the default of which is KVM for Linux.
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• Networking: This service provides various networking services such
as IP address management, DNS, DHCP, load balancing and security
groups.

• Image service: This service provides disk-image management services,
including image discovery, registration, and delivery services to the
Compute service, as needed.

• Dashboard: This is a web-based interface for both cloud administrators
and cloud tenants using which they can provision, manage and monitor
cloud resources.

In this dissertation, we use KVM and OpenStack to perform our experiments.

2.1.2 Private versus Public Clouds

Private cloud is defined by NIS [89] as ”cloud infrastructure provisioned for
exclusive use by a single organization comprising multiple consumers, such
as business units. The cloud may be owned, managed, and operated by the
organization, a third-party, or some combination of them, and it may exist
on or o↵ premises”. For instance, companies can use their infrastructure
for cloud services by deploying virtualization frameworks such as OpenStack
[101]. These infrastructure are typically behind an internal firewall, thus
they o↵er an increased level of security. However, the companies will still be
responsible for the management, maintenance, and updating of the infras-
tructure.

Public cloud is defined by NIS [89] as ”cloud infrastructure provisioned
for open use by the general public. The cloud may be owned, managed, and
operated by a business, academic, or government origination, or some com-
bination of them and the cloud exists on the premises of the cloud provider”.
Cloud users (e.g., companies) can then use several types of services (e.g.,
launching VMs) o↵ered by the providers. In other words, cloud users share
underlying physical infrastructure and get benefits such as lower cost, elas-
ticity and geo-distributed computing and storage resources without being
concerned about underlying data centers’ management and maintenance.
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2.2 Cloud Workloads

Di↵erent types of workloads can be deployed on the cloud. Several e↵orts
have been made to create representative benchmarks to be used by academia
and industry. In this dissertation, we use multiple benchmarks categorized
into latency-sensitive workloads and batch workloads, discussed briefly in the
following two sections.

2.2.1 Latency-Sensitive Workloads

Latency-critical workloads generally refer to applications or their compo-
nents that have strict end-to-end response time or execution time restrictions.
These applications are widespread in data centers [67] and form a fabric of
interactive, large-scale (scale-out) online services. We use following latency
sensitive workloads in our experiments:

• CloudSuite [39]: The first version of this benchmark suite was released
in 2012 and has constantly been updated over time [106]. Cloud-
Suite 3.0 provides eight workloads, five of which can be categorized
as latency-sensitive workloads:

1. Web Serving: It is clear that web serving, such as social net-
working services, is a very popular workload. Accordingly, this
benchmark is a multi-tier, multi-request class, PHP-MySQL based
social networking application. The benchmark has four tiers: (1)
the web server, (2) the database server, (3) the Memcached server,
and (4) the clients.

2. Web Search: Considering the massive amount of daily generated
web contents, search engines play a crucial role to find related in-
formation. Web Search benchmark deploys Apache Solar search
engine framework to respond to simulated real-world clients’ re-
quest to the index nodes containing an index of the text and fields
found in a set of crawled websites.

3. Data Serving: Many online services often deal with massive amount
of data that can be queried by deploying backend data stores.
Data Serving benchmark relies on the Yahoo! Cloud Serving
Benchmark (YCSB), which is a framework to benchmark data
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store systems. Data serving benchmark uses YCSB to generate
loads for Cassandra data store.

4. Data Caching: Many caching systems have been developed to
speed up database-driven applications by caching data and objects
(e.g., queries’ responses) in main memory to reduce the number
of times an external data source must be read (e.g., queries being
re-executed). Data Caching benchmark uses the Memcached data
caching server and twitter dataset to simulate the behavior of
Twitter.

5. Media Streaming: Nowadays streaming services such as video
streaming are very popular. Media Streaming benchmark uses
Nginx web server as a streaming server for hosted videos of vari-
ous lengths and qualities. The client, based on httperf’s wsesslog
session generator [92], generates a request mix for di↵erent videos,
to stress the server.

• TailBench [67]: TailBench is a recent benchmark suite specifically de-
signed for analyzing latency-critical applications. There are eight work-
loads in the suite, all of which use 95%ile response time as the reported
performance metric (further details can be found in the TailBench pa-
per [67]):

1. Xapian: an online search benchmark using the Wikipedia dataset
as search index.

2. Moses: a statistical machine translation application using the
opensubtitles.org English-Spanish corpus.

3. Silo: an in-memory database application driven using TPC-C [134].

4. Specjbb: an industry-standard Java middleware benchmark [122].

5. Masstree: a key-value store application driven using YCSB [20].

6. Shore: an on-disk database driven using TPC-C [134].

7. Sphinx: a speech recognition system driven using the AN4 audio
dataset [121].

8. Img-dnn: a handwriting recognition application driven using the
MNIST images database [33].
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Figure 2.2: Overview of Pinot’s architecture.

• WikiBench [135]: WikiBench is a distributed web application bench-
marking tool based on Wikipedia. The benchmark uses real traces to
generate realistic workloads to target systems hosting Wikipedia data
and software.

• Pinot [66]: Pinot is a distributed near-realtime OLAP (On-Line An-
alytical Processing) data store that is used at LinkedIn for various
user-facing functions and internal analysis. Pinot has been open-source
since 2015 and is currently being used by other companies such as Uber.
Pinot is designed to be able to process 100 Million SQL-like queries for
100 Billions of records in 10s of ms latency.

Figure 2.2 illustrates the Pinot architecture including the three main
components: (1) controller, (2) broker, and (3) worker nodes. The con-
troller is responsible for cluster-wide coordination and segment assign-
ment to worker nodes (SAS). The broker (or brokers) receives queries
from clients, distributes them among workers, and integrates the re-
sults from the workers and sends the final result back to clients; the
end-to-end query response time can be obtained at the broker. The
worker nodes host data segments and respond to query sub-requests
that originate from the broker. We have implemented an improved
Pinot benchmark that is described in Section 6.5.1.

In this dissertation, we have three contributions, namely, DIAL, Scav-
enger, and EASY. We use CloudSuite, WikiBench, and Pinot for evaluating
DIAL (Sections 4.5 and 4.6), CloudSuite and TailBench to evaluate Scav-
enger (Section 5.5), and Pinot to evaluate EASY (Section 6.5).
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2.2.2 Batch Workloads

Batch processing refers to non-interactive computation such as one-o↵ jobs
(e.g., compilation) and processing of multiple items in batches. With emer-
gence of the big-data paradigm, batch workloads also refer to processing of
massive amount of data in a distributed fashion. Several big-data frameworks
can run batch workloads among which the following ones are prevalent and
often used in research and production systems:

• Hadoop [128]: Apache Hadoop is a collection of open-source software li-
braries that enable the distributed processing of massive amount of data
across clusters of nodes using simple programming models. The well-
known programming model used by Hadoop is MapReduce in which
a traditional single-node computation is instead done by several nodes
in parallel on distributed splits of input data during map and reduce
phases, thus speeds up the computation significantly. Hadoop Dis-
tributed File System (HDFS) is storage core of Hadoop and enables
splitting large files into configurable size blocks and distributing them
across nodes in a cluster. Being able to scale up from single servers to
thousands of machines and detecting and handling failures at the appli-
cation layer are two main features of Hadoop architecture. In addition
to Hadoop Common, HDFS and Hadoop MapReduce modules, Hadoop
Yarn [139] is a very popular and highly deployed resource management
framework that is mainly responsible for managing cluster resources
and scheduling user’s applications.

• Spark [129]: Apache Spark is an open-source distributed engine for
large-scale data processing. Spark is known to be significantly faster
than Hadoop MapReduce paradigm as it employs in-memory process-
ing [162]. For in-memory processing, Spark introduces Resilient Dis-
tributed Dataset (RDD) which is a read-only multiset of data items
distributed over the main memory of a cluster of nodes and maintained
in a fault-tolerant manner [162]. A full Spark deployment requires a
cluster manager and a Distributed File System (DFS). Accordingly,
Spark and Hadoop can have main components in common, such as us-
ing Hadoop Yarn and HDFS as Spark cluster manager and Spark DFS,
respectively.

• TensorFlow [126]: This is a high-performance numerical computation
framework released in 2017 by Google Brain. TensorFlow has a flexi-
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ble architecture that enables easy deployment of computation across a
variety of platforms (e.g., CPUs and GPUs) and range of computing
resources from desktops to clusters of servers. In addition to computer
research and industry, many other scientific domains use TensorFlow
due to its strong support for machine learning and deep learning.

In this dissertation, we use spark-based benchmarks, including Spark-
Bench [120] and BigDataBench [7], in our experiments for Scavenger.

2.3 Performance Interference in Cloud

Performance Interference is one of the main challenges of cloud computing;
thus this section provides an overview of performance interference, its under-
lying reasons and prevalence in cloud environments.

2.3.1 Performance Interference

Performance interference occurs when co-located VMs/containers on a Phys-
ical Machine (PM) contend for resources. To properly define performance in-
terference, let us consider a high-level comparison between a non-virtualized
environment and a virtualized environment. Suppose two applications (A1

and A2) run on two separate non-virtualized servers. Both the servers have
distinct resources such as L3 cache, CPU cores, disk, and network bandwidth.
Therefore, both applications often have predictable performance since they
have stable resource allocation over time. Now suppose two VMs (VM1 and
VM2) are co-located on the same PM and share the PM resources. Virtual
machines VM1 and VM2 run applications A1 and A2, respectively. In this
case, we define performance interference as follows:

Performance interference is the situation where co-located VMs’ requests
contend for the shared resources; thus the real capacities of resources assigned
to the VMs are less than what they should be. In other words, when VMs
do not get their requested resource capacities (based on their specifications)
because of sharing of underlying PM resources, we call it performance inter-
ference

The immediate impact of performance interference is unpredictable per-
formance which is very important and challenging. Performance variation
has been observed across resources (CPU capacity, network latency, I/O
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bandwidth,etc.) and across CSPs and data center locations [49, 38, 147, 41],
and is among the top concerns that dissuade customers from cloud adoption
[133, 132, 107]. For example, application developers at Facebook, Google,
and Bing focus on maintaining low tail latencies [3, 118] to avoid signifi-
cant revenue losses due to user abandonment [142]. The severe performance
variation in cloud deployments (ranging from 2-27⇥), highlighted by exist-
ing studies [156, 90, 146], coupled with the (unsurprising) fact that CSPs do
not o↵er performance guarantees [43], prevents these businesses from moving
their latency-sensitive applications to the cloud.

Back to our example, considering the above definition, VM1 and VM2

might not deliver stable performance over time which is in contrast to the
predictable performance of non-virtualized environments. Let’s assume that
both applications A1 and A2 are CPU-intensive. If the underlying physical
CPU cores shared by VM1 and VM2 are not enough to handle the sum of
peak load of A1 and A2, then VM1 and VM2 will contend for the underlying
CPU cores and face interference, resulting in performance loss. In other
words, VM1 and VM2 only get a fraction of the computing resources they
are entitled to get. These situations illustrate performance interference.

Figure 2.1 also emphasizes that co-located VMs shares PM resources (e.g.,
LLC, CPU cores, disk, and network bandwidth). Sharing resources between
the co-located VMs without providing performance isolation can lead to un-
predictable performance for the VMs [147, 49]. This co-location and lack of
performance isolation, which are non-trivial challenges, especially in the case
of LLC, is the critical reason for interference. The next section will explain
this fact with more details.

2.3.2 Reasons for Interference

The previous section presented the problem of performance interference caused
by resource contention in virtualized environments. In general, any shared
resource under contention can result in interference. The following is a list
of the primary resources in a typical commodity server that can be a source
of interference:

• Last Level Cache (LLC): LLC or L3 cache is low latency and expen-
sive memory that is used to save the data fetched from main memory
to do subsequent read/write operations faster. Co-located VMs share
LLC of their host because of which their memory access pattern will
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a↵ect each others’ performance. For instance, if some of the co-located
VMs access random sections of their memory space (such that the ac-
cessed space is bigger than LLC size) very frequently, it will pollute
LLC lines and lead to higher LLC miss rate for the co-located VMs.
Higher LLC miss rate leads to increased memory operations. Since
latency of a memory operation (LLC miss) is very high compared to
LLC hit, performance of co-located VMs drops considerably [148].

• Main memory bandwidth: VMs contend on other components of
main memory including channels, ranks, and banks. Often these sources
of contention are categorized as memory bandwidth interference [148].

• CPU: Virtual CPU (VCPU) is the unit of assigning CPU cores to VMs.
In general, the number of VCPUs that are assigned to co-located VMs
can be more than the number of physical cores or hardware threads
in the host. This approach helps to increase host CPU utilization
since previous studies show that in cloud environments considerable
percentage of VMs’ VCPUs are idle [44]. However, if more than the
existing CPU cores or hardware threads in a Physical Machine (PM)
is assigned to its hosted VMs, and the VMs execute computationally
intensive operations, they will contend for CPU cycles.

• Network I/O bandwidth: Because network communications are a
fundamental part of today’s distributed systems and applications, net-
work stack of a PM is a critical shared resource among co-located VMs
in the PM. If multiple VMs execute several network I/O operations
(close to the peak capacity) at the same time, they will face high queu-
ing delay or even packet drop because of high pressure on the shared
network stack. For instance, if there is a 1Gb link between a PM
and rest of the infrastructure, and two di↵erent tenants’ VMs are co-
located in the PM, interference will happen if the VMs push network
tra�c more than the peak bandwidth.

• Main memory capacity: In general, total memory capacity assigned
to the co-located VMs in a PM can be more than available physical
memory in the PM [57]. Memory overprovisioning is a well-known
approach to launch more VMs and have higher physical resource uti-
lization. However, if VMs request total memory capacity that is more
than available capacity, the host OS will have to deal with insu�cient
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physical memory capacity. In fact, in this situation and considering
virtual memory capacity, there will be a high rate of disk I/O in host
OS, and this can lead to huge performance loss.

• Disk I/O bandwidth: Attached persistent storage (e.g., HDD and
SSD) is an important shared resource used by many applications. The
co-located VMs’ disk IO requests contend on disk IO stack for service.
In other words, multiple VM requests will have to be multiplexed on
one disk, which will result in I/O bandwidth contention. For example,
suppose an HDD disk with a known sequential write speed. If only
one VM (VM1) is writing to the disk sequentially, it can write up to
that speed. However, if a co-located VM (VM2) starts to issue random
reads/writes to the same disk since the disk head will move randomly,
the sequential write speed for VM1 will drop considerably.

Cloud vendors are aware of the performance interference that is caused
by resource contention. While di↵erent cloud vendors have deployed their
approaches to ensure predictable performance, the solutions are far from
perfect. For instance, reservation-based methods in which some shares of
a PM resource are reserved for each of the hosted VMs can lead to low
utilization and ine�cient resource usage. The reason is that there can be a
situation where some of the VMs do not use their share while others need
more resources. Furthermore, it is hard to share some of the resources such as
LLC while guaranteeing that VM requests do not interfere with each other.

Popular public cloud o↵erings, such as Amazon AWS [4], have taken steps
to limit performance interference. In particular, AWS limits the amount of
resources, such as network or CPU cores, that are assigned to customer VMs.
Further, AWS does not typically oversubscribe resources on their hosts [11].
Thus we do not see interference for resources such as CPU and memory.
However, interference does exist even in AWS when LLC and disk I/O band-
width is under contention, as we observed in our experiments on AWS. Thus,
in the absence of perfect isolation mechanism, if multiple VMs start using a
shared resource at the same time such that the available resource capacity is
not enough to meet all VM demands, the performance of the VMs will drop.

2.3.3 Prevalence of Interference

Several studies have highlighted the prevalence of interference and its nega-
tive impact on performance in cloud computing environments. The studies
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typically consider two main categories of testbeds: (1) a cluster of VMs
launched on popular public clouds where there is limited visibility of the un-
derlying physical infrastructure since they are controlled by cloud providers
and, (2) a cluster of physical servers that runs popular cloud management
software (e.g., OpenStack) and is under the full control of the researchers
because of which we call them private cloud environments. Accordingly, we
summarize and explain these research results based on their deployed exper-
imental setups in the following two subsections.

Public Cloud Environments

In this section, we summarize the results of the main studies that consider the
impact of sharing resources in public cloud on VMs’ performance. Typically,
several VMs are launched and their performance is evaluated by running
di↵erent benchmarks under varying circumstances.

Wang et al. [147] show that virtualization and sharing of resources in
Amazon EC2 a↵ects network performance of applications. In particular,
they show that small EC2 instances often share processors and they get
40% to 50% of the physical CPU sharing. Accordingly, they conclude that
observed periodic low TCP throughout for the small instances is because of
the processor sharing. Besides, they show that round-trip-times variations
are much more higher for EC2 instances (especially small ones) in comparison
to non-virtualized machines.

Ghoshal et al. [49] also observed an occasional drop in performance of
EC2 instances when they run a benchmark for a long time (same observation
in [100]). They guess that this can be because of sharing underlying resources.
Furthermore, they show that if we run MPI (message passing interface) tasks
on multiple EC2 instances while they are sharing an EBS volume to perform
I/O, there will be high resource contention over a limited network. This can
negatively a↵ect the overall performance. Although in this scenario, VMs of
the same tenant share the EBS volume, it still illustrates the importance of
performance isolation. The authors also observed considerable improvement
in I/O performance after the peak processing hours since then there is limited
contention for the shared resources.

Maji et al. [85] run an identical workload on both private and Amazon
EC2 clusters for 100 hours and compare the response time distribution to
show that interference is a real problem. According to their results, EC2
cluster response time distribution has much longer tail latencies which indi-
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cated the periods of unpredictable performance. Several of these interference
periods were 30 seconds long and the longest one was 140 seconds. Further-
more, using the method described in [115] and after some trial and error,
they could co-locate two EC2 instances. Then, in one of the VMs, they run
a workload that accesses memory very frequently to create LLC contention.
They observed the order of 4⇥ increase in response times of the application
running in the second VM [115]. This observation shows that LLC contention
can happen for Amazon EC2 instances launched by several independent ten-
ants. Gandhi et al. [42] also show that Amazon EC2 instances exhibit sig-
nificant variation in performance, probably due to resource contention from
(unobservable) co-located VMs.

Our Experiments: Amazon AWS recently started providing a new op-
tion called EC2 dedicated host [6]. Users can leverage dedicated hosts to
address compliance requirements and reduce costs by using existing server-
bound software licenses. Interestingly, using dedicated hosts, users can launch
their EC2 instances on them. There is an upper limit on how many instances
a user can launch into a dedicated host. Placement of EC2 instances on the
dedicated hosts can be done either by the users themselves or automatically
by AWS. One interesting feature of this new option is that researchers can
co-locate EC2 instances easily (without using the complex method described
in [115]) to study the impact of interference. We use this feature to create
LLC and disk I/O interference easily, but could not create CPU, memory,
and network contention [63]. Therefore, LLC and disk I/O interferences are
still real problems in Amazon AWS.

Private Cloud Environments

We now discuss prevalence of interference in private cloud environments.
Koh et al. [71] did one of the earliest analysis of performance interference
in vitualized environments in 2007. They select several realistic workloads
and run di↵erent pairs of them in two VMs on top of the Xen hypervisor
in order to study how di↵erent applications a↵ect each others’ performance.
Their results confirm that there can be a high degree of interference when
di↵erent workloads are running in co-hosted VMs. For instance, they show
that performance of a cache-intensive application will drop significantly when
another cache-intensive workload is running in a co-located VM. They ob-
tain similar results for CPU and I/O intensive applications. Bu et al. in
[10] show that running CPU-intensive (or I/O intensive) workloads in the
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co-located VMs increases the runtime of the target CPU (or I/O) bound
benchmark by up to 7⇥ of the non-interference runtime. On the other hand,
they show that applications that are sensitive to di↵erent resources face less
performance degradation when they run on two co-located VMs. For exam-
ple, a CPU-intensive application experiences less severe performance drop
(less than 1.5⇥) when an I/O intensive workload is running in the co-located
VM. Similar observations where made by Pu et al. [111, 110] where the au-
thors suggest running I/O intensive workloads with co-located CPU-intensive
workloads to limit performance interference.

Nathuji et al. [97] run a micro-benchmark in a VM co-located with a
second VM to show the impact of LLC interference. The micro-benchmark
consists of several iterations over a specified working set size until a constant
amount of data (which is much more larger than LLC size) is accessed. The
micro-benchmark is run for several increasing working set sizes and execution
times are reported. When they run the micro-benchmark alone in the VM
while the second VM is idle, the execution times increase when the working
set size becomes larger than LLC size. The reason is that because of the
higher LLC miss rate for larger working sets; more memory operations are
needed. Then, if the second VM runs few synthetic memory intensive threads,
the execution times of the micro-benchmark increase even when the working
set sizes are considerably less than LLC size. This clearly illustrates that the
second VM uses some of the LLC capacity and the VMs requests interfere.
They show that running the workload in the second VM can increase the
execution tomes of the micro-benchmark by 380% because of LLC sharing.

While popular hypervisors such as Xen have been progressing in schedul-
ing mechanisms to provide a fair share of the resources (or flexible resource
sharing approaches) to the VMs, Zhang et al. [165] show that it is still pos-
sible to have considerable interference. They run TPC-W benchmark as the
target (foreground) application and Hadoop as the background workload in
a co-located VM to create contention. Even if they tune Xen scheduler’s
parameters in order to give Hadoop the lowest possible weight, there is a
significant di↵erence in the distribution of TPC-W response times when it
is run alone (e.g., 90th percentile of TPC-W response times is 100 msec)
compared to when it is run with the co-located VM running Hadoop and
sharing the same CPU core (e.g., 90th percentile of TPC-W response times
is 400 msec). Mukherjee et al. [93] also confirms the same observation when
Apache instances share a non-virtualized server versus the scenario that they
are run in di↵erent VMs sharing the underlying server. The results show al-
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most 20⇥ increase in the mean response time of Apache instances running
on the VMs when they are highly loaded.

Our Experiment: We also conducted several experiments in our private
OpenStack cloud testbed and observe as much as 4⇥ increase in response
times of Apache web server during di↵erent types of interference. We study
network I/O, CPU, LLC, and main memory capacity interference in this
dissertation. Under network I/O interference, the 90% percentile of Apache
response time increased by 5⇥. Under CPU interference, the 90% percentile
of Apache response time increased by 4⇥. Under LLC interference, the 90%
percentile of Apache response time increased by 15⇥. Under memory capac-
ity interference, the Apache response time was very noisy and unstable, that
indicated an abnormal situation for the co-located VMs and the underlying
PM.

2.4 Server Utilization Analysis

We analyze real-world server resource usage to motivate further research on
dynamic scheduling and improving resource utilization in cloud data centers.
Several service operators have recently released resource usage traces for
their data center servers. We analyze the resource usage of the following
three traces:

1. Server-level resource utilization traces (CPU, memory, disk I/O) from
Google (2011).

2. VM-level resource utilization traces (CPU) fromMicrosoft Azure (2016-
2017).

3. Server-level resource usage traces (CPU and memory) for colocated
workloads from Alibaba (2018).

Of these, the Alibaba trace is most relevant to our motivation, so we
briefly discuss our analysis of the Google and Azure traces first, and then
explain the analysis of the Alibaba trace in detail.
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Figure 2.3: Average and peak utilization of CPU and memory for the Google
cluster trace.

2.4.1 Google Server Resource Usage Traces

The Google trace contains resource usage information for a cluster of
about 12,500 servers over a period of 29 days from May 2011 [150, 114].
Of relevance to us is the CPU and memory usages for the tasks scheduled
on the PMs and the normalized resource capacity of the PMs. Disk I/O
times are also provided, but only for a portion of the time range, and the
normalized per-server disk capacity details are unavailable. The task-level
resource usages are reported in 5-minute intervals and can be used to find
per-machine CPU and memory utilization.

Figure 2.3(a) shows the timeline plot for average CPU and memory uti-
lization averaged over all PMs in the trace. We see that the average CPU and
memory utilization is around 40.9% and 47.4%, respectively. Figure 2.3(b)
shows the CDF of per-server peak (overall intervals) CPU and memory uti-
lization across all servers. We find that the median of peak usage is 79.6%
and 96.1% for CPU and memory, respectively. This shows that peak usage
for servers is high; however, note that the peak is computed over the 29 days
length of the trace. Also, note that the peak usage is sometimes greater than
100% for CPU; this happened for nearly 6.6% of the servers. This is either
an anomaly or a result of hyper-threading which was not accounted for by
the normalization used in the trace.
Summary: We note that the utilization for this cluster is moderate, but
there is room for improvement, as suggested by the unused resource utilization
in Figure 2.3(a).
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Figure 2.4: VM-level CPU utilization for the Azure trace.

2.4.2 Azure VM-Level Resource Usage Traces

The Azure trace contains first-party VM CPU utilization data from one
region [22]. The trace spans over 30 days and reports (only) CPU utilization
(min, average, and max) of over 2 million VMs, every 5 mins, over their
lifetime.

Figure 2.4(a) shows the timeline plot for average CPU utilization for
every 5-min interval, averaged over all VMs that exist during that interval.
We see that the average CPU utilization is quite low, typically less than
20%. Figure 2.4(b) shows the CDF of peak CPU utilization; the CDF is
obtained by considering the average, 95%ile, and max of per-interval peak
usages reported for each VM over their respective lifetime. We find that the
median of the average, 95%ile, and max of peak usage is about 40%, 70%,
and 90%, respectively. This shows that peak usage (over the lifetime) can be
high when considering individual VMs. This observation also suggests that
VMs (in the Azure trace) were likely provisioned for peak CPU usage.

Summary: The VM usage pattern is variable enough to provide opportu-
nities for colocation. However, since VMs may require full CPU capacity at
some point, the colocated workloads need to be agile enough to relinquish re-
sources. Also, since tenant load is hard to predict, and some VMs do require
full capacity at some point, oversubscription of resources may not be feasible
for all servers.
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Figure 2.5: Analysis results for the Alibaba cluster trace.

2.4.3 Alibaba Server Resource Usage Traces

The Alibaba production cluster traces [1] contain server-level CPU and mem-
ory usage sampled every 10s for about 4,000 servers over 8 days. The servers
had colocated online (or foreground) containerized jobs and background non-
containerized batch jobs to increase resource usage; normalized usage of both
jobs is also provided. However, performance/latency information for jobs is
not provided.

The solid lines in Figure 2.5(a) show the CDF of average total utilization
(foreground+background) for CPU and memory across all servers; the aver-
age is taken per server over the length of the trace. We also plot the average
usage for only the foreground online jobs. We see that the average CPU
usage is almost always less than 50%. If we consider only foreground, then
average CPU usage is almost always less than 20%. Thus, while colocation
helps, there is still room for improvement in CPU usage.

In terms of average memory usage, colocation helps significantly, with
the average server-level usage typically exceeding 70%. The per-server peak
memory usage numbers are also quite high, suggesting that most servers
do require their provisioned memory capacity at some point during the 8
days of the trace duration. However, we do find instances where there is
significant temporal variation in memory usage, representing an opportunity
for improvement. To highlight the scope for improvement, we show specific
examples of normalized per-server memory usage snippets in Figure 2.5(b).
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Server A has high memory usage in the first 4 hours, peaking at about 70%
usage; however, thereafter, its memory usage is low, around 30%; we see a
similar behavior for server D. Server E, on the other hand, has memory usage
in the 20–40% range, except for the distinct peak of about 90% at the 9 hour
mark; similarly for servers B and C.
Summary: The above findings show that there is potential for improving
resource utilization in data centers despite the current practices of coloca-
tion and oversubscription. The memory usage results show that it is critical
for batch workload managers to be dynamic to fully realize the potential of
improving resource usage via colocation.
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Chapter 3

Related Work

Scheduling is a critical component for applications running on a cluster of
nodes; thus several prior works have tried to address various challenges of
scheduling. In this dissertation, we focus on scheduling in cloud environ-
ments, which is more challenging because of performance interference, as
discussed in Section 2.3. This chapter reviews prior work in the broad area
of scheduling and interference management to make a case for our contribu-
tions.

We first discuss the important and recent prior work on workload schedul-
ing and cluster management in cloud environments in Section 3.1. Schedul-
ing background workloads in a best-e↵ort manner is a common practice to
improve resource utilization in cloud environments while guaranteeing that
foreground/primary workloads’ performance is not a↵ected. Section 3.2 thus
reviews the related work on background workload scheduling. Accordingly,
improving resource utilization in private clusters and public cloud servers
are discussed in Section 3.2.1 and Section 3.2.2, respectively. Despite the
several prior works on this context, Section 3.2.3 illustrates that many of
these related work only regulate the usage of specific resources; this moti-
vates our work which regulates multiple resources. Performance interference
is a critical challenge for cloud computing, as we discussed in detail in Sec-
tion 2.3. Therefore, Section 3.3 discusses interference management in cloud
environments. In particular, Section 3.3.1 reviews related work on inter-
ference detection, Section 3.3.2 illustrates prior work on interference-aware
performance management, Section 3.3.3 discusses the limitation of provider-
centric interference management approaches, and Section 3.3.4 motivates the
need for a user-centric interference management solution.

27



3.1 Scheduling in Cloud Environments

Scheduling is a broad concept and can be used in many contexts. In this
section, we review the important prior work on request scheduling in cloud
environments. The high-level problem is to schedule requests (of workloads)
on a cluster of VMs or servers while satisfying the workloads’ performance
requirements. Note that we use term request in a broad context ranging
from short-lived jobs (e.g., short background job) to long-lived jobs (e.g.,
cloud tenant VM). Having jobs with di↵erent requirements, such as di↵erent
resource demand (potentially dynamic) and priorities, makes scheduling a
challenging problem.

Borg [141] is Google’s cluster manager that runs Google’s jobs on their
clusters. All job tasks are run in cgroup-based containers and are assigned
priority based on their functionality (such as high-priority latency-sensitive
jobs and low-priority batch jobs). To accommodate higher priority jobs on a
machine, Borg starves, and can even kill lower priority jobs. Since all tasks
of jobs in the cluster are known to Borg, it is aware of their resource require-
ments and priorities. Scavenger has a similar goal as Borg when it comes
to performance isolation, but we consider a public cloud environment (as
opposed to a private cluster) where foreground jobs are black-box customer
VMs; thus, we do not have the same cgroup resource regulation tools at our
disposal when managing foreground jobs. Further, all customer VMs have
to be treated as having the same (high) priority in our case.

Mesos [58] is a cluster sharing platform that has been developed by re-
searchers in UC Berkeley (presented in 2011), and Mesos open-sourced plat-
form was announced in 2016 by Apache Software Foundation. Mesos allows
various frameworks to share clusters e�ciently. A framework is a software
system that manages and executes one or more jobs on a cluster. Mesos
aims to be a generic platform with minimal size; thus Mesos leaves the
interval scheduling to the frameworks and focuses on how many resources
every framework can get using common policies (e.g., fair sharing). To do
so, Mesos introduces the concept of resource o↵ers to enable fine-grained
sharing across frameworks. Each framework running on Mesos consists of
two components: a scheduler that registers with the master to be o↵ered
resources, and an executor process that is launched on slave nodes to run
the framework’s tasks. While the Mesos master determines how many re-
sources to o↵er to each framework, the frameworks’ schedulers select which

28



of the o↵ered resources to use. OS container technologies are used to isolate
resources between framework executers running on the same slave. While
Mesos o↵ers specific resource vectors (e.g., CPU cores and memory, to name
a few) to the frameworks, it does not handle scenarios where the frameworks
running in the background use just the idle resources and do not a↵ect the
foreground workloads’ performance. Our background workload scheduler,
Scavenger, can extend Mesos to allow frameworks to run their jobs in the
best-e↵ort manner. We implement Scavenger on top of Apache Yarn [139],
which is another popular resource management framework.

Bistro [50] is a job scheduler that runs data-intensive batch jobs next to
online customer workloads in Facebook’s production systems. Bistro uses a
hierarchical resource models to address possible contention at multiple levels,
including data volumes, host, and rack. To avoid disrupting foreground jobs,
Bistro constraints the resource capacity allocated to batch jobs by manually
configuring this available capacity based on the characteristics of the fore-
ground jobs. While Facebook knows the resource demand patterns of their
foreground jobs, this is not always true. In a public cloud, the provider only
has details of the requested VM size, which, as we saw from the VM-level
Azure traces in Section 2.4.2, can be very conservative.

3.2 BackgroundWorkload Scheduling in Cloud
Environments

In order to put our work on scheduling background workloads in context,
we now discuss related works that address the underutilization problem by
colocating background jobs with foreground jobs.

3.2.1 Improving Resource Utilization in Private Clus-
ters

The problem of resource underutilization has been around since before shared
public clouds. In private clusters, where the provider has full knowledge
of all running applications, the underutilization problem can be solved by
colocating batch jobs that complement the known resource usage patterns of
foreground jobs in the cluster. In some cases, the performance requirements
of the foreground jobs are also known, so their resource demand can be
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regulated as well. Recall the moderate utilization numbers for the Google
cluster traces analyzed in Section 2.4.1; this represents a private cluster.

Heracles [82] combines software and hardware isolation mechanisms to
run batch jobs next to latency sensitive jobs. The Heracles controller mea-
sures foreground job latency every 15 seconds to decide on colocation. Hera-
cles focuses specifically on dedicated cluster environments where the provider
is aware of the foreground application and its SLOs, and the provider can
benchmark the performance of foreground jobs with di↵erent levels of colo-
cation. This profiling approach is not feasible for public cloud environments
where the cloud provider can not (or should not) benchmark or profile black
box customer VMs.

PARTIES [13] is a recently proposed resource controller that mitigates
SLO violations between colocated latency-sensitive applications using soft-
ware and hardware mechanisms. PARTIES assumes that the applications’
SLO requirements and current performance information is known to the
provider, making it suitable for private clouds, but not public clouds.

PerfIso [60] is a black-box approach for isolating the CPU interference be-
tween foreground and background jobs by reserving some bu↵er CPU cores to
accommodate the load variations in foreground jobs. However, as acknowl-
edged by the authors, PerfIso does require a critical one-time performance
profiling of the foreground to determine the extent of load variations that the
foreground workload will experience, allowing PerfIso to reserve the number
of bu↵er cores accordingly. This approach may be infeasible in public clouds
where the provider cannot profile black box tenant VMs. Further, as we
show throughout our results, isolating CPU cores alone does not mitigate
processor cache contention.

3.2.2 Improving Resource Utilization in Public Cloud
Servers

In public cloud environments, the foreground (customer) VMs cannot be
controlled and their resource demands should be met at all times based on
their VM sizes. However, their resource usage pattern can be studied to
make predictions, if possible.

Zhang et al. [169] rely on historical usage patterns of CPU and disk us-
age to predict the required resources for customer VMs; the remaining spare
compute cycles and storage space are then leveraged by the provider’s batch
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workloads. Resource Central [22] used a similar approach to colocate pro-
duction and non-production VMs on Azure cloud servers to increase CPU
utilization. TR-Spark [158] aims to run Spark on transient VMs, such as spot
instances, which can be run by the provider in the background. The main
idea is to introduce checkpointing to allow job progress in spite of worker fail-
ures by modifying Spark’s Task Scheduler and Shu✏e Manager. MOON [76]
provides a similar solution, but for Hadoop jobs, by using transient resources
to host data replicas and intermediate data. However, TR-Spark relies on
prediction of worker failures, suggesting that changes in the foreground work-
load can be predicted.

In general, customer workloads need not follow specific patterns and may
not be predictable [45]; the performance loss due to misprediction and subse-
quent oversubscription can be expensive and may result in loss of customer
revenue [28].

3.2.3 Regulating the Usage of Specific Resources

There have been prior works on regulating the resource utilization of specific
resources, such as CPU and network. These works typically focus on the
scheduler or the device driver to prioritize foreground jobs.

dCat [153] presents a cache performance isolation approach by exploiting
the CAT technology (cache allocation technology [98]) on Intel’s newer x86
machines to dynamically resize the cache allocation based on the needs of
the workloads. However, dCat can only be used on servers equipped with
CAT. Further, dCat only considers LLC interference. QJUMP [53] addresses
in-network interference by defining priority levels for packets, allowing fore-
ground job packets to jump-the-queue over background job packets. This
mitigates the increase in switch queueing of foreground jobs caused by batch
jobs under colocation. PerfIso [60] uses a foreground application performance
profiling approach to determine the number of CPU cores that can be safely
allocated to background jobs. MIMP [170] proposes a similar CPU schedul-
ing policy that allows background Hadoop jobs to run only when foreground
VMs are not actively utilizing the CPU. The authors also modify the Hadoop
scheduler to prioritize jobs that can best utilize the variable resource capacity
that is unused by the foreground. CPI2 [167] employs statistical approaches
to analyze an application’s Cycles-Per-Instruction (CPI) metric to detect and
mitigate processor interference between threads of di↵erent jobs. However,
CPI2 only handles processor interference. Tableau [136] is a scheduler for Xen
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that mitigates CPU interference among VMs (all foreground) by scheduling
them according to their complementary resource demands. Dirigent [171] is
a white-box solution that profiles the execution of foreground jobs and uses
this profile to yield processor resources when the foreground is making good
progress. PerfGreen [127] uses a similar idea to leverage idle cores for running
batch jobs.

The above works target a specific resource contention under colocation.
In general, several resources may simultaneously be under interference [63,
84]. Further, as shown in Section 5.5, managing the contention at a single
resource, such as CPU, will not su�ce. Thus, there is a need for solutions,
such as Scavenger, that address multiple, concurrent resource contentions.

3.3 Interference Management in Cloud Envi-
ronments

Interference among cloud applications has received significant attention from
researchers because of the severe performance degradation caused by interfer-
ence and because of its complex and uncertain nature [42, 137]. Interference
management is a key component of this dissertation, thus we now discuss
related work in this area in detail.

3.3.1 Interference Detection

Recent work has emphasized the need for user-centric interference detec-
tion [85, 84, 12, 61]. IC2 [85] employs decision trees using VM-level statistics
to detect interference at the cache; this information is then used to tune the
configuration of web servers in co-located environments. Casale et al. [12]
focus on CPU interference and present a user-centric technique to detect
contention by analyzing the CPU steal metric. CRE [2] makes use of col-
laborative filtering to detect interference in web services by monitoring re-
sponse times. While we also monitor response time, we go beyond detection
and also estimate the amount of interference. CPI2 [167] employs statistical
approaches to analyze an application’s CPI metric to detect and mitigate
processor interference between threads of di↵erent jobs. While CPI2 can be
used in virtual environments, public cloud VMs (e.g., AWS) do not always
expose performance counters.
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There have also been studies on interference detection from the perspec-
tive of the hypervisor (e.g., ILA [10], TRACON [15], and DejaVu [138]).
While useful, such techniques require hypervisor access for monitoring host-
level metrics (e.g., global CPU usage from Dom0 or hardware counters),
which are not always feasible for cloud users.

There are also techniques [26, 19, 68] that automatically diagnose perfor-
mance issues; however, such methods are not tailored for timely interference
mitigation.

3.3.2 Interference-Aware Performance Management

ICE [84] proposes interference-aware load balancing by limiting the CPU uti-
lization of the a↵ected VM below a certain threshold. While e↵ective, we
find, via experiments (see Section 4.5.3), that this strategy is not adaptive to
di↵erent levels of interference. Mukherjee et al. [61] propose a tenant-centric
interference estimation technique that employs a software probe periodically
on all tenant VMs, and compares the performance of the probe at runtime
versus that in isolation to quantify interference. The authors later extended
this work to PRIMA [94], which is an interference-aware load balancing and
auto-scaling technique that leverages the above-described probing technique
to make load balancing decisions. However, PRIMA only focuses on mean
response time (as opposed to the more practical tail response time metric)
and limits itself to network interference. Bubble-Up [88], Tarcil [32] and
Quasar [31], and ESP [95] profile workload classes and carefully colocate
workloads that do not significantly impact each others’ performance due to
their specific resource requirements. By contrast, DIAL does not control
colocation (since VM placement is typically not in the user’s control); in-
stead, DIAL globally adjusts the LB policy of the fg application to reroute
some of the requests directed at a↵ected VMs. Interference-aware server re-
configuration [85] attempts to tune the parameters of the server or VM, such
as Timeout and MaxClients, to minimize the impact of interference; this is
complementary to our work that focuses on load balancing.

There is also prior work on interference-aware scheduling (e.g., Paragon [30]),
migration (e.g., DeepDive [99]), resource provisioning (e.g., Q-Clouds [97]),
and placement (e.g., CloudScope [14]) of VMs. However, such techniques
require hypervisor-level visibility and control, and are thus orthogonal to our
user-centric focus in this dissertation.

Prior work on load balancing typically focuses on adaptive strategies to
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deal with imbalance in load caused by server faults or congestion. In addition
to the heuristic policies considered in Section 4.5.3, Tiwari et al. [131] pro-
pose an extension to Round Robin for heterogeneous servers that considers
queue lengths. HALO [46] proposes extensions to Round Robin and other
policies for heterogeneous servers focusing on mean response time. Such
policies are not designed for interference, but could be extended. Another
option is to simultaneously send requests to multiple servers to reduce la-
tency [27]. Again, while not designed for interference, such policies can help,
though at the cost of additional resources. Recently, Sparrow [103] proposed
a probabilistic scheduler that samples the queue length at a few servers, and
picks the one with the lowest load. While we do not focus on scalability in
this dissertation, such sampling approaches can be integrated with DIAL for
operating in large clusters.

3.3.3 Limitations of Provider-Centric Solutions

Cloud providers have taken steps to address performance interference. To
prevent interference, providers try to isolate and partition hardware resources,
such as CPU, that a user VM is allocated. However, low-level hardware re-
sources, such as processor caches and memory buses, are notoriously hard
to isolate without incurring significant overhead [160, 85, 70]. Our exper-
iments on AWS EC2 using microbenchmarks confirm the presence of LLC
contention and disk I/O contention (see Section 4.5.3). Regardless of the
ease and feasibility of isolation, limiting resource sharing among colocated
VMs can lower utilization, defeating the purpose of cloud computing [84, 97].
In fact, cloud platforms, such as OpenStack, overcommit CPU and memory
by default to increase resource utilization.

To further mitigate interference, prior work suggests carefully co-scheduling
VMs that do not interfere [10, 15, 97, 30]. Unfortunately, it is not always pos-
sible to predict the resource usage of every colocated VM [85, 84], especially
since providers are unaware of software and applications installed by users
on their VMs [99, 42]. As a result, interference can unpredictably emerge
or cease on any colocated VM; statically scheduling VMs will thus not suf-
fice. While VM migration can help address dynamic interference, there are
several issues that make this approach infeasible: (i) the migration process
can itself take on the order of minutes to complete [79, 96], (ii) migration
can lead to new interference among colocated VMs on the target host [155],
and (iii) migration can incur substantial compute and communication over-
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heads [152, 143].
In practice, provider-centric solutions also su↵er from the fact that they

are not aware of the user deployment. For example, providers might not be
aware of the SLO requirements of the user application, or the deployment
details, such as the di↵erent tiers of the application and resource bottlenecks
at each tier. In fact, providers might not be able to access application-level
performance metrics, such as per-tier latencies, workload request mix, session
lengths, etc. Given these limitations, we explore a di↵erent class of solutions.

3.3.4 The Case for User-Centric Solutions

User-centric solutions aim to address interference from within the user’s ap-
plication deployment without requiring any assistance from the cloud provider
or other cloud users. The user deploys such solutions, and thus have the
advantage of being aware of, and having visibility into, the application de-
ployment and SLO requirements.

While provider-centric solutions can be useful in specific scenarios, for
example, where the user and provider belong to the same organization and
thus share visibility and control of the application [168, 30], this is not always
the case. In several private cloud deployments, the provider only maintains
the infrastructure and is not responsible for users’ SLOs. In general, it is
unlikely that cloud providers will engage with every cloud user to mitigate
their performance interference problems. User-centric solutions can address
this gap by directly empowering the users to mitigate interference in their
deployments. Further, such solutions can complement provider-centric solu-
tions, especially when provider e↵orts to mitigate interference are not enough
to avoid specific SLO violations for user applications.
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Chapter 4

Interference-Aware Load
Balancing

Request scheduling for applications in cloud environments faces a new
challenge–the cloud resources, such as Virtual Machines (VMs) and contain-
ers have unpredictable performance due to the underlying physical servers’
resource contention. Despite several provider-centric interference mitigation
e↵orts, performance interference is still a major concern that can degrade
the cloud-deployed applications’ performance significantly. In this chapter,
we propose a user-centric interference mitigation approach which can be em-
ployed by the tenant without requiring any assistance from the provider or
hypervisor. Such user-centric solutions empower the tenant to have greater
control over their application performance, which is often the most important
criteria for users.

There are several types of applications in cloud environments; we focus on
load-balanced applications that are common in the cloud. In a load-balanced
application, there is a load balancing tier with one or more load balancers
that are responsible for dispatching incoming requests among a cluster of
nodes (e.g., VMs).

We present DIAL, a dynamic solution for mitigating interference in load-
balanced cloud deployments. The key idea behind DIAL is to infer con-
tention in colocated VMs and adapt the load distribution of incoming re-
quests among user VMs accordingly. In other words, DIAL addresses the
request scheduling challenge by taking the potential change in the cloud re-
sources’ capacity into account to decide which node should run an incoming
request.
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Part of the results from this chapter was published in ICAC 2017 [63]. We
introduce the problem and discuss the scope of this chapter in Section 4.1. We
then illustrate our proposed user-centric approach for estimating the severity
of resource contention in Section 4.2. Using the estimation results, we discuss
how DIAL calculates load balancing weights in Section 4.3. We put all the
components together and discuss the DIAL control flow in Section 4.3.3. We
implement DIAL for two di↵erent types of applications, namely web appli-
cations and OLAP applications; thus we first discuss our generic evaluation
methodology in Section 4.4, and then provide the evaluation results for web
and OLAP applications in Section 4.5 and Section 4.6, respectively.

4.1 Overview and Scope

Applications deployed in the cloud can experience undesirable performance
e↵ects, the most severe of which is interference. Performance interference
is caused by contention for physical resources, such as CPU or LLC, among
colocated VM users/tenants. Prior work has shown that interference in pub-
lic and private cloud environments can degrade application performance by
as much as 27⇥ [145, 157, 10].

Interference is an undesirable side-e↵ect of a fundamental design princi-
ple of the cloud, namely, multi-tenancy (sharing of a physical server among
users). While specific resources, such as CPU, can be partitioned among colo-
cated VMs by cloud providers, other resources, such as processor caches, are
notoriously hard to partition [84]. Nonetheless, the partitioning of resources
among tenants can adversely impact cloud resource utilization. Further, re-
source contention depends on the workload of all colocated tenant VMs, and
is thus dynamic and unpredictable [85]; as a result, static partitioning is not
a useful solution.

Prior work on interference mitigation has typically focused on provider-
centric solutions. A popular approach is to profile applications and co-
schedule VMs that do not contend on the same resource(s) [10, 15, 138, 97,
30]. However, since interference is dynamic and can emerge unpredictably,
statically co-scheduling VMs will not su�ce. VM migration can help in this
case, but interference is volatile and short-lived, often lasting for only a cou-
ple minutes [85]; by contrast, migration can take several minutes [96] and
can incur overheads [32], especially for stateful applications [31].

A critical challenge that has not been addressed with regards to interfer-
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Figure 4.1: Illustration of a generic cloud application containing LBT and
worker tier deployed on multiple foreground (fg) VMs experiencing interfer-
ence from background (bg) VMs.

ence is the lack of visibility and control between the provider and the tenant,
especially in public clouds [42]. Specifically, tenant VMs in public can not, or
should not, be profiled a priori by the provider due to privacy concerns [99].
Further, providers are not always aware of the cloud user’s Service Level
Objective (SLO) requirements or the user application’s bottleneck resources.

We present DIAL, a dynamic solution for mitigating interference in load-
balanced cloud deployments. We consider a generic cloud-deployed applica-
tion that has a tier of worker nodes hosted on multiple VMs and experiencing
unpredictable interference from colocated VMs (owned by other cloud ten-
ants), as shown in Figure 4.1. The incoming load is distributed among the
worker nodes via one or more load balancers. This generic model is widely
applicable, for example, for web applications (where workers are web or appli-
cation servers), Online Analytical Processing (OLAP) systems like Pinot [66],
etc.

Figure 4.1 illustrates a typical multi-tier cloud deployed application. The
worker nodes process the incoming requests, and are illustrated as a tier
of VMs. Incoming requests are distributed among the worker nodes using
an application-specific scheduler or dispatcher or load balancer; we abstract
this entity as a Load Balancing Tier (LBT). Our focus in this dissertation is
on the worker nodes and the LBT; specifically, we propose a new technique
to dynamically infer the interference on worker nodes and adjust the load
balancing weights for the worker VMs in the LBT. We assert that the LBT
is ideally suited to mitigate the e↵ects of volatile interference on worker VMs
as the LBT acts at the front-end for the worker tier.
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Figure 4.2: Illustration of DIAL’s control flow.

The worker tier is hosted on multiple foreground (fg) VMs, each of which
is hosted on a physical machine (PM); we highlight the worker tier fg VMs
in Figure 4.1. Each PM may also host background (bg) VMs that do not
belong to the fg user, as shown in Figure 4.1. The fg and bg VMs on a PM
can contend for shared physical resources, such as CPU, network bandwidth
(NET), disk I/O bandwidth (DISK), and last-level-cache (LLC), resulting in
interference. Note that the fg user does not have visibility into the bg VMs;
in fact, the fg user is unaware of bg VMs.

4.1.1 DIAL Overview

Our solution, DIAL, is a user-centric dynamic Interference-Aware Load Bal-
ancing framework. The design of DIAL addresses two key questions:

(i) How can users estimate the interference that their VMs are experienc-
ing without any assistance from the provider, hypervisor, or colocated
users? (Section 4.2)

(ii) Given this information, how should users dynamically distribute load
among their VMs to minimize tail latencies in the presence of interfer-
ence? (Section 4.3)

The key idea in DIAL is to estimate, from within a user VM, the amount of
interference being induced by colocated VMs, and then adapt the incoming
load intensity for each user VM accordingly. Figure 4.2 shows a high-level
overview of DIAL’s control flow. DIAL monitors performance metrics from
within the VMs and signals interference if tail latency goes above a certain
threshold (detection, see Section 4.2.1). DIAL then determines if the de-
tected event is a load change for the application or a resource contention
event (classification, see Section 4.2.2). Depending on the source of con-
tention, DIAL quantifies, or infers, the severity of resource contention (esti-
mation, see Section 4.2.3). Based on this quantification, DIAL determines
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the theoretically-optimal load balancing weights that the user application
should employ to mitigate the impact of contention (see Section 4.3). The
above steps are continually employed at runtime, enabling DIAL to respond
dynamically to contention.

4.2 User-Centric Estimation of Interference

To e↵ectively mitigate interference, DIAL must first estimate the amount
of interference that each user VM is experiencing. To this end, we define
amount of interference: the fraction of available physical resources that are
in use by colocated background VMs. In the context of Figure 4.1, the amount
of interference is the fraction of physical resources on a PM that are in use
by the colocated bg VMs, and are thus unavailable to the fg VM on that
PM. As we show below, estimating the amount of interference is non-trivial
as it requires classification and modeling of interference.

4.2.1 Impact of Interference on Tail Latencies

Interference is known to impact application response times [145, 157, 10].
DIAL leverages this fact to estimate the amount of interference that an fg
VM is experiencing because of resource contention created by colocated bg
VMs. Specifically, DIAL aims to infer the amount of interference, or resource
contention, that the bg VMs must be creating to e↵ect the observed rise in
fg response times.

Figure 4.3 shows the impact of di↵erent types of resource contention on
the 90%ile response time of an OpenStack cloud-deployed Apache web server
VM hosting files and driven by the httperf load generator. We create con-
tention for this fg VM by running various microbenchmarks in colocated bg
VMs. The x-axis denotes the percentage of total resource usage, which is
the sum of resource usage by the fg VM and all colocated bg VMs, nor-
malized by peak resource capacity or bandwidth. For example, if the total
network bandwidth usage is 80MB/s, and the peak network bandwidth is
about 115MB/s, then the resource utilization is 80/115 ⇡ 0.7. We make two
observations from this figure: (i) response time increases considerably under
interference, (ii) the relationship between total resource usage and response
time depends on the exact resource under contention.
Detecting interference: DIAL uses the first observation to detect when
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Figure 4.3: Performance of an OpenStack-deployed Apache web server under
interference from colocated VMs running microbenchmarks.

the fg application VM is under interference. Specifically, from Figure 4.3,
we see that application response times, or Tx, are initially low and stable
(left of the graph). However, once the total resource usage increases (right
of the graph), because of the increased resource demand from bg VMs, the
fg response times rise sharply. Thus, DIAL signals interference when Tx

goes beyond the 95% confidence intervals (around the mean of periodically
monitored tail latencies) observed during no or low interference.
Need for identifying the source of interference: The second obser-
vation suggests that using tail response times to estimate interference will
require knowledge of the specific resource that is under contention.

4.2.2 Classifying Interference Using Decision Trees

Our next task is to classify the source of interference, which is defined as
the dominant resource under contention. Note that it is possible for several
resources to be simultaneously under contention; however, we only consider
dominant resource contention. We defer the analysis of multiple resources
under contention to future work. Our key idea in classification is to observe
the impact of interference on easily observable user metrics such as CPU
utilization, I/O wait time, etc., which can be obtained from within the VM
via the /proc subsystem. In general, one can monitor all available metrics
and use feature selection algorithms, such as LASSO or ridge regression, to
derive the list of useful features, which can then be used for classification.

DIAL uses decision trees to classify contention. The decision tree classifier
is trained by running controlled interference experiments using microbench-

41



marks and monitoring the metrics in each case. After training, the decision
tree can classify the source of interference, even for unseen workloads, based
on the observed metric values (Section 4.5.3).

Distinguishing interference from workload variations: An applica-
tion’s response time can degrade for various reasons, such as workload surges,
in addition to interference. While our detection methodology detailed in Sec-
tion 4.2.1 does not distinguish between interference and workload variations,
DIAL makes this distinction at the classification stage by again leveraging
the decision tree classifier. Specifically, To distinguish interference from work-
load variations, DIAL normalizes the observed metric values with predicted
values based on monitored workload intensity. Prior work has shown that
linear models can accurately predict CPU usage based on workload inten-
sities [164]. We thus use linear regression to predict the metric values as a
linear function of the number of requests seen in the past monitoring interval.

The intuition behind this approach is that, in the absence of interference,
the normalized values will be close to 1 under workload variations. The
decision tree can thus use the deviation of the observed metrics from the
normalized metrics to distinguish workload changes from interference.

4.2.3 Queueing-Based Model for Interference

The final step is to use the classification information to estimate the amount
of interference, which is the fraction of resources that are in use by colocated
bg VMs. Once we have these estimates, DIAL can redistribute incoming load
accordingly to mitigate the impact of interference (Section 4.3).

From Figure 4.3, we see that tail response times increase non-linearly
with the total usage of the resource under contention. Recall that the total
resource usage is the sum of resource usage of the fg VM (can be monitored
by the fg user) and all colocated bg VMs (cannot be monitored by the fg
user). Our key idea is to model this non-linear relationship for each resource;
this allows inferring the resource usage of the colocated bg VMs based on
observed fg tail latencies, which in turn gives us the amount of interference.
Modeling interference: We employ queueing theory to model the non-
linear relationship between resource usage and tail latencies. Queueing mod-
els suggest that the tail response time for an application is inversely pro-
portional to the unused capacity of the VM [56]. Mathematically, Tx ⇠
1/(1� ⇢fg)↵, for some parameter ↵, where ⇢fg is the resource load of the fg
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application (such as CPU utilization or I/O bandwidth utilization), normal-
ized to peak resource usage; that is, 0  ⇢fg  1. Prior work [59] has shown
that ↵ = 2 works well for practical settings given the high variability in real
workloads. Prior theoretical work has also shown that a quadratic term in
the denominator can result in better predictability under high loads [113].
However, such models do not account for interference.

Under interference, the fg application experiences congested resources due
to colocated bg VMs. As a result, the application experiences higher load
than it would in the absence of interference. We model this e↵ect by adding
the resource usage of colocated bg VMs to that of the fg VM, resulting in fg
response times being inversely proportional to (1� (⇢fg + ⇢bg)). The sum of
loads exerted by the fg and bg VMs, (⇢fg + ⇢bg), represents the normalized
total resource utilization. We thus approximate x%ile response time as:

Tx = c0 + c1/(1� ⇢fg � ⇢bg) + c2/(1� ⇢fg � ⇢bg)
2, (4.1)

where ~c is the coe�cient vector that depends on the specific resource under
contention. The polynomial function in Eq. (4.1) is inspired by prior work
on queueing systems [113, 9] to interpolate between low load and high load
regimes.

To determine the coe�cients, we train the model in Eq. (4.1) by creat-
ing di↵erent levels of resource usage and monitoring the Tx of fg VMs (see
Section 4.3.3). We then use multiple linear regression over this training data
to derive the resource-specific coe�cients. While Eq. (4.1) is inspired by
queueing models, it can accurately track the relationship between tail re-
sponse times and resource usage for realistic web applications, as we show in
Section 4.5.
Applying the model to estimate interference: Eq. (4.1) can be easily
employed to estimate the amount of interference. After detection and classi-
fication, the fg user can estimate ⇢bg by monitoring Tx and ⇢fg, and solving
Eq. (4.1) for ⇢bg.

4.3 Interference-Aware Load Balancing with
DIAL

Interference-aware load balancing is the key component of DIAL. When there
is no interference, balancing the load among VMs works well to provide low
response times. However, if one of the VMs is facing interference (can be
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estimated via the above-described interference modeling), then its share of
the load must be adjusted accordingly. One might think that reducing the
share of load in proportion to the available capacity at the compromised VM,
(1 � ⇢bg), should work well. Unfortunately, this approach can be far from
optimal, as we show via experiments in Section 4.5.3.

4.3.1 Minimizing Tail Response Times for Web Appli-
cations

To minimize application tail response times under interference, we again
employ queueing theory. We first consider the case where any VM can serve
an incoming request, as in the case of a web application tier. Consider a
cluster of n VMs, with VM i facing interference of ⇢bg,i. Let the fraction of
total incoming load that is directed to VM i be pi; we refer to pi as the weight
assigned by the load balancer (LB) to VM i. If the total arrival rate for the
application is a, the arrival rate for VM i is a · pi. Our goal is to determine
the pis that minimize the x%ile response time, Tx.

To obtain a simple closed-form expression for the theoretically optimal pis,
we model each VM as an M/M/1 system. By focusing on the dominant re-
source that is causing interference, as classified using the decision tree, we em-
ploy the M/M/1 model to represent the contention at the dominant resource.
While this is an oversimplification, the resulting closed-form tail latency ex-
pression enables the optimization and determination of theoretically-optimal
load balancer weights. We note that the resulting pis are only optimal under
the M/M/1 model; we refer to these as the “theoretically optimal” weights
in the rest of the chapter.

For the M/M/1 model, the response time is known to follow an Expo-
nential distribution [56]. We can thus obtain any tail probability of response
time by using the CDF of the Exponential distribution. Under the M/M/1
assumption, Tx for a cluster of n VMs is approximated as:

Tx ⇡
nX

i=1

pi ·
� ln(1� x/100)

ri � a · pi
, (4.2)

where ri represents the throughput of VM i (with contention). Since interfer-
ence reduces the throughput of the compromised VM, we set ri = r·(1�⇢bg,i),
where r is the peak throughput of an application VM. For example, if the
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peak throughput of our Apache server is r = 1000 req/sec, and it is experienc-
ing an estimated interference of ⇢bg = 0.6, then we set r = 1000⇥ 0.4 = 400
req/sec.

Eq. (4.2) above works for all percentiles of response time. For example,
if x = 90, meaning we focus on the 90%ile response time, then the term in
the numerator becomes � ln(1� 0.9) = ln 10. For 95%ile response times, the
numerator becomes ln 20. Interestingly, the optimization for pis discussed
below does not depend on the numerator value (since it is independent of
pi), and thus our results apply, as-is, for any percentile of response times,
including the median.

Given a (which can be monitored) and ri (derived as discussed above
using interference estimation from Section 4.2), Tx can be expressed as a
function of pi via Eq. (4.2). We can now derive the theoretically optimal
weights, pis, that minimize Tx in Eq. (4.2) via calculus, as presented below
(proof omitted for ease of presentation).

Lemma 1. The theoretically optimal load split for minimizing Tx for a cluster
of n VMs with total arrival rate a and individual VM throughputs ri is given
by:

p⇤i =

0

@ri

nX

j=1

p
rj �

p
ri

nX

j=1

rj + a
p
ri

1

A /

0

@a
nX

j=1

p
rj

1

A (4.3)

Proof. The proof of optimality proceeds via mathematical induction on n.
We first prove the base case for n = 2. Let the probability of sending a
request to VM1 (with throughput r1) be p; thus, arrival rate into VM1 is
a · p. Then, under the M/M/1 queueing model [56], the response time for
VM1 is distributed as Exp(r1�a ·p). Based on this, the x%ile response time
is � ln(1�x/100)

r1�a·p . Likewise, the x%ile response time for VM2 (with arrival rate

a · (1� p)) is � ln(1�x/100)
r2�a·(1�p) . We now approximate Tx for the 2-VM system as:

Tx ⇡ p · �ln(1� x/100)

r1 � a · p + (1� p) · �ln(1� x/100)

r2 � a · (1� p)
.

We now derive the optimal value of 0  p  1 that minimizes Tx. After some
algebra (taking derivatives of Tx w.r.t. p), we get

p⇤1 = p⇤ =
r1
p
r2 � r2

p
r1 + a

p
r1

a(
p
r1 +

p
r2)

.
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Now assume that the above expression for p⇤ is true for n = k. Then, for
n = (k+1), we partition the (k+1) VM system into a single VM with request
probability pn and a k-VM system with request probability (1� pn). For the
k-VM system (with primed variables) with request rate a0 = a · (1� pn), by
the inductive hypothesis, we have:

p0⇤i =
ri
Pk

j=1
p
rj �

p
ri
Pk

j=1 rj + a0
p
ri

a0
Pk

j=1
p
rj

.

The approximate x%ile response time for the (k + 1)-VM system can then
be written as:

Tx ⇡ pn · �ln(1� x/100)

rn � a · pn
+ (1� pn) ·

kX

j=1

p0⇤i · �ln(1� x/100)

ri � a0 · p0⇤i
(4.4)

Note that Tx is itself a function of pn since request rate for the k-VM system is
a0 = a(1�pn)). We now derive the theoretically optimal p⇤n by di↵erentiating
Eq. (4.4) to get:

p⇤n =
rn

Pn
j=1

p
rj �

p
rn

Pn
j=1 rj + a

p
rn

a
Pn

j=1
p
rj

. (4.5)

The remaining k theoretically optimal probabilities can then be derived
by noting that

p⇤i = (1� p⇤n) · p0⇤i .

The resulting expressions match those given by Eq. (4.5), thus completing
the proof by induction.

Note that p⇤i depends on the estimates of ri, thus necessitating the in-
terference estimation of Section 4.2. Also note that p⇤i depends on the total
arrival rate, a. This is to be expected since, for example, if the arrival rate
is very low, we can send all requests to the VM with the highest throughput
to minimize response times; however, if the arrival rate is very high, then
a single VM cannot handle all requests, and we have to distribute the load.
Importantly, both ri and a can change unpredictably at any time (ri due to
interference and a due to variable customer tra�c), motivating the need for
a dynamic solution instead of existing static solutions.
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4.3.2 Minimizing Tail Response Times for OLAP Ap-
plications

We now extend the above analysis to the case where only a subset of workers
(replicas) can serve an incoming request due to data locality, as in the case
of OLAP systems. Let the number of replicas be c. Let us first consider
the case where one worker, say w, out of n, is under interference. Let the
non-interference throughput be r and that of w be rw < r.

In the absence of interference, 1/c fraction of requests that have a replica
on w would be sent there by the LB; further, the arrival rate to w would be
a/n, assuming a fair distribution of replicas among workers. In the presence
of interference, let the fraction sent to w be p, and so the fraction sent to
the remaining (c � 1) replicas is 1�p

c�1 . Thus, the arrival rate into w is now
a
n · p

1/c = a
n · p c, and the fraction of all requests that go to w is q = p c

n .

Likewise, arrival rate into each non-interference worker is a
n+

a
n ·

1�p c
(n�1) = a· 1�q

n�1 ,

and the fraction of all requests that go to each non-interference worker is 1�q
n�1 .

Using the M/M/1 model [56], we have, similar to Eq. (4.2):

Tx ⇡ q · � ln(1� x/100)

rw � a · q + (n-1) · 1� q

n-1
· � ln(1� x/100)

r � a · 1�q
n�1

(4.6)

Observe that Eq. (4.6) is exactly the same as Eq. (4.2) when r1 = rw and
ri = r for i 6= 1, except that p1 is replaced by q. Thus, the theoretically
optimal solution, via Eq. (4.3), is q⇤ = p⇤1, and thus the theoretically optimal
split for the worker under interference is q⇤ · nc = p⇤1 · nc . Intuitively, this result
says that more load needs to be placed on the interference worker in case
of OLAP when compared to web applications; this makes sense as there are
fewer alternative workers in case of OLAP applications as opposed to web
applications, i.e., (c� 1) as opposed to (n� 1). We can similarly obtain the
theoretically optimal split when one more than worker is under interference.

4.3.3 The DIAL Control Flow

The control flow for our DIAL implementation (for web and OLAP applica-
tions) is as follows:

1. Monitoring: DIAL monitors the fg application’s Tx, arrival rate, a,
load, ⇢fg,i, and classification metrics (e.g., connection time), averaged
every interval, for all fg VMs.
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2. Detection: DIAL signals interference if Tx exceeds its 95% confidence
bounds for successive monitoring intervals.

3. Classification: DIAL next employs the decision tree to identify the
dominant resource under contention.

4. Estimation: DIAL then uses the Tx and ⇢fg,i values in Eq. (4.1), with
the dominant resource-specific coe�cients, to estimate the interference,
⇢bg,i. The interference-aware throughput for fg VM i is adjusted by
(1� ⇢bg,i).

5. Interference-aware load balancing: Given these estimates, and the mon-
itored a value, DIAL derives the LB weights, ~p⇤, via Eq. (4.3), and
inputs them to the LB.

We continue monitoring the VMs’ performance to detect further changes in
interference and to detect the end of interference. To this end, we ensure
that a small number of requests are sent to the a↵ected VMs so we can
monitor the progress of interference; we can also use probes for this purpose,
as suggested by recent work [93]. When Tx returns to normal (for successive
intervals), we reset the LB weights.

The monitoring interval length employed by the controller depends on the
stability of the fg application and the noise in the system. We use a length
of 10s based on the sensitivity analysis for our specific setup [63].

DIAL requires some model training to build the decision tree (Section 4.2.2)
and derive the coe�cients of the estimation model (Eq. (4.1)). The above
training tasks can be performed o✏ine on a dedicated server in a cloud en-
vironment by controlling the bg VMs to run microbenchmarks at di↵erent
intensities while monitoring relevant metrics. In a private cloud environment,
such as OpenStack, we can set aside a dedicated host using Availability Zones
and Host Aggregates. In some public cloud environments, such as Amazon,
dedicated hosts can be rented on a pay-as-you-go basis. We use these options
for training the DIAL controller using a simple set of microbenchmarks and
then highlight the performance improvements under a di↵erent set of realistic
workloads that were not used for training.

4.3.4 Assumptions for DIAL controller training

The above-described DIAL control flow and training makes certain implicit
assumptions about the incoming workload. Specifically, by training at di↵er-
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ent load intensities, DIAL assumes that (i) the workload request mix does not
change significantly at runtime, and (ii) the distribution of inter-arrival times
does not change significantly at runtime. When the request mix changes, for
example, to a more database-heavy request mix, then the workload will have
a greater sensitivity to disk I/O contention. This will thus require a retain-
ing of the DIAL controller to infer the new model parameters. Note that the
mean arrival rate and/or the number of workers may change dynamically,
and this is already monitored by DIAL and is taken into account when de-
termining the theoretically optimal load balancing weights via the a and n
parameters, respectively. We show, in Section 4.6.3, that DIAL works well
even under an abrupt request rate change and a change in the number of
workers.

4.4 Evaluation Methodology

To evaluate the e�cacy of DIAL, we implement it for realistic applications
and study the reduction in tail latency when worker nodes face interference.
This section describes the foreground applications for which we implement
DIAL and background applications that are used to create contention for
di↵erent resources. We also explain our resource monitoring approach for
worker nodes.

4.4.1 Foreground (fg) Applications

Web applications: Figure 4.4 illustrates a typical multi-tier web applica-
tion. The worker tier, which we focus on, is the application server tier and
is highlighted in Figure 4.4. The incoming requests are distributed among
application servers via a load balancer. Our focus in this dissertation is on
the application tier which is behind the load balancer. The web application
is hosted on multiple foreground (fg) VMs, each of which is hosted on a phys-
ical machine (PM); we highlight the application tier fg VMs in Figure 4.4.
The incoming requests for the user application are load balanced among fg
VMs via a load balancer (LB). Note that the fg user does not have visibility
into the bg VMs; in fact, the fg user is unaware of bg VMs.

We employ two multi-tier web benchmarks as our fg application:

1. CloudSuite [39]: The CloudSuite 2.0 Web Serving benchmark is a
multi-tier, multi-request class, PHP-MySQL based social networking
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Figure 4.4: Illustration of a typical multi-tier web application.

application. The benchmark uses several request classes, e.g., Home-
Page, TagSearch, EventDetail, etc.

Our CloudSuite setup consists of: (i) Faban workload generator for
creating realistic session-based web requests. We set the number of
users to 1000 for OpenStack and 5000 for AWS; the think time is 5s
(default). (ii) HAProxy LB distributes incoming http requests (from
Faban) among the back-end application tier VMs. We use the default
Round Robin policy, unless stated otherwise (as in Section 4.5.3 where
we compare with other policies). (iii) Application VMs installed with
Apache, PHP, Memcached, and an NFS-Client. We employ 3 applica-
tion VMs in OpenStack and 10 in AWS. (iv) A MySQL server and an
NFS server, hosting the file store, are installed on separate, large VMs
(to avoid being the bottleneck).

2. WikiBench [135]: WikiBench is a Web hosting benchmark that mim-
ics wikipedia.org. Our WikiBench setup consists of: (i) wikijector load
generator to replay real tra�c from past traces of requests to Wikipedia,
(ii) HAProxy LB, and (iii) three VMs running the MediaWiki applica-
tion (the same application that hosts wikipedia.org), and (iv) a MySQL
database to store the Wikipedia database dump.

Unless specified otherwise, we use CloudSuite in foreground.
OLAP Applications: We use the open-source Pinot [108] system as our
representative OLAP application. Figure 4.5 illustrates the Pinot architec-
ture including the three main components that we focus on: (1) controller,
(2) broker, and (3) historical worker nodes. Section 2.2.1 provided more de-
tails about Pinot. The brokers act as our load balancing tier (LBT), see
Section 4.1. The historical worker nodes host data segments and respond
to queries that originate from the broker. The worker nodes constitute our
worker tier.
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Figure 4.5: Overview of Pinot’s architecture.

For all the above fg applications, we use the suggested default configura-
tion values, resulting in average CPU utilization of about 25% for CloudSuite,
34% for WikiBench, and 62% for Pinot, without interference. Recent stud-
ies, including those at Azure [22] and Alibaba [1], reported average CPU
utilizations of about 20% for fg VMs.

4.4.2 Background (bg) Workloads

In our experiments, we emulate interference by employing several bg work-
loads to create contention for the fg application. This approach of creat-
ing interference, which is similar to other prior works such as ICE [84],
Paragon [30], and DeepDive [99], allows us to reproduce the same inter-
ference pattern to fairly evaluate performance with and without DIAL. The
bg workloads are hosted on VMs colocated with the fg application layer VMs.
Each fg VM under interference is hosted separately from other fg VMs, and
is colocated with bg VMs. We first employ microbenchmarks to stress indi-
vidual resources for analyzing fg interference. We then employ test workloads
to evaluate DIAL for fg applications under realistic cloud workloads.
Microbenchmarks: We employ: (i) stress-ng tool on bg VMs to create
controlled CPU contention; (ii) httperf load generator (on a separate VM
and PM) to retrieve hosted files from the colocated bg VMs at di↵erent,
controllable request rates to create NET contention; (iii) dcopy benchmark
on bg VMs to create LLC contention; and (iv) stress on bg VMs to create
DISK contention.
Test workloads: We employ: (i) SPEC CPU to create CPU contention,
(ii) Memcache server (driven by mutilate client) to create NET contention,
(iii) STREAM to create LLC contention, and (iv) Hadoop running TeraSort
with a large data set to create DISK contention.
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4.4.3 Resource Usage Monitoring

We study resource contention for four important resources: (i) network
(NET), CPU, Last-Level-Cache (LLC), and disk. We now explain how we
monitor fg and bg resource usage, from within the VMs, that is required for
our model training.

• NET: We use the dstat Linux tool to monitor the used network band-
width for bg and fg VMs. We then normalize their sum by the peak
bandwidth.

• CPU: We consider fair-sharing of the possibly over-committed PM cores
among VMs to compute CPU usage. If a PM has n cores available and
all VMs together require m cores, then the CPU usage of each VM
is normalized by max{m,n}. For example, a PM may have 12 cores
(n = 12); if we launch 4 VMs with 4 vCPUs each on this PM, since
oversubscription is allowed, then the total request is 16 (m = 16). If
one of the VMs has a CPU usage of x% out of 400% (or y% out of
100%), then we estimate its CPU usage as x

16 (or 4·y
16 ). Thus, if all 4

VMs are at 400% each (or 100% per vCPU), then total usage is 1 or
100%.

• LLC: Since memory bandwidth for a VM cannot be easily monitored,
we employ the RAMspeed benchmark to measure the available memory
bandwidth. We obtain this bandwidth for each experiment and then
estimate the LLC usage by computing the di↵erence between peak
bandwidth and experiment bandwidth. Finally, we normalize this dif-
ference by peak bandwidth to estimate LLC usage.

• DISK: Disk usage typically depends on the access pattern (sequential
vs. random). We thus use the same approach as for LLC, but with
sysbench instead of RAMspeed, for estimating DISK usage.

4.5 DIAL for Web Applications

We first present our evaluation results for web applications; the next section
focuses on OLAP applications. We first explain our DIAL implementation,
and then present evaluation results for CloudSuite and WikiBench.
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Figure 4.6: Illustration of our OpenStack cloud setup.

4.5.1 DIAL Implementation

For DIAL web application deployment, we implement the DIAL controller
logic using: (i) a C program to execute the detection, classification, and esti-
mation tasks, and (ii) a set of bash scripts to monitor metrics from the /proc
subsystem (from within the VM) and the LB logs, and to communicate with
the LB to reconfigure the weights. The overhead of the DIAL controller is
negligible in practice since the decision tree building, response time model-
ing, and LB weights optimization are performed o✏ine, and only need to be
leveraged during run time using the monitored metrics. Our evaluation re-
sults show that the average increase in CPU utilization of the LB VM under
DIAL is about 2%. Of course, if the CPU usage at the LB VM is a concern,
we can implement DIAL on a separate VM. In our experiments, we use the
HAProxy LB [55]; however, DIAL can also be integrated with the nginx and
Apache LBs.

4.5.2 Cloud environments

We set up two cloud environments for our evaluation, an OpenStack based
private cloud environment and an AWS-based public cloud environment. Un-
less specified otherwise, we use the OpenStack environment.
OpenStack-based private cloud: Figure 4.6 depicts our experimental
setup. We use an OpenStack Icehouse-based private cloud with several ded-
icated Dell C6100 physical machines, referred to as PMs. Each PM has 2
sockets with 6 cores each, and 48GB memory. The host OS is Ubuntu 14.04.
All PMs are connected to a network switch via a 1Gb Ethernet cable. Our ex-
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periments reveal that the maximum achievable network bandwidth is about
115 MB/sec (we flood the network using a simple load generator, httperf,
and measure the peak observed bandwidth under various request rates and
request sizes). Likewise, we find that the maximum achievable memory
and (sequential) hard disk drive I/O bandwidths are about 11GB/sec (using
RAMspeed) and 50MB/sec (using sysbench), respectively.
AWS-based public cloud: We rent 10 c4.large instances (2 vCPUs and
3.75GB of memory) in AWS EC2’s US East (N. Virginia) region. We also
rent a c4 dedicated server (PM) for hosting one of the instances colocated
with bg VMs.

4.5.3 Evaluation

We first present results for classification and estimation of test workloads.
We then present results for performance improvement (reduction in T90) un-
der DIA for OpenStack and AWS setups for CloudSuite and WikiBench.
Unless mentioned otherwise, we compare performance under DIAL with per-
formance without DIAL, referred to as baseline. In Section 4.5.3 we com-
pare DIAL against existing interference-aware techniques that are popularly
employed. We use a metrics monitoring interval length of 10s for the this
evaluation. Experimentally, we find that shorter interval lengths can lead to
inaccurate classification and estimation due to system noise and load fluctu-
ations [63].

Evaluating detection, classification, and estimation

Detection: The crosses in Figure 4.7 show the impact of di↵erent resource
contentions, created by microbenchmarks, on CloudSuite’s HomePage re-
quest class response time under the OpenStack setup. Every data point
(cross) in Figure 4.7 is obtained by averaging the 90%ile of response times
in every monitoring interval over three di↵erent experiments, each of which
takes 300s. To detect contention, we use the 95% confidence intervals around
the mean (see Section 4.2.1) to obtain the following detection rule for both
the OpenStack and AWS setups: T90 > 5ms, for HomePage; similar rules
can be derived for other request classes. We run several experiments using
the bg test workloads and find that our detection rule results in a low false
positive rate of 5.7%.
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Figure 4.7: Observed and modeled response times for CloudSuite under re-
source contention via microbenchmarks. Average modeling error: 6.1%.

Figure 4.8: Illustration of our trained decision tree created using WEKA.
Leaves represent the contention classification. Numbers in the leaves repre-
sent the total classification instances (left) and the number of misclassified
ones, if any (right).

Classification: We monitor the user space CPU utilization, usr, the kernel
space CPU utilization, sys, the I/O wait time, wai, the rate of segments
retransmitted, seg ret, and the 90%ile time taken to establish a connection
to the application VM, Tc (via HAProxy logs). Note that all metrics are
monitored from within the VMs, to comply with the user-centric design of
DIAL. We normalize usr and sys using predicted values to distinguish from
workload variations, as discussed in Section 4.2.2. The usr and sys metrics
can help detect CPU and LLC contention as the processor might have to do
more work under these contentions. wai could potentially help classify DISK
contention. Finally, seg and Tc could help classify NET contention because
of the reduced available network bandwidth.
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Our decision tree for CloudSuite, trained using microbenchmarks, is shown
in Figure 4.8. The decision tree is generated using WEKA [54]; in particular,
WEKA determines the nodes and cuto↵ values using the J48 algorithm. The
tree structure may be di↵erent for di↵erent applications. However, we expect
the high level rules to be the same, as illustrated by our classification results
for the Pinot OLAP application in Section 4.6.3. For example, we expect
that LLC interference will lead to an increase in CPU usage.

Our 10-fold cross-validation error is 7.8%. Our classifier shows that high
(normalized to predicted contention) usr signals LLC contention, possibly
because more work has to be done to service the LLC misses. A high Tc

signals NET contention, which seems intuitive. A moderate drop in usr
and moderate rise in sys signals CPU contention; we believe this is because
throughput decreases under contention, resulting in lower usr, and thus ex-
hibiting a relative rise in sys. A high wai suggests DISK contention. Finally,
a moderate rise in seg ret and Tc signals workload variations (denoted as
� load in Figure 4.8).

We also evaluate our classifier using test workloads that were not seen dur-
ing classifier training. We run 50 total experiments using 10 experiments each
for Memcache (NET contention), SPEC (CPU contention), Hadoop (DISK
contention) and STREAM (LLC contention), in addition to 10 experiments
under varying CloudSuite application load. Our decision tree successfully
classifies 44 of the 50 test instances; the misclassifications are observed for
change in workload and DISK contention. The “misclassifications” for DISK
contention (as LLC) under Hadoop are because of the numerous memory
accesses made by the colocated Slave VMs; we believe that Hadoop interfer-
ence cannot always be classified as a single resource due to its complex and
dynamic resource needs.
E↵ect of monitoring interval length: We use a metrics monitoring in-
terval length of 10s for the above evaluation. Experimentally, we find that
shorter interval lengths can lead to inaccurate classification and estimation
due to system noise and load fluctuations. For example, Figure 4.9 shows
the prediction error for CPU metrics used in our decision tree classifier (see
Section 4.2.2). We see that an interval of 1s or 5s can lead to high inac-
curacy. On the other hand, intervals larger than 10s do not significantly
improve accuracy. Likewise, we find a significant increase in the number of
false positives for interference detection at smaller interval lengths, leading
to cases where DIAL overlooks interference. For these reasons, we choose an
interval length of 10s; prior work has also reported such reaction times to
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Figure 4.9: Smaller monitoring interval lengths lead to higher inaccuracy.

avoid rash decisions [168, 86, 24].

Evaluating DIAL under real workloads

Figure 4.10 shows our experimental results for CloudSuite under OpenStack
for various time-varying contentions created using test workloads in bg VMs.
The y-axis shows the tail latency for CloudSuite across all request classes. We
create NET, DISK, and LLC contention for apache1 VM using Memcache,
Hadoop (TeraSort), and STREAM, respectively. We use SPEC to create
CPU contention for apache2.

We see that DIAL significantly reduces tail response times, when com-
pared to the baseline, under all contentions; the reduction ranges from 16%
under DISK contention to 59% under LLC contention. The relatively low
improvement under DISK contention is because Hadoop intermittently uti-
lizes disk I/O bandwidth; further, not all CloudSuite request classes require
(or contend for) disk access.

Without DIAL, the tail response time can be as high as 20-30ms; with
DIAL, the tail response time is almost always around 4-5ms. Note that DIAL
requires some time (at least two successive intervals of high response time)
for interference detection during which response time continues to be high,
as seen at the start of each contention.

Figures 4.11 and 4.12 show our classification metrics for apache1 and
apache2, respectively; we only show Tc, wai, sys, and usr (and not seg ret)
for ease of presentation. Note that the y-axis range in Figure 4.12 is inten-
tionally smaller to focus on the rise in the sys metric. For apache1, under
NET contention, Tc is high while the other metrics are una↵ected. For DISK
and LLC contentions, sys is high, especially for LLC; further, usr is also
high under LLC contention. Finally, the wai metric, though noisy, is higher
under DISK contention. By contrast, these metrics are una↵ected for the
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Figure 4.10: Performance comparison between DIAL and baseline for test
background workloads. The red, blue, green, and gray regions represent
NET, CPU, DISK, and LLC contention, respectively. DIAL reduces 90%ile
response time during these contentions by 39.1%, 56.3%, 16.2%, and 59.2%.
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Figure 4.11: Tc, wai, sys, and usr metrics for apache1 application layer VM
for the experiments in Figure 4.10. apache1 VM experiences NET, DISK,
and LLC contention, and shows an increase in relevant metrics under those
contentions.
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Figure 4.12: Tc, wai, sys, and usr metrics for apache2 application layer
VM for the experiments in Figure 4.10. apache2 VM experiences only CPU
contention, and consequently shows an increase in relevant metrics under
CPU contention.

corresponding time periods under apache2.
Likewise, for apache2, for CPU contention, sys is moderately high but

not as high as that under DISK and LLC contention under apache1. Again,
the metrics are una↵ected for the CPU contention period under apache1.
This shows that the relevant metrics on the compromised VM change under
contention, but are una↵ected for uncompromised VMs. Further, the change
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Figure 4.13: DIAL reduces the response time of all request classes by 37%
and 56% under CPU and combined CPU + NET contention, respectively.

in metric values under the contention periods are in agreement with the
rules of the decision tree classifier in Figure 4.8, even though the classifier
was trained on microbenchmarks and not on these test workloads. This
highlights the e�cacy of our classifier.

While it is possible for several resources to be simultaneously under con-
tention, as in the case of Memcache (NET, LLC, and DISK), it is typically
the dominant resource that has the greatest impact on performance. In the
case of Memcache, the server is hosted on a bg VM and is driven by mutilate
clients (on di↵erent hosts) issuing a high request rate for a small set of key-
value pairs, resulting in NET being the dominant resource. DIAL correctly
classifies this Memcache bg VM as creating NET contention. For Hadoop,
there is significant demand for disk and memory bandwidth; however, our
classifier suggests DISK contention.

Evaluating DIAL under multiple contentions

DIAL is also capable of dynamically responding to multiple compromised
VMs. This is because our model allows for arbitrary levels of interference
on di↵erent VMs simultaneously. The optimization in Section 4.3.1 provides
estimates for LB weights, via Eq. (4.3), for all VMs. This is di↵erent from
the case of multiple resource contentions on the same VM, which is beyond
the scope of this dissertation.

Figure 4.13 shows our experimental results for CloudSuite where initially
apache2 VM is under CPU contention, but then, after about 5 mins, apache1
(on a di↵erent host) also starts experiencing NET contention, resulting in
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Figure 4.14: Performance under LLC contention for fg WikiBench. DIAL
reduces response times by ⇠23.6% during contention (gray regions).

very high interference for the application. After an additional 5 mins, both
contentions are terminated. We see that DIAL substantially reduces T90

under interference. This example highlights the dynamic nature of DIAL.
Compared to existing techniques that employ (static) VM placement to mit-
igate interference, DIAL is able to adapt to variations in interference by con-
stantly updating its estimates and re-distributing load accordingly. For the
above experiment, for CPU contention, the DIAL weights are {0.45, 0.1, 0.45}
(apache2 under contention), and for combined CPU and NET contention,
the weights are {0, 0.27, 0.73} (apache1 under severe NET contention). Note
that if several VMs are under severe contention, we may have to scale out to
maintain acceptable response times.

Evaluating DIAL for the WikiBench fg application

Figure 4.14 shows our results for WikiBench under LLC contention created
by the dcopy microbenchmark. Here, we have two application VMs and one
of them is under contention. The figure shows the response time for baseline
and DIAL for all request classes. We create three di↵erent contention levels
for this experiment, shown in gray. DIAL reduces response time by about
23% when compared to the baseline. We also measure the usr and sys
metrics for classification and find that both increase considerably, by about
62% and 41%, respectively, under interference; this is in agreement with our
decision tree classifier.

Evaluating DIAL in the AWS setup

Figure 4.15 shows our results for CloudSuite under LLC contention created by
the dcopy microbenchmark in the AWS setup. Here, we have 10 application
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Figure 4.15: Performance under LLC contention for AWS setup. DIAL re-
duces response times by around 22.3%.
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Figure 4.16: usr and sys metrics for the gray region in Figure 4.15. These
metrics clearly increase during contention.

VMs and only one of them is under contention. The figure shows the response
time for baseline and DIAL for all request classes served by all VMs in the
AWS setup. We create several di↵erent contention levels for this experiment.
We see that DIAL reduces response time by about 22% when compared to
the baseline. This shows that even one compromised VM (out of 10) can
considerably impact the overall response time.

Figure 4.16 shows the usr and sys metrics for the shaded region in Fig-
ure 4.15 to assess classification. Clearly, both the usr and sys metrics in-
crease considerably during contention when compared to the low, flat lines
during no contention. Further, the regions of contention can be easily dis-
cerned from the figure, resulting in good detection accuracy.

Comparison with existing user-centric techniques

We now compare DIAL with existing user-centric interference mitigation
strategies. We do not consider cluster management strategies, such as Cloud-
Scope [14], and Tarcil [32], since these cannot be implemented by the cloud
user who does not have a global view of the infrastructure.

Utilization-based strategies. Figure 4.17 shows our experimental results
for high CPU contention under DIAL and under ICE [84]. Similar to DIAL,
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Figure 4.17: Comparison of DIAL with ICE under CPU contention. DIAL
reduces T90 by 25-48% for all request classes.
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(b) TagSearch for CPU contention.

Figure 4.18: Comparison of DIAL with other LB heuristics.

ICE is an interference-aware load balancing strategy that adjusts the tra�c
directed towards compromised VMs. However, instead of using LB weights,
ICE ensures that the CPU utilization for the compromised VMs stays be-
low a certain threshold. The authors do not mention this threshold value
in the paper, and so we experimentally determine the best threshold value
across experiments. Unfortunately, we find that the optimal CPU utilization
threshold varies with the amount and type of interference. For example, we
find that 15% CPU utilization works well for moderate CPU interference
under ICE, but does not work well for high CPU interference, as shown in
Figure 4.17. Under DIAL, with theoretically optimal weights, response time
is significantly lower, and the observed CPU usage at the compromised VM
is about 8-10%; results are similar for other contentions. While interference-
aware thresholds for ICE can help, this will require a relationship between
threshold, type, and amount of interference. Since ICE does not estimate
interference, the threshold is static.
Queue-length based strategies. Queue-length or load-based strategies
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send tra�c to the VM that has the lowest load. In particular, we consider
the Least Connections (LC) strategy that directs the next incoming request
to the application VM that has least number of active connections; Amazon
leverages LC for its elastic load balancer [5] for this purpose. Under inter-
ference, the outstanding requests for the compromised VM will be higher,
resulting in fewer additional requests being sent to it under LC.

Figure 4.18 shows the reduction in T90 a↵orded by DIAL over LC (and
other heuristics that we discuss next) for the TagSearch request class un-
der CPU and LLC contentions; results are similar for other classes and for
NET and DISK contention. We see that DIAL lowers response time signifi-
cantly, by as much as 70-80%, when compared to LC (red dashed line). The
improvement is greater at higher contentions. The reason for this improve-
ment is that the compromised VM does not just have lower capacity, but
also requires (non-linearly) more time to serve each request. The weights
under DIAL take both these into consideration, as opposed to LC that only
addresses the former.
Weighted load balancing strategies. We now compare DIAL with other
weighted load balancing heuristics, such as Weighted Round Robin (WRR)
and Weighted Least Connections (WLC). For WRR and WLC, we use pro-
portional interference-aware weights, as discussed in Section 4.3. Figure 4.18
shows the reduction in T90 a↵orded by DIAL over WRR (blue solid line) and
WLC (black dotted line). We see that DIAL lowers response time consider-
ably when compared to these heuristics. It is interesting to note that WRR
is typically worse than WLC under CPU contention, but better than WLC
under LLC contention; this observation rea�rms the fact that the impact of
interference depends on the type of resource under contention.

4.6 DIAL for Pinot

We now present our implementation of DIAL and its evaluation for a widely
used OLAP solution, Pinot [66].

4.6.1 DIAL Implementation

The Load Balancing Tier (LBT) for Pinot consists of the Broker nodes (see
Section 4.4.1), that distribute queries to the back-end workers nodes. The
Brokers rely on routing tables, stored in Broker memory, to determine which
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worker nodes host the data segments that are needed to serve the incoming
query. Each routing table is a map from every segment to one worker node;
since each segment is stored on several replicas, numerous unique routing
tables can be generated. Depending on the size of the cluster, Pinot creates
a fixed number of routing tables; the tables are dynamically updated when
new segments are uploaded or when existing segments expire, as reported
by the Controller. By randomly selecting a routing table for each incoming
query, the Brokers balance load among the worker nodes.

We implement DIAL on the Broker using ⇠300 lines of Java code. Once
interference is detected, DIAL updates the routing tables to remap segments
that were initially assigned to the worker(s) under interference to other
replicas, based on the theoretically-derived optimal fractions, q⇤ (see Sec-
tion 4.3.2). Likewise, once interference ceases, the routing tables are updated
to the default balanced weights.

4.6.2 Cloud Environment

We use several blade servers from a HP Proliant C7000 Chassis, referred
to as PMs (Physical Machines). Each server has 2 processor sockets with
4-core CPUs (8 hardware threads) each, and 32 GB memory.The host OS is
Ubuntu 16.04. The servers are connected through 1Gb/s network links. We
use KVM (on top of Ubuntu 16.04) to deploy VMs on these PMs.

We deploy 6 Pinot worker nodes on 1 vCPU, 16GB memory VMs; each
VM is on a separate PM. We deploy the Pinot Controller and 2 Pinot Brokers
using VMs with 8 vCPUs and 16GB memory, on di↵erent PMs.

We experiment with CPU and LLC contention for Pinot. For CPU con-
tention, we use a 1 vCPU bg VM that is statically pinned to the same core
as the fg VM (via hyper-threading). For LLC contention, we use a 3 vCPU
bg VM that is pinned to the remaining 3 cores of the 4-core socket that hosts
the fg VM; in this way, we do not share the same core as the fg VM to avoid
CPU contention.

4.6.3 Evaluation

We use the Pinot benchmark explained with details in Section 2.2.1 . We
use a warm-up time of 120s for all our experiments in this section. We focus
on 95%ile response times for Pinot.
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Figure 4.19: Observed and modeled response times for Pinot under resource
contention via microbenchmarks. Average modeling error is 11.5%.

Figure 4.20: Our trained decision tree classifier for Pinot. Numbers in the
leaves represent the total classification instances (left) and the number of
misclassified ones, if any (right).

Evaluating detection, classification, and estimation

Detection: The crosses in Figure 4.19 show the impact of CPU and LLC
contention on Pinot response times. Every data point (cross) in Figure 4.19
is obtained by averaging the 95%ile of response times in every monitoring
interval over three di↵erent experiments, each of which takes 300s. The
detection rule of T95 > 61ms is obtained based on the discussion in Section
4.2.1. We run several experiments using the bg test workloads and find that
our detection rule results in a low false positive rate of 3.3%.

Classification: We monitor total CPU usage, cpu, and the system space
CPU utilization, sys; we normalize these values using predicted values to
distinguish from workload variations, as discussed in Section 4.2.2. Our
decision tree for Pinot is shown in Figure 4.20. Our 10-fold cross-validation
error is 2.3%. The classification rules in Figure 4.20 closely resemble those
for the web application in Figure 4.8.

We now evaluate our classifier using test workloads that were not seen
during training. We run 10 experiments each for SPEC (CPU contention)
and STREAM (LLC contention), and 10 experiments under varying Pinot

65



No contention     Baseline DIAL WRR95
%

ile
 R

es
po

ns
e 

tim
e 

(m
s)

 →

0

100

200

300

(a) CPU contention

No contention     Baseline DIAL WRR95
%

ile
 R

es
po

ns
e 

tim
e 

(m
s)

 →

0

50

100

150

200

(b) LLC contention

Figure 4.21: Comparison of DIAL with other heuristics for Pinot.

workload. Our decision tree classifier is able to accurately classify all in-
stances, except one CPU interference instance which is misclassified as LLC
interference. Our classification accuracy based on these 30 experiments is
96.7%.
Estimation: The solid lines in Figure 4.19 show our modeling results for
Pinot interference estimation (as discussed in Section 4.2.3) under di↵erent
resource contentions via training. Our average modeling error across all
contentions is 11.5%.

Evaluating DIAL for Pinot under real bg workloads

Figure 4.21 shows our experimental results for Pinot under our KVM setup
for CPU and LLC contentions created using test workloads SPEC and STREAM,
respectively. The contention is created in bg VMs on one of the six PMs
hosting the Pinot worker VMs. We show the tail response time values for
no contention, baseline (with contention), DIAL, using theoretically optimal
interference-aware weights from Section 4.3.2, and Weighted Round Robin
(WRR), which uses proportional interference-aware weights, as discussed in
Section 4.3. The response time is the query completion time monitored at
the Broker, and thus depends on the performance of all Pinot workers.

We see that DIAL significantly improves tail response times when com-
pared to baseline; the average reduction in 95%ile response times for CPU
and LLC contention is 40.5% and 25.8%, respectively. Compared to WRR,
DIAL provides some improvement; the average reduction in 95%ile response
times for CPU and LLC contention is 16.1% and 16.5%, respectively. Thus,
we conclude that DIAL’s interference-aware load balancing can help improve
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Figure 4.22: Performance of DIAL and baseline using Pinot under CPU
contention and under dynamic workload and cloud conditions.

performance for OLAP applications like Pinot, in addition to web applica-
tions like CloudSuite and WikiBench.

Evaluating DIAL for Pinot under dynamic conditions

We now evaluate the performance of DIAL under dynamic variations in re-
quest rate, and in response to a scale-out. Note that our focus here is on the
performance of DIAL, and not on the specifics of the scale-out policy itself;
for this experiment, we assume that the scale-out policy reacts to the change
in request rate and provisions the required additional number of workers.

Figure 4.22 shows the 95%ile response time (tail latency) for Pinot under
DIAL and baseline for our dynamic workload experiment. Here, we start
with a load of 200 queries/s (or, qps) and no interference; as before, we have
6 Pinot workers and a replication factor of 3. Then, in the next phase (yel-
low shaded region), one of the fg worker VMs experiences CPU interference
due to a colocated VM running SPEC. DIAL responds, after monitoring
and detection, by setting the theoretically optimal load balancing weights
for the 3 replicas of segments hosted on the under-interference worker (see
Section 4.6.1). For this experiment, the theoretically optimal weights in
this phase are {0.16, 0.42, 0.42}, obtained via the analysis discussed in Sec-
tion 4.3.2. By setting these weights, the tail latency lowers from about 147ms
under the baseline to 88ms (39.9% improvement).

In the next phase (green shaded region), Pinot experiences an increase
in load to 300 qps, severely impacting tail latency. DIAL detects this load
change via request rate monitoring (see Section 4.3.3), and updates the load
balancing weights to {0.2, 0.4, 0.4}, thus lowering tail latency from 266ms
under the baseline to 189ms (28.2% improvement). Our theoretically derived
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weights from Section 4.3.2 already take request rate into account (via the a
parameter), and thus the updated weights can be easily obtained.

To handle the increased load, Pinot eventually scales-out by adding 3 new
workers and redistributing data segments across all workers. We assume that
the scale-out and data segment mapping is handled by an external autoscaling
entity, which is not the focus of our work. With the additional workers, the
tail latency of Pinot decreases, as seen in the last phase (gray shaded region).
DIAL again updates the weights for this new configuration, by updating the
n parameter (that represents the number of workers), resulting in a further
lowering of tail latency from about 123ms under the baseline to 87ms (28.8%
improvement).

We repeated the experiments for a total of 5 runs. The results were
qualitatively similar to Figure 4.22, with the average improvement in 95%ile
response time across all runs a↵orded by DIAL in the three shaded phases
being about 33.1%, 29.8%, and 30.7%. We also repeated the experiment with
LLC contention, and obtained qualitatively similar results with an average
improvement of up to 20%. This shows that DIAL can dynamically respond
to changes in request rate and the number of workers by updating its load
balancing weights.

4.7 Conclusion

This chapter addresses the request scheduling problem for load-balanced ap-
plications with the goal of having minimum tail latency where the applica-
tions are running on a cluster of VMs facing unpredictable performance.

We presented DIAL, a user-centric Dynamic Interference-Aware Load bal-
ancing framework that can be employed directly by cloud users without re-
quiring any assistance from the hypervisor or cloud provider to reduce tail
response times during interference. DIAL works by leveraging two critical
components: (i) an accurate, user-centric response time-monitoring based
interference detector, classifier, and estimator, and (ii) a framework for de-
riving theoretically optimal load balancer weights under interference. We
use analytical tools for both components resulting in a rigorous and generic
methodology that can be extended to other scenarios. Our experimental
results for web and OLAP applications on several cloud platforms, under
interference from realistic benchmarks, demonstrate the benefits of DIAL.
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Chapter 5

Application-Agnostic Batch
Workload Scheduling

Resource under-utilization is common in cloud data centers. Running batch
workloads in the background is a common practice to improve server uti-
lization in cloud data centers. However, cloud user (foreground) application
performance can severely be impacted due to the resource contention created
by background workloads. Therefore, we have a batch workload scheduling
problem with two competing goals: (1) foreground workloads’ SLO is not
violated, and (2) background workloads’ progress rate is maximized; the
progress rate is directly correlated with resource utilization.

Despite the considerable work in this area, a significant challenge that
has not been adequately addressed is considering the foreground workloads
as a black-box. This consideration is critical since cloud providers are not
aware of cloud tenants’ workloads and their dynamics. We present Scav-
enger, a batch workload scheduler that opportunistically runs containerized
batch jobs next to tenants’ Virtual Machines (VMs) to improve utilization.
Scavenger dynamically regulates the resource usage of batch jobs, including
processor usage, memory capacity, and network bandwidth, to ensure that
the tenants VMs’ resource demand is met at all times. We experimentally
evaluate Scavenger and show that it increases resource usage without com-
promising on the resource demand of customer VMs. Importantly, Scavenger
does so without requiring any o✏ine profiling or prior information about the
tenant workloads.

This study is under review for SOCC 2019 conference. We introduce
the problem and scope of this chapter in Section 5.1. While we discussed the
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prior works in Section 3.2, in Section 5.2, we highlight some of the prior works
to put Scavenger in context. We illustrate Scavenger design principles and
evaluation methodology in Section 5.3 and Section 5.4, restrictively. Finally,
we provide the evaluation results in Section 5.5 and show that Scavenger can
realize the outlined goals.

5.1 Introduction

Cloud computing allows tenants to rent economical and virtually unlimited
resources, such as Virtual Machines (VMs), to deploy their applications. The
cloud, public or private, is often hosted by a provider (e.g., Amazon [4] or
Google [51]) on multiple servers in a data center.

Servers in cloud data centers often experience low resource utilization [31,
158]. A study focused on Amazon EC2 observed that cloud server usage is
often below 10% [81]. A more recent study from Microsoft reported that
cloud VMs hosted on Azure have low utilization; the study found that 60% of
the VMs have an average CPU usage of less than 20% [22] (see Section 2.4.2).

To increase server utilization, prior works have proposed running provider’s
batch workloads, such as Hadoop or Spark jobs, next to tenant VMs oppor-
tunistically to leverage idle resources [170, 82, 50]. While e↵ective, the key
challenge with this approach is interference – the performance degradation of
the colocated tenant VMs due to resource contention with batch workloads
at the underlying host server. This interference can be caused by contention
for several resources simultaneously [63]. Worse, this interference is dynamic
due to resource demand variations in tenant and batch workloads [45, 169].

In an ideal cloud environment, provider (or background) workloads should
run next to tenant (or foreground) workloads or VMs in such a way that their
resource utilization complements that of the tenant VMs. The exact trade-o↵
between performance isolation of tenant workloads and increase in resource
utilization depends on the cloud environment and the provider, and should
be tunable. In public clouds, performance isolation is key. In private clouds,
such as clouds that operate within an organization, a balance is sought be-
tween performance isolation for specific high-priority workloads and modest
increase in resource utilization. For best-e↵ort clouds, such as community
clouds [87] or shared clouds at Universities, more aggressive resource man-
agement can be employed to improve utilization.

While there has been prior work on background workload management
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(see Section 3.2), there are specific shortcomings that are yet to be addressed
satisfactorily. This is further evidenced by the recent study of production
server usage at Alibaba (see Section 2.4.3) that found the average CPU and
memory utilization to be at most 50% and 60%, respectively, despite (i)
colocation of online and batch jobs, and (ii) oversubscription of resources [83].

1. Need for an application-agnostic, black-box approach. Existing solutions
often either (i) rely on historical usage patterns to predict the resource
demand of foreground VMs [169, 22], or (ii) benchmark tenant VM per-
formance to carefully colocate background workloads [30, 31], or (iii) reg-
ulate the resource usage of background workloads to avoid SLO violations
for the foreground VMs [13, 82, 60]. Such solutions are ine↵ective and,
at times, infeasible in cloud environments since tenants do not expect
their VMs to be instrumented [99], and are not required to share their
performance SLOs with the provider [42]. Even if foreground VMs can
be profiled for a short time, there is often significant variation in tenant
workloads that cannot be fully captured by a finite profiling run [63].

2. Need for a dynamic and tunable solution. Another class of solutions fo-
cuses on careful VM placement to avoid interference in the first place [141].
However, dynamic changes in tenant loads can lead to interference after
placement. Further, techniques like VM migration are not agile enough
to be frequently employed on tenant VMs to mitigate the dynamic in-
terference [96, 32]. We thus require solutions that are dynamic and can
adapt to resource usage variations of the tenant workloads. Further, as
discussed above, the solutions should be tunable depending on the perfor-
mance isolation needs of the environment.

3. Need to address multi-resource interference. While some recent works have
proposed dynamic solutions, they often focus on a single resource, such as
CPU [170, 153, 60]. Given that, for realistic workloads, several resources
may simultaneously be under contention, such resource-specific solutions
are inadequate [63].

We present Scavenger, a provider-centric resource manager that dynam-
ically regulates the resource usage of background jobs to complement the
resource demand of black-box foreground workloads. We consider a cloud
environment with tenant VMs as the foreground workload and Spark jobs
(within the YARN framework [140]) in the background running on contain-
ers. We choose containers as the execution environment for batch jobs for
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agility in case we need to quickly regulate the background resource usage.
Note that Scavenger is a batch workload manager and thus complements
schedulers such as Borg [141].

Scavenger does not make any assumptions about the foreground workload
and does not require any prior information about them. We do not profile
their resource usage o✏ine and do not instrument them. Instead, we treat
the foreground workload as a black box and react to their resource demand
in an online manner. This makes Scavenger application-agnostic in practice
and easy to deploy.

The core idea of Scavenger’s resource regulation algorithm is to use the
mean and standard deviation of the foreground workloads’ resource usage,
over a window of observations, to obtain a statistically significant estimate of
the opportunity for background usage. This approach is easy to implement,
is analytically sound, and helps to immediately react to abrupt changes in
the foreground workload’s resource demand, including phase changes.

Scavenger regulates processor resources (including CPU and last-level
cache (LLC)), memory capacity, and network bandwidth. Scavenger lever-
ages cgroups for processor resource regulation and uses the Instructions-Per-
Cycle (IPC) counter to track the impact on foreground VMs in a black-box
manner. For memory capacity and network bandwidth regulation, we mon-
itor the resource usage of foreground workloads and reactively scale (up or
down) the resource consumption of batch job containers. In the worst case, if
the foreground demand increases abruptly, we stop the background contain-
ers to immediately release resources. We implement Scavenger as a daemon
running on the server with less than 1% overhead.

Our experimental results on two di↵erent testbeds using latency sensitive
foreground workloads from CloudSuite [39] and TailBench [67], colocated
with Spark batch jobs, show that Scavenger can satisfactorily balance the
trade-o↵ between foreground performance isolation and increasing the server
resource usage. Without Scavenger, foreground performance degradation is
often higher than 50%, and can be as high as 10–20⇥. With Scavenger, the
average performance degradation is less than 10%.

We find that, under the black box requirements, while CPU regulation
may not su�ce by itself to address contention, when combined with LLC, net-
work, and memory regulation, Scavenger significantly improves the utiliza-
tion of multiple resources while mitigating contention; using Spark jobs in the
background, Scavenger consistently increases server memory and CPU usage
by more than 100%. We also conduct limit studies with resource-intensive

72



microbenchmarks running in the background to highlight the performance
isolation e�cacy of Scavenger.

5.2 Novelty of Scavenger in the Context of
Prior Wor

There has been much prior work that focuses on improving cloud resource uti-
lization by launching background jobs colocated with foreground (or tenant)
workloads. Given the complexity of the problem, and the inherent trade-
o↵ between performance isolation and resource usage, this continues to be
an active research topic; we are aware of at least 5 papers on this topic in
2018 [153, 60, 80, 136, 127] and at least 1 in 2019 [13]. While we discuss
related work in detail in Section 3.2, we now highlight some of the prior
works, classified according to the premise of the approach, to put our work
in context.

• The first category of prior work considers a cluster where foreground work-
loads are also operated by the provider, e.g., Heracles [82], Borg [141], and
Bistro [50], or where the foreground workload’s performance can be moni-
tored by the provider, e.g., PARTIES [13]. In such cases, the performance
requirements of the foreground workload are known a priori, which allows
the solution to accordingly regulate background usage.

• Another category of prior work assumes that foreground workloads’ re-
source usage can be predicted, e.g., ResourceCentral [22], Zhang et al. [169],
and TR-Spark [158], or can be accurately profiled, e.g., Paragon [30] and
Cuanta [52]. The profiled or predicted resource usage pattern of the fore-
ground workload is then used to tailor the resource consumption of the
background workload(s).

• The third category focuses on regulating the usage of a single resource,
such as CPU (e.g., MIMP [170]), LLC (e.g., dCat [153]), or network (e.g.,
QJUMP [53]).

We argue that there is considerable potential for research on improving the
usage of multiple resources simultaneously by colocating batch jobs with
black-box tenant VMs ; this defines the scope and novelty of Scavenger.
The black-box requirement is realistic in public clouds as tenant VMs cannot
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(or should not) be instrumented and their VMs may have unpredictable
resource usage [63]; thus, the tenant’s workload and performance SLOs are
unobservable [99]. The black-box assumption is also beneficial in private
clouds as it avoids the overhead of profiling the workloads and tracking their
performance. In contrast to existing approaches (Section 3.2) that either
assume the tenant is a white box or require a one-time profiling of the tenant
(e.g., PerfIso [60]), Scavenger is truly black-box, or application-agnostic, in
nature.

5.3 Design of Scavenger

We consider a cloud data center with several physical machines (PMs), or
servers, that host tenant VMs, which are referred to as foreground work-
loads or VMs or jobs; each PMmay host several tenant VMs. We regard these
VMs as black-box workloads with unpredictable resource consumption and
unknown application SLO requirements. The only information the provider
has is the resources requested by the tenant VMs and any metrics available
at the host/hypervisor, such as resource usage and hardware performance
counters. While the design of Scavenger is generic, in this dissertation we
assume that the PMs run Linux.

To improve resource usage, providers can launch batch jobs colocated
with the foreground VMs; we refer to such provider-owned batch jobs as
background workloads or jobs. These could be complex data analytics
workloads, such as Hadoop [128] or Spark [163] jobs, or simple computational
jobs. Given their agility, we consider background jobs to be running on
containers. Background jobs are controlled by the provider, and are not
black box.

To address the resource contention between foreground VMs and the
background containers, Scavenger monitors the resource demand and perfor-
mance counters of foreground VMs, and dynamically regulates the resource
usage of the background jobs to satisfy the demands of the foreground. In the
worst case, batch jobs within the containers can be killed to immediately re-
lease resources for foreground VMs. The monitoring and resource regulation
is managed via Scavenger daemons that run on each cloud PM, thus making
Scavenger distributed in nature. In this dissertation, we consider contention
for processor (including CPU and last-level cache (LLC)), memory capacity,
and network bandwidth resources.
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Figure 5.1: Illustration of Scavenger’s generic algorithm.

5.3.1 High-level overview of Scavenger’s resource reg-
ulation algorithm

While the exact resource regulation algorithm is di↵erent for di↵erent re-
sources, as we explain in the following subsections, the core idea is similar.
At runtime, Scavenger periodically monitors specific metrics from the fore-
ground VM, such as network usage or number of instructions executed, to
estimate the range of resource requirements for the foreground VM(s). In
our implementation, we use a monitoring interval of one second to balance
responsiveness and low overhead, similar to prior work [141, 153, 52].

Initially, when the foreground VM starts executing, we do not allocate
any resources to the background and instead monitor the foreground metrics
for w seconds, where w is the tunable window-size parameter. Based on the
observed metrics, say {x1, x2, . . . , xw}, Scavenger computes the sample mean,
µ = (

Pw
i=1 xi)/w, and the sample standard deviation,

� =
p

(
Pw

i=1(xi � µ)2)/(w � 1). Since these empirical measures are known
to be consistent estimators of the true underlying distribution [149], we ob-
tain a statistically significant estimate of the foreground VM’s resource de-
mand as [µ� c · �, µ+ c · �], where c is a tunable parameter, referred to as
std-factor. The probability that the resource demand lies in the (µ ± c · �)
range is higher when considering the sum of metrics of multiple foreground
VMs [62], as suggested by the Central Limit Theorem.

Based on the obtained (µ± c · �) range, the generic Scavenger algorithm
proceeds as follows:

1. If the metric observed in the next interval is within the (µ± c · �) range,
we consider the foreground VM’s resource demands as being satisfied.

2. If there is a significant deviation of the observed metric beyond this range,
we consider this a phase change in the foreground workload and/or a
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violation, and react accordingly (as detailed in the following subsections).

Figure 5.1 illustrates an example scenario for our generic algorithm. The
Scavenger algorithm is intentionally designed with tunable parameters, such
as std-factor and window-size, to control the extent of colocation. This is
helpful when applying Scavenger to specific environments; for instance, Scav-
enger can be more conservative in public clouds, but can be aggressive in
private clouds.

5.3.2 Mitigating memory capacity contention

We closely follow the generic algorithm from Section 5.3.1 for regulating the
memory allocation of the background jobs and use the per-second memory
usage of the foreground VM as the monitored metric. Based on the initial
window-size seconds of observation, we compute the sample mean and sam-
ple standard deviation and reserve (µ + c · �) for the foreground VMs; the
remaining memory is allocated to the background containers.

Any time the foreground memory usage goes above the µ + c · � upper
limit, we treat it as a violation. When this happens, Scavenger immediately
pauses or kills (depending on the implementation) a subset of tasks within
the background containers to release the required memory. Additionally,
Scavenger resets µ to be the current value (that caused the violation). On
the other hand, if the foreground memory usage goes below µ � c · � for
w (window-size) consecutive seconds, we treat it as a phase change for the
foreground workload. When this happens, we recompute the new µ and �
over the last w seconds. Note that µ and/or � are only reset when there is a
violation or a phase change. Also note that when the memory usage is in the
(µ± c ·�) range, there is no change in the foreground or background memory
allocation.

At all times, the di↵erence between total memory and foreground reserved
memory (µ+ c ·�) is allocated to background jobs. We discuss the black box
sensitivity analysis for the tunable parameters c and w in Section 5.5.1.

5.3.3 Mitigating network contention

The network bandwidth regulation algorithm is similar to the memory reg-
ulation discussed above. We monitor the foreground tra�c through the
virsh interface every second. To regulate the background network tra�c,
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Figure 5.2: Impact of background LLC workload on CloudSuite performance
(left y-axis) and its IPC (right y-axis).

we use Linux’s tra�c control mechanism [125]. In particular, we use the to-
ken bucket filter to enforce bandwidth limits on the background jobs’ egress
tra�c; we do not impose any limits on the foreground workload tra�c.

5.3.4 Mitigating processor cache contention

There are several processor resources that must be regulated, including cache
and CPU cores. We first discuss the more challenging problem of regulating
cache contention here, and then discuss CPU core contention.

Regulating the last-level cache (LLC) usage is complicated by the fact
that we cannot easily regulate the cache access or capacity of the applications
on a server. Newer processors, such as the Intel Xeon E5 v4 family, allow
for fine-grained LLC capacity management via Cache Allocation Technology
(CAT) [98]. In order to target generic processors, we do not assume access to
CAT. We discuss how Scavenger can be integrated with CAT in Section 5.6.

Need for a metric to track cache contention. The di�culty in address-
ing cache interference is that there is no e↵ective way to estimate the cache
pressure created by a workload, as opposed to the easily available memory
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capacity and network bandwidth usage metrics. Prior work suggests that
using the number of cache references or cache miss rate (CMR, monitored
via performance counters) can help predict the cache requirements of a work-
load [153]. We find that this is not always the case.

We experimented with the SPEC CPU benchmark suite colocated with
dCopy [25] (LLC microbenchmark) and found benchmarks, such as gcc and
zeusmp, that have high cache references and CMR, but are not significantly
impacted by dCopy. We also found examples, such as sphinx3 and tonto,
where the CMR and cache reference rate is low, but the impact of dCopy is
significant. This is because even a few cache references can lead to eviction of
part of the working set of the foreground VM, resulting in significant latency
impact. On the other hand, due to pipelining of instructions, some workloads
can better tolerate cache interference.

Making the case for Instructions-Per-Cycle as a proxy metric. The
Instructions-Per-Cycle (IPC) metric has often been used in computer archi-
tecture studies as a proxy for performance [35, 91, 112, 117, 166]. Some
recent works have also used IPC and related metrics as a proxy for cloud
workload performance [167, 86]. For Scavenger, the intuition behind using
IPC as a proxy is that if IPC drops, we can consider this as an indication of
processor cache contention, and thus an indication of cache pressure.

To make the case for using IPC as a proxy for foreground VM perfor-
mance, we examine how IPC reacts to a drop in performance due to cache
contention. We use a 4-core server and launch a 1-core foreground VM run-
ning one of five latency-critical CloudSuite workloads (see Section 5.4.3) and
run the dCopy LLC microbenchmark [25] on a container using the other
three cores; see Section 5.4.2 for details about our experimental setup. Note
that there is no sharing of cores. To control the induced cache load, we add
a sleep timer to the dCopy microbenchmark.

Figure 5.2 shows our experimental results for degradation in foreground
IPC (right axis) and performance (left axis) when compared to the baseline
(no background jobs), as a function of the background CPU usage. For
each workload, we use the performance metric reported by the benchmark.
We show the average and standard deviation bars in each case based on
10 runs of each experiment. As the background load increases (on the 3
cores allocated to it), we see that IPC and performance clearly degrade in
a correlated manner for all workloads, except Media streaming. For Media
streaming, the reported performance metric (transfer time) does not change
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much, despite a noticeable degradation in IPC. This is likely because Media
streaming is network intensive, and does not use much CPU. Since a proxy is
a must for the black box scenario, in the absence of a perfect proxy, we argue
that, based on the above results, IPC is a viable (albeit far-from-perfect)
alternative cache pressure proxy.

Processor cache regulation. The above results also show that simply
partitioning the CPU cores, as in PerfIso [60], is not enough to avoid con-
tention due to shared caches. However, the above results do suggest that
we can mitigate the impact of background cache pressure on foreground per-
formance (IPC) by limiting the amount of time the background runs on the
processor. We thus cap the load induced by background containers by regu-
lating their CPU quota (maximum CPU cycles given to a process under the
Completely Fair Scheduler).

Our algorithm for regulating the CPU quota is based o↵ of our generic
algorithm framework in Section 5.3.1, with some subtle di↵erences. To pre-
serve the black box nature of Scavenger, we use IPC as the monitoring metric,
measured every second (configurable), and compute the (µ±c·�) range based
on IPC measurements. Note that for the memory and network regulation al-
gorithms, the upper limit of the range, µ+c·�, was used as an estimate of the
amount of resources to be reserved for foreground. However, when using IPC
as the metric, the upper limit does not directly correspond to the required
CPU quota, thus providing no estimate of how much quota can be allocated
to the background. Instead, when the foreground IPC is in the (µ ± c · �)
range, we consider this as an indication that the foreground has negligible
cache contention and thus increase the background container’s CPU quota
by some fixed amount, quota-increase.

If the IPC drops below µ�c�, we decrease the background container quota
by a fixed factor, quota-decrease, to reduce the cache contention. Finally, if
IPC is beyond µ± 2 · c�, we consider it as a phase change for the foreground
and immediately drop the CPU quota of the background to a minimum
value. We then wait for window-size seconds to reestablish the µ and � for
the foreground workload in its new phase. We discuss sensitivity analysis for
the tunable parameters of the algorithm in Section 5.5.1.
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5.3.5 Mitigating CPU core contention

As noted in prior work, sharing of CPU cores between foreground and back-
ground jobs can result in unpredictable contention [75, 73]. We tried setting
the cpu.shares value under Linux’s cgroups to prioritize foreground VMs
over background containers, but this did not provide su�cient isolation. In
particular, with CPU core sharing between foreground and background, tail
latency increased by about 900%, on average, for the latency-critical Cloud-
Suite workloads, for a negligible increase (less than 10%) in CPU utilization.

Instead, we consider the cores of the foreground VMs to be pinned and
use cpuset to allocate only those cores to the background containers that are
not being used by the foreground. This prevents any contention, including
for per-core caches, that arises by sharing of cores.

5.4 Evaluation Methodology

This section describes the evaluation methodology we employ for the per-
formance evaluation results presented in Section 5.5. We start by detailing
our Scavenger prototype implementation, followed by our experimental setup
and the workloads we employ for evaluating Scavenger.

5.4.1 Scavenger prototype implementation

Our prototype implementation for the Scavenger daemon is largely written
in C++. The main Scavenger background daemon combines the resource
regulation algorithms from Sections 5.3.2 – 5.3.5 into a single process. Given
its design, the core Scavenger algorithm is easy to implement, requiring about
750 lines of code. For CPU management, our Scavenger daemon interacts
with the Linux cgroups subsystem; we use a simple shell script to achieve
this result. The daemon constantly monitors the respective resources (via
virsh [78]) and IPC (via hardware performance counters) of the foreground
VMs. Based on the algorithms, the daemon changes the resource allocation of
the background containers dynamically using resource-specific mechanisms:
TC [125] for network, cpuset for core allocation, CPU quota for processor,
and YARN APIs for memory. Our Scavenger daemon implementation results
in about 1% cpu overhead, on average. Note that Scavenger does not require
changes to the kernel or to YARN.
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Figure 5.3: Illustration of our Scavenger deployment.

Deployed architecture: Figure 5.3 illustrates our Scavenger deployment
on a cluster of cloud physical machines (PMs), which are assumed to be
under the control of the provider. The orange boxes on each PM in Fig-
ure 5.3 represent foreground tenant VMs whose workload is considered to be
an unknown (black-box). The blue boxes represent background job contain-
ers; these could be running worker processes of distributed data processing
frameworks such as Hadoop and Spark (see Section 5.4.4). The worker pro-
cesses read from/write to the data sources via the network. Each PM runs
our Scavenger daemon (red box) that interacts with the foreground VMs and
background containers. We next explain the specific experimental setups we
employ for evaluating Scavenger.

5.4.2 Experimental setup

We use two di↵erent sets of servers for our experiments.
Lab testbed: Each server has 1 socket with 4 cores (Intel Xeon E3 v3,
3.4GHz), sharing an 8MB L3 cache; and 16 GB memory. Servers are con-
nected via 1Gb/s links.
Cloud testbed: In this CloudLab testbed [18] (Clemson site), each server
has 2 sockets with 10 cores each (Xeon E5 v2, 2.2GHz), and a 25MB L3
cache per socket; and 250 GB memory. Servers are connected via 10 Gb/s
links.

We use KVM (on top of Ubuntu 16.04) to deploy VMs on these PMs; the
size of the VM is dictated by the foreground workload. For background jobs,
we use Docker (v18.03) to launch containers.

5.4.3 Foreground workloads

We employ the following latency-critical workloads, representative of realis-
tic online services, as the foreground application to evaluate the e�cacy of
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Scavenger:

• CloudSuite [39]: We use the latest version, CloudSuite 3.0 [106] ex-
plained in Section 2.2.1.

• TailBench [67]. TailBench is a recent benchmark suite specifically de-
signed for analyzing latency-critical applications. Section 2.2.1 overviews
TailBench briefly.

All of the above workloads employ their own custom load generators,
resulting in dynamic load variations (in the range of 10–60% CPU load in
our experiments).

5.4.4 Background workloads

We employ microbenchmarks and Spark jobs as our background workloads;
microbenchmarks are used as adversaries to stress test the performance of
Scavenger.

Microbenchmarks. We employ the following for our adversary studies: (i)
dCopy [25] copies vectors repeatedly to stress the cache; (ii) stress-ng [123]
is a cpu stress benchmark; and (iii) iperf [130] is a network bandwidth mea-
surement tool that we employ to stress the network.

Spark jobs. Spark [163] is a scalable and resilient distributed data process-
ing framework that is popularly employed for iterative machine learning jobs.
Spark jobs rely on distributed storage platforms to store their job data. In our
deployment of Spark (v2.3), we use the distributed HDFS [119] as the storage
core. We also employ Yarn [140] (v3.1), a resource management framework
that manages the cluster resources and schedules user applications, to man-
age background jobs. For the Spark workload, we employ analytics jobs from
BigDataBench [47] and Spark-Bench [120], such as FFT, KMeans, Sorting,
etc.

5.5 Evaluation Results

We now present our evaluation results for Scavenger. We start with sen-
sitivity analysis results to configure Scavenger, and then present our main
evaluation results on both testbeds using Spark jobs in the background. Fi-
nally, we discuss our adversarial (limit) study using microbenchmarks in the
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background to evaluate the performance isolation of Scavenger under stress.
Where possible, we evaluate the impact of the foreground and background
workload’s resource demand on Scavenger’s ability to improve utilization.

5.5.1 Sensitivity analysis

We use sensitivity analysis to determine the parameter values to be used for
the resource regulation algorithms from Section 5.3.2 – 5.3.4; note that the
CPU cores regulation algorithm from Section 5.3.5 has no tunable parame-
ters. Our analysis must be black-box and should not involve workloads that
will serve as foreground in the evaluation.

Memory regulation algorithm sensitivity analysis. To determine the
right values for the window-size and std-factor parameters of our memory
regulation algorithm from Section 5.3.2, we require a black-box approach that
does not involve the foreground workload. We resort to simulations for sen-
sitivity analysis and use the recent Alibaba traces [1] containing foreground
memory usage, sampled every 10s, for about 4,000 servers for 8 days.

Figure 5.4 shows the impact of di↵erent window-size and std-factor pa-
rameter settings on the maximum number of violations (across all traces)
and the average background memory a↵orded. In general, a lower std-factor
(c) favors available background memory but results in high violations (i.e.,
not being able to meet the memory demand of foreground). This is because
lower the c value, lower is the amount of memory reserved for foreground
(µ+ c · �), see Section 5.3.2. Likewise, a lower window-size results in higher
violations as there is insu�cient data for accurately (re)estimating µ and �.
While the parameter values can be set by the provider per their needs, we
choose values that maximize the a↵orded background memory while result-
ing in fewer than 30 violations: std-factor = 2 and window-size = 60s. We
use these values for memory regulation in subsequent evaluations. Note that
with these parameter values, we a↵ord about 68.3% background memory us-
age. By contrast, the Alibaba traces show an average background memory
usage of 60.7%.

Network regulation algorithm sensitivity analysis. We use a similar
black-box approach to choose the parameters for network regulation. Since
the Alibaba traces do not have enough information to obtain network utiliza-
tion values, we use network tra�c traces from WITS [144] for our sensitivity
analysis. Our analysis suggests that std-factor = 2 and window-size = 30s
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Figure 5.4: Sensitivity analysis for std-factor and window-size parameters of
the memory regulation algorithm.

work well.

Processor cache regulation algorithm sensitivity analysis. Employ-
ing the same trace-driven approach as above for cache regulation algorithm is
infeasible as we require information on how the foreground IPC will degrade
under di↵erent algorithm parameters. Instead, we conduct actual experi-
ments using the CloudSuite workloads in foreground and dCopy in back-
ground; we do not use Media streaming workload as it will later be employed
as foreground for evaluating network contention. To preserve the black-box
nature of Scavenger, we will not use the CloudSuite workloads employed here
when evaluating cache regulation in the subsequent evaluation subsections;
instead, we will use TailBench, which is not employed for sensitivity analysis.

There are four parameters for cache regulation algorithm (see
Section 5.3.4): quota-increase, quota-decrease, std-factor, and window-size.
For quota parameters, we use the AIMD (additional increase multiplicative
decrease) approach, inspired by TCP congestion control [105], for exploring
the parameter range. We vary quota-increase from 1% to 30% of a CPU core,
and vary quota-decrease by various multiplicative factors. For each pair of
quota parameters, we vary std-factor from 0.5 to 2, and window-size from
5s to 30s. We use the Lab testbed and employ the CloudSuite workloads
in the foreground on a 1-vCPU VM and run dCopy on a container in the
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Figure 5.5: Degradation of foreground IPC (lower is better) colocated with
dCopy under processor regulation.
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Figure 5.6: Background CPU usage a↵orded (higher is better) under the pro-
cessor regulation algorithm.

background on the remaining 3 cores. While we perform several experiments
across all parameter ranges, we briefly highlight our results below.

We find that quota-increase of 10% CPU core and quota-decrease of 2
(halving the quota) works well. For this pair of parameter settings, our
sensitivity analysis for std-factor (also referred to as c) and window-size is
shown in Figure 5.5 and 5.6, which evaluate the foreground IPC degradation
(lower is better) and background CPU usage a↵orded for dCopy (higher
is better), respectively; we report the average numbers based on 3 runs.
We see that some workloads, such as Data caching and Web search, are
less sensitive to parameter variations, whereas others, such as Web serving
and Data serving, are highly sensitive. Recall, from Section 5.3.4, that we
increase background quota when the foreground IPC is in the (µ±c·�) range;
thus, a larger value of c a↵ords larger background usage, but at the expense
of foreground IPC degradation (due to increased colocation). For window-
size, the impact is less pronounced and not monotonic. While tunable per
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Figure 5.7: Performance degradation of individual TailBench workloads in
Lab testbed colocated with Spark.

provider’s needs, we set std-factor = 1 and window-size = 15s to limit the
IPC degradation, which is our black-box proxy for performance degradation.

5.5.2 Evaluation with Spark jobs as the background
batch workload

We now present our evaluation results with Spark jobs running in the back-
ground and the Scavenger algorithms tuned per the above sensitivity analysis
results. Each experiment is typically run multiple times, with each run last-
ing for 360s, including a 60s warm-up period. We compare Scavenger with
the case of no background and the black-box baseline case of cpu core iso-
lation via cpuset. We do not compare with white-box approaches such as
Dirigent [171] or Bistro [50] since they require SLO and latency monitoring
of the foreground workload.

TailBench workloads as foreground. We start with the case of TailBench
workloads in the foreground. We perform experiments on both testbeds. For
the Lab testbed, we run a TailBench workload on a 1-vCPU VM and use
the remaining 3 cores (via cpuset) to launch Spark containers; this 1:3 core
allocation represents the case of heavy background usage. Figure 5.7 shows
the average performance degradation compared to the case of no background,
for baseline (no Scavenger but with cpuset) and Scavenger, based on 10 runs
for each workload. We show results for four workloads that exhibit sensitivity
to colocation; the performance of the other TailBench workloads was not
much impacted by background Spark jobs.

For all cases, we see that, compared to the baseline, Scavenger signifi-
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cantly reduces the performance degradation of TailBench due to background
Spark jobs, often to less than 10%. The average foreground degradation un-
der baseline is 283% and 572%, respectively, when colocated with SparkPi
and KMeans. If we omit the highly sensitive moses workload, the average
degradation is still 61% and 39%. By contrast, the average degradation under
Scavenger is 12% and 8%, respectively, when using SparkPi and KMeans in
the background. Compared to baseline, Scavenger reduces the performance
degradation by 78% and 85%, respectively, when using SparkPi and KMeans
in the background. Note that the baseline here represents the case of only
regulating CPU cores; clearly, such an approach does not su�ce to mitigate
cache contention.

In terms of utilization, Scavenger increases average CPU usage across all
workloads, compared to no background, by about 170% and 198%, respec-
tively, when using SparkPi and KMeans in the background. Likewise, the
memory usage increases by 142% and 230%, respectively. The highest gains
in CPU usage, of about 350%, are for specjbb (in the foreground) while the
lowest gains, about 37%, are for the highly sensitive moses. We further ana-
lyze the impact of the workload’s resource pressure on Scavenger’s ability to
improve utilization in Section 5.5.3.

Multiple foreground VMs. We now use the Cloud testbed and run two
foreground TailBench workloads simultaneously on 2-vCPU and 8-vCPU
VMs, one on each socket, illustrating the case of multiple foreground VMs
hosted on the same physical machine. The remaining 8 cores of socket 0 and
2 cores of socket 1 are used to host Spark job containers. Of the 8 TailBench
workloads, we pick 4 random unique pairs and report our results for these
settings, averaged over 5 runs.

Figure 5.8 shows the latency degradation results over no background for
baseline and Scavenger. For each set of 4 bars, the first 2 bars refer to the
2-vCPU TailBench VM on socket 0 and the last 2 bars refer to the 8-vCPU
TailBench VM on socket 1; the TailBench workloads are denoted in the x-axis
labels (abbreviated in some cases). Clearly, the foreground latency degrada-
tion under baseline can be quite high, often exceeding 50%. The average
degradation when colocated with KMeans is 56%, and that when colocated
with SparkPi is greater than 100% (due to the very high degradation for
moses). By contrast, the degradation under Scavenger is almost always less
than 15%, with average degradation of 4.8% when colocated with SparkPi
and 5.6% when colocated with KMeans. Compared to baseline, Scavenger re-
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Figure 5.8: Performance degradation of multiple TailBench workloads in
Cloud testbed colocated with Spark.

duces the foreground latency degradation by 61.7% and 67.2%, respectively,
when the foreground is colocated with SparkPi and KMeans.

In general, the degradation is much higher for the first TailBench work-
load that is hosted on 2 vCPUs and is colocated with an 8-core Spark job;
this is because of the increased resource demand created by the larger-sized
background job. We confirmed this by reversing the configurations of the
TailBench workload pairs in Figure 5.8; Scavenger continued to significantly
outperform baseline, with the improvement over baseline ranging from 20.1%
to 97.5%. Note that the results for TailBench degradation are largely con-
sistent with those from Figure 5.7; moses continues to be most sensitive to
contention.

In terms of utilization, Scavenger increases average CPU usage across
all cases, compared to no background, by 43% and 34%, respectively, when
using SparkPi and KMeans in the background. The memory usage increases
more significantly, by 201% and 321%, respectively.

Media streaming as foreground. For evaluating the network regulation of
Scavenger, we consider the Media streaming workload from CloudSuite. All
other foreground workloads we consider have low network bandwidth usage.
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Figure 5.9: Performance degradation of Media streaming (in Lab testbed)
when colocated with Spark jobs.

For background, we consider the Sorting and FFT Spark workloads from
BigDataBench since they have high network usage. We use the Lab testbed
with foreground running on a 2-vCPU VM and background container running
on the remaining 2 cores of the same socket. When there is no background,
Media streaming consumes network bandwidth in a dynamic manner, with
an average usage of about 268Mbps (out of the 1Gbps available capacity);
in isolation, the average transfer time (performance metric) for foreground is
530ms.

Figure 5.9 shows our results, averaged over 3 runs, for di↵erent back-
ground jobs under network regulation. We show results for baseline (no regu-
lation), Heracles network regulation, static background limits (via TC [125]),
and Scavenger network regulation; for Heracles, we implement the regulation
algorithm from the paper [82], running at the same frequency (1s�1) as Scav-
enger.

We see that the performance degradation for Media streaming under no
regulation exceeds 15%. Heracles only reduces this degradation to about
12%; this is because Heracles assumes a stable network usage and thus re-
serves only a small bu↵er bandwidth. However, Media streaming has dy-
namic network usage, which is not well handled by Heracles. The static
limits approach works moderately well, but requires (white box) trial-and-
error to find the right limits. By contrast, the dynamic Scavenger algorithm
reduces the degradation to 4.3% in case of Sorting as background and to 5.3%
in case of FFT; this represents a more than 3⇥ improvement over baseline.

In terms of background network usage, baseline and Heracles a↵ord about
320Mbps and 290Mbps, respectively, for Spark. Under the static approaches,
Spark uses almost the entire set limit (80Mbps and 160Mbps). Under Scav-
enger, we a↵ord about 180Mbps (and 32–43% additional CPU usage) for
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Figure 5.10: Performance degradation of foreground TailBench, colocated
with dCopy, under processor regulation.

Spark. Given its dynamic nature, Scavenger outperforms static approaches
while a↵ording higher background usage.

5.5.3 Limit study with stress microbenchmarks

The impact of colocation on foreground performance depends on the re-
source demand created by background jobs. We now conduct a limit study
to evaluate the performance isolation of Scavenger by colocating stress-test
microbenchmarks in the background that serve as adversarial or “worst-case”
workloads as they consume all available resources and create substantial con-
tention.

Processor regulation with dCopy as background. For this limit study,
we only employ the processor cache regulation algorithm to focus on cache
contention.

Figure 5.10(a) shows the results of our Lab testbed experiments with
TailBench in the foreground on a 1-vCPU VM and dCopy container in the

90



background on the remaining 3 cores; the last-level cache is shared and un-
der contention. We report average values and show standard deviation bars
based on 10 runs. The performance (95%ile latency) is normalized to that of
the foreground when run in isolation (no background). Clearly, the baseline
(no Scavenger but with cpuset) results in very high latency for almost all
workloads; the numbers are especially high for moses, sphinx, and img-dnn.
The median increase in latency for baseline compared to no background is
193%. This rea�rms the fact that simply isolating CPU cores will not su�ce
to mitigate contention. By contrast, the latency is much lower with Scav-
enger; the median increase in latency compared to no background is about
11%. For img-dnn, Scavenger significantly improves upon the baseline, but
the latency increase is about 60% compared to no background. This is likely
because the IPC for cache-intensive img-dnn is not as sensitive to cache con-
tention as its performance, thus the black-box Scavenger is not fully aware
of the degradation. Nonetheless, given that this is a limit study, the perfor-
mance degradation numbers are encouraging; without Scavenger, the baseline
numbers are 158% higher, on average.

In terms of utilization, when colocated with the cache-intensive dCopy,
Scavenger increases average CPU usage across all workloads, compared to no
background, by about 127%. We also repeated the above set of experiments
by replacing dCopy with the CPU-intensive stress-ng microbenchmark [123]
in the background. We observed negligible degradation for the foreground
workloads, but a more impressive CPU usage improvement of 285%. In
summary, for the Lab testbed, Scavenger improves the CPU utilization on
average by 127%, 184%, and 285%, when the background workload is dCopy
(very cache intensive), Spark jobs (moderately cache intensive), and stress-ng
(mildly cache intensive), respectively. This suggests that Scavenger’s ability
to improve utilization is inversely proportional to the background workload’s
resource (cache, in this case) pressure.

Figure 5.10(b) shows the results of our Cloud testbed experiments with
TailBench in the foreground on a 4-vCPU VM and dCopy in the background
on 6 cores. At a high-level, the results are consistent with those for our Lab
testbed, illustrating the versatility of Scavenger. However, under baseline,
we see very high degradation for silo and masstree (both of which are mem-
ory intensive) likely because the application times out under the high cache
contention. Omitting these two workloads, compared to no background, the
median increase in latency is about 3674% for baseline, but only about 21%
for Scavenger, representing almost 99% improvement over baseline.
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Figure 5.11: Scavenger’s latency reduction over baseline for di↵erent fore-
ground (fg) and background (bg) sizes.

To evaluate the e�cacy of Scavenger for di↵erent foreground and back-
ground load, we repeat the above Cloud testbed experiments with di↵erent
configurations of the TailBench VM and dCopy container sizes. Figure 5.11
shows the percentage tail latency reduction a↵orded by Scavenger over base-
line for 2-vCPU, 4-vCPU, and 8-vCPU foreground TailBench VMs, colo-
cated respectively with 8-core, 6-core, and 2-core dCopy containers. In gen-
eral, Scavenger’s benefits are more pronounced when the background load
is higher, since there is greater need for performance isolation in this case.
Nonetheless, in almost all cases, the improvement over baseline is significant.
For moses, silo, sphinx, and img-dnn, the latency reduction over baseline is
very high under all configurations; this is because the baseline resulted in
severe performance degradation for these workloads (see Figure 5.10(b)).

Network bandwidth regulation with iperf as background. For this
limit study, we only employ the network bandwidth regulation algorithm. We
use the Lab testbed with Media streaming foreground running on a 2-vCPU
VM and a 2-core background container running iperf. We report average
results based on 3 runs. When using the default std-factor setting of 2,
Media streaming’s transfer-time increases by about 4.8% as a result of 2 vio-
lations (meaning the foreground required more bandwidth than reserved for
it by Scavenger). In terms of background bandwidth usage, of the remaining
nearly 700Mbps (Media streaming uses 268Mbps on average), iperf consumes
115Mbps under Scavenger’s network regulation.

Figure 5.12 shows the results for std-factor settings of 0.5, 1, 1.5, and 2, to
illustrate the trade-o↵ between foreground performance and background re-
source usage a↵orded by the tunable parameters of Scavenger. If we are will-
ing to allow more violations, iperf can use 421Mbps, representing a combined
network usage of 68%, as opposed to just 27% when there is no background.

92



Background network bandwidth (Mbps)

0 100 200 300 400 500

F
o

re
g

ro
u

n
d

 v
io

la
tio

n
s

0

2

4

6
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width for di↵erent std-factor settings. The default std-factor setting of 2 is
shown in red.

5.5.4 Scavenger along with DIAL

It is important to see how both Scavenger and DIAL can be deployed si-
multaneously in cloud environments. DIAL provides theoretically-optimal
load-balancing weights for cloud-deployed load-balanced applications where
worker VMs can have variable resource capacity and Scavenger tries to en-
sure that tenant workloads’ performance is not impacted by the background
workloads. It is therefore interesting to see how these two approaches work
together.

We address the outlined question experimentally. In our setup, there are
two foreground VMs and one background container (in Lab testbed). The
first foreground VM has one vCPU and 16 GB memory, and runs Pinot which
is a load-balanced application (see Section 4.6.2). The second foreground VM
has 2 vCPUs and 16 GB memory and runs Stream, continuously measuring
the memory bandwidth. The background container has 1 CPU core and runs
DCopy continuously creating LLC pressure. Every experiment starts with 4
minutes of warm-up period and continues with 10 minutes of steady-state.
We report 95%ile response time for Pinot and memory bandwidth for Stream.
We define three scenarios and run each of them 10 times:

1. Scenario 1: The two foreground VMs run their assigned workloads and
DIAL is enabled for Pinot. The background container does not run
DCopy and Scavenger is disabled.

2. Scenario 2: In addition to the two foreground VMs running their as-
signed workloads, the background container runs DCopy but Scavenger
is still disabled.
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Figure 5.13: Comparison of foreground workloads’ performance metrics in
three di↵erent scenarios. DIAL is enabled in all the three scenarios. Scav-
enger is disabled in Scenario 1 and 2, and is enabled in Scenario 3.

3. Scenario 3: Both foreground workloads and the background workload
are running, and Scavenger is enabled.

Figure 5.13 compares Pinot tail latency and Stream memory bandwidth
for the three scenarios. DIAL is enabled in Scenario 1 and the impact of
2-vCPU VM running Stream on Pinot latency is negligible. In Scenario
2, where Scavenger is disabled, 95%ile response time of Pinot and Stream
average memory bandwidth degrade by 5.5% and 45.4%, respectively. We
then enable Scavenger in Scenario 3 and while there is still some degradation
for Pinot tail latency (12%), Stream average memory degradation is only
11%, which is much less than Scenario 2. Furthermore, Scavenger improved
the average CPU and memory utilization by 10.3% and 33.5%, respectively.
These results show that Scavenger and DIAL can work together to improve
utilization while balancing the impact on foreground VM performance.

5.6 Discussion

Tunable parameters. Our experimental results show that Scavenger af-
fords di↵erent trade-o↵s between performance isolation and resource usage
improvement depending on the sensitivity of the foreground and background
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workloads to resource contention. The exact trade-o↵s can be tuned via the
algorithm parameters, such as std-factor, that were intentionally included in
the design of Scavenger. Having a tunable algorithm is necessary when de-
ploying colocation solutions on di↵erent environments, such as public cloud
(high performance isolation needs) versus private cloud (a balance between
performance isolation and resource usage).
Tolerance for performance degradation. Our results also show that
there are some workloads, such as img-dnn, that are very sensitive to con-
tention. In such cases, if no foreground performance degradation can be
tolerated, provider workloads should not be run in the background or a more
accurate black-box proxy for foreground performance should be sought. As
discussed in Section 5.3.4, finding such black-box proxy metrics is challeng-
ing.
Extension to Cache Allocation Technology (CAT). While we did not
have access to CAT-equipped servers in our testbed, we believe that the
processor regulation algorithm of Scavenger can benefit such servers as well.
Instead of regulating LLC contention using CPU quota, we can directly em-
ploy CAT to dynamically resize the cache allocation between foreground and
background, via our IPC-based regulation algorithm.

5.7 Conclusion

This chapter presents Scavenger, a dynamic, black-box multi-resource man-
ager that improves resource utilization in cloud servers. Scavenger works by
colocating batch job containers with black-box tenant VMs on host servers
and dynamically regulating the resource usage of batch jobs to meet the
resource demands of the VMs. Importantly, Scavenger does so without in-
strumenting or o✏ine profiling the tenant VMs. Experimental results on
di↵erent testbeds show that Scavenger increases server usage without com-
promising the resource demands of tenant VMs. In general, Scavenger’s
ability to improve server usage is inversely proportional to the tenant and
batch workload’s resource demand. By regulating the batch workload’s re-
source consumption, Scavenger mitigates the latency degradation of tenant
workloads in all cases.
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Chapter 6

E�cient Segment Assignment
Strategy for OLAP Systems

In this chapter, we address the data segment scheduling problem in Online
Analytical Processing (OLAP) platforms. The problem is challenging due to
the varying workload demand and data popularity that results in resource
contention and load imbalance. OLAP systems typically split a big table to
several data segments and distribute these data segments among a cluster of
worker nodes. To serve a query, every worker node runs the query on its’
assigned data segments, and then these local results are integrated to com-
pute the final response. To prevent hotspots and high tail latency, the load
induced by queries targeting a data segment should be taken into account for
deciding which worker nodes will host the data segment. The induced load
by a data segment is dynamic and could be di↵erent for various tables.

We present EASY, an e�cient segment assignment strategy that lever-
ages analytical modeling to predict the future load induced by data segments,
thus allowing for long-term balancing of load across worker nodes. Our imple-
mentation and evaluation of EASY on Pinot shows that we can significantly
reduce query tail latencies in the presence of dynamic load.

This study has been published in ICDCS 2018 [65]. We introduce the
problem and discuss the scope of this chapter in Section 6.1. We then illus-
trate the solution architecture of EASY in 6.2. A load-aware cost function is
the core design principle of EASY which we discuss it in Section 6.3. Apart
from the related works we discussed in Chapter 3, we provide an overview
of prior work in the context of EASY in Section 6.4. Finally, we evaluate
EASY and present the evaluation results in Section 6.5.
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6.1 Introduction

Large-scale and real-time Online Analytical Processing (OLAP) is a signifi-
cant requirement for customer-facing companies. A popular distributed near-
realtime OLAP solution is Pinot [108], that is extensively used at LinkedIn
and Uber for serving user queries (such as the Profile View functionality of
LinkedIn) and for internal analysis.

Pinot leverages a simple architecture (see Section 2.2.1) where every table
is divided into data ”segments” distributed among worker nodes. Every
segment typically contains information for a period of time (e.g., one hour
or one day). An incoming query from a client to Pinot is run simultaneously
across workers hosting the target segments. The end-to-end response time of
a query in Pinot depends on the longest query latency among target workers,
as all individual (per-worker) results need to be integrated by the broker
node(s) before sending the response back to the client.

In such distributed data store systems, the Segment Assignment Strategy
(SAS) has a significant impact on query latency. SAS dictates the placement
of new segments on worker nodes; new segments are created dynamically as
time passes. In other words, SAS is a scheduling problem in which a subset of
worker nodes should be selected to host the newly created data segment and
serve the queries targeting this segment. Naive SAS such as round-robin can
result in hotspots, severely impacting query tail latencies (see Section 6.5).

Existing SAS in production systems often employ a decentralized and
scalable utility function (or cost function) approach whereby each server is
assigned a cost that can be easily computed; incoming segments are then as-
signed to the lowest cost server, whose cost is then updated. While popular
open source OLAP solutions such as Pinot and Druid [159] have their own
cost-based SAS, these default strategies have their shortcomings. The Pinot
SAS aims to balance the number of segments across workers. Our experi-
mental results show that this SAS leads to unbalanced load and high tail
latencies. Druid implements a more advanced SAS by taking the time range
of segments into account. However, as we show in Section 6.5, there is much
scope for improvement, especially when there are multiple tables in the data
store.

We propose a new load-aware SAS, EASY (E�cient segment Assignment
StrategY) [65], that outperforms existing SAS solutions regarding load distri-
bution among workers and, importantly, regarding query tail latency. EASY
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Figure 6.1: EASY’s solution architecture. Components we add are shaded
in red.

works by first passively computing the server load created by segments as
queries operate on them. Then, EASY models this segment load and pre-
dicts, at run time, the future load induced by a segment during its remaining
(finite) lifetime. This task is complicated by the fact that load depends crit-
ically on the age of a segment; we find that, as time passes, the popularity
and load contribution of a segment decreases non-linearly.

We implement EASY on top of Pinot and experimentally evaluate our
SAS using a custom LinkedIn-like data and query set (guided by the first
author’s understanding of LinkedIn’s Pinot system while he was interning
there); we open source all our implementation and code [102]. Our results
show that EASY significantly improves the load balance among worker nodes,
reducing query tail latencies by up to 6–21% when compared to the default
SAS of Pinot and Druid. Importantly, EASY requires few changes and cre-
ates negligible overhead.
In summary, the contributions of this chapter are:

• We present a novel and e�cient load-aware SAS for Pinot.

• We design and implement a realistic dataset and benchmark for evalu-
ating Pinot, and open source it [102].

• We implement our SAS on Pinot (publicly available [102]), and exper-
imentally evaluate it by comparing with the default SAS of Pinot and
Druid.
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6.2 Solution Architecture

Figure 6.1 shows the solution architecture of EASY; the components that
make up EASY are shown in red. Since the controller manages SAS, we
implement our EASY SAS in the controller; the mathematical details of our
SAS are presented in the next Section. When a new segment is generated, the
controller sends a request to all workers. Each worker, in turn, computes its
cost function and returns the value to the controller via an API call. The con-
troller then picks the r workers that have the smallest cost values, and places
r replicas of the incoming segment on these workers. r is a user-specified
value; we set r = 1 in our implementation. To facilitate the computation
of the cost function, each worker logs the total CPU time spent, cpu timeQ,
and the total number of rows scanned, row scanQ, by each query Q. Note
that Q will likely span multiple segments; we thus also log a list of segments
scanned by Q. However, we do not log segment-level information, such as
segment-level CPU time and rows scanned, as this information logging re-
quires significant overhead and may be computationally infeasible. Instead,
we estimate segment-level information from cpu timeQ and row scanQ, as
discussed next.

6.3 EASY’s Cost Function

Recall that Pinot selects the lowest cost worker nodes for each incoming
segment (Section 6.1). The default cost function in Pinot assigns one unit of
cost for each segment in a worker node, thus assigning an incoming segment
to the r workers with the lowest number of segments. Unfortunately, this
cost function does not take into account the server load that each segment
contributes and may contribute in the future. The cost function for EASY
is specifically designed to address this shortcoming e�ciently.
High-level idea. The high-level idea behind EASY’s cost function is to
estimate the server load that each segment will induce during its remaining
lifetime. The server load contribution of a segment is challenging to compute
as it depends on several factors, including (i) the popularity of the segment,
(ii) the size of the segment (number of rows), (iii) the query mix that typically
targets the segment and its relative complexity, and (iv) the structure of the
segment (number of columns and their content). Worse, predicting the load
that a segment may contribute to in the future requires an understanding of
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how induced load changes with time. Clearly, modeling all of these factors
will require significant time and e↵ort, leading to ine�cient SAS design.

Instead, EASY directly models the total server load contribution of a
segment of a given table based on previously observed data. Explicitly, we
compute the total CPU time spent by all queries actively scanning a segment,
and use this as a proxy for load contribution. We find that this CPU time per
segment per query decreases with the age of a segment, possibly because of
caching. We thus also model this decaying trend of CPU time as a function
of the segment age (the di↵erence between current time and segment start
time).

To enable predictions of future load that a segment may induce, we learn
the cpu time per row as a function of segment age for a typical segment
of each table. Then, for any segment of a table, we predict its cpu time
contribution based on its number of rows during its entire lifetime as it ages
(since segments expire after some expiry time).

Our approach di↵ers from existing approaches since we predict the future
load induced by any segment. Further, we model the actual load induced by
a segment as opposed to only modeling its popularity or frequency of access,
which are not accurate enough estimators of load (see Section 6.5).

6.3.1 Passive Model Training

EASY passively computes its estimates of load per segment based on the
measured load induced by incoming queries on existing segments. Further,
to account for changes in workload, EASY periodically updates its estimates
in each interval (one hour, in our implementation).
Computing cpu time per segment. As discussed in Section 6.2, we
track the total cpu time of each query Q, say cpu timeQ, at each worker.
To determine the contribution of individual segments to this cpu time, we
also keep a track of the segments, and the specific time range within the
segments, that each query scans. Let SQ be the set of segments scanned by
query Q, and let ts be the time range, in hours, of segment s 2 SQ that
Q scans (obtained via the WHERE clause of Q). In our implementation of
Pinot, each segment represents one day, and so the fraction of segment s that
is scanned by Q is fs = ts/24. We now estimate the number of rows of s
scanned by Q (not directly available via Pinot) as fs ⇥ row counts, where
row counts is the total number of rows in segment s and is already known to
Pinot. Finally, we estimate the contribution of segment s 2 SQ to cpu timeQ
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as:

cpu timesQ = cpu timeQ ⇥ fs ⇥ row countsP
x2SQ

fx ⇥ row countx
(6.1)

The total cpu time contribution of s based on all queries observed in the past
interval is then estimated as:

cpu times =
X

observed Q

cpu timesQ (6.2)

Computing row scan per segment. We use a similar approach to
estimate the number of rows scanned for segment s by all queries in the past
interval as:

row scans =
X

observed Q

row scanQ ⇥ fs ⇥ row countsP
x2SQ

fx ⇥ row countx
, (6.3)

where row scanQ (logged by EASY) is the total number of rows, across all
segments, scanned by query Q.
Load modeling as a function of age. We now model the load induced
by any segment based on its age; this will allow us to online predict the
future load created by a segment in Section 6.3.2. To enable load prediction
for any segment size, we normalize cpu times by row scans; we refer to this
as:
normalized cpu time: the total cpu time per scanned row of segment s in-
curred by all queries in the last interval.
Likewise, we normalize row scans by row counts to get:
normalized row scan: the total rows scanned per row contained in segment
s by all queries in the last interval.

Figure 6.2 shows our empirical results for normalized cpu time and row scan
for three di↵erent Pinot tables (see Section 6.5.3 for details on our experi-
mental setup). We see that both values decrease non-linearly with segment
age; the decrease for row scan is to be expected as segment popularity drops
with time (older segments are queried less frequently compared to newer
segments).

To enable e�cient predictions for new segments, we model the empirical
observations. Given that popularity for segments is Zipf distributed, we fit
the empirical values as c0 + c1/x↵, where c0 and c1 are coe�cients to be
learned and ↵ is a parameter. Our regression results for these models are
shown as dotted lines in Figure 6.2 along with the modeled equations. The
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Figure 6.2: Empirical and modeled estimates for normalized cpu time and
row scan for segments of three di↵erent tables. Also shown are the regression
fit model equations for each case. The mean modeling error is less than 5%
for cpu time and less than 3% for row scan for all tables.

regression fit is very close to the empirical observations, thus the dotted
lines coincide with the solid (empirical) lines in the figure. The modeling
error for cpu time (g(x) in Figure 6.2(a)) is 3.24%, 4.11%, and 2.75% for
ProfileView, JobApply, and ArticleRead tables, respectively. The modeling
error for row scan (h(x) in Figure 6.2(b)) is 2.94%, 1.16%, and 0.97% for
ProfileView, JobApply, and ArticleRead tables, respectively.

6.3.2 Online Load Prediction

To predict the future load induced by a segment, EASY leverages the above
described models of g() and h(), and integrates the predicted load over the
remaining lifetime of the segment. In particular, at time t, for a segment s
with segment start time starts and row counts total rows, EASY predicts its
future load as:

loads(t) = row counts ⇥
Z expiry

t�starts

g(x) h(x) dx, (6.4)

where t�starts is the age of s and expiry (3 months in our implementation) is
the expiration duration of s. Note that g(x)⇥h(x) represents total CPU time
per row of segment s, and thus multiplying this quantity with row counts
gives us the total CPU time for segment s; integrating over the remaining
lifetime gives us the predicted load induced by s.
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Since our accurate models for normalized cpu time, g(x) = a+ b ·x↵, and
row scan, h(x) = c + d · x�, are relatively easy to express (where a, b, c, d,
↵, and � are regression coe�cients, as shown in Figure 6.2), we can obtain
Eq. (6.5) in closed-form as:

loads(t) = row counts ·
✓
a.c(expiry � t+ starts) +

a.d

(� + 1)

�
expiry�+1

� (t� starts)
�+1

�
+

b.c

(↵ + 1)

�
expiry↵+1 � (t� starts)

↵+1
�

+
b.d

(↵ + � + 1)

�
expiry↵+�+1 � (t� starts)

↵+�+1
�◆

(6.5)

Given this closed-form expression, computing the segment load under
EASY is computationally e�cient; hence the name EASY (E�cient segment
Assignment StrategY).

6.3.3 Putting It All Together

We are now ready to define our cost function. For a worker w with current
set of segments Sw at time t, the EASY cost is:

cost(w, t) =
X

s2Sw

loads(t) (6.6)

Finally, for an incoming segment at time t, EASY selects the r workers
with lowest cost(w, t) for placement.

6.4 Prior Work

We now discuss important prior work on SAS. We implement EASY on top
of Pinot by modifying Pinot’s SAS. The default SAS for Pinot balances the
number of segments across workers. By contrast, EASY aims to minimize
query tail latencies by reducing the load imbalance between workers; we show
in Section 6.5 that EASY significantly outperforms the default Pinot SAS.

The closest systems to Pinot are Druid [159] and ClickHouse [17]. Druid’s
SAS [159] is similar to EASY, except that Druid’s cost function depends only
on the time range of a segment and not its load. As we show in Section 6.5,

103



EASY outperforms Druid by specifically taking segment load into account.
ClickHouse [17] is also an OLAP system but does not employ time-ranged
segments, like Pinot. Data is distributed over workers based on weights that
must be manually assigned by cluster administrators.

Getafix [48] uses a modified bin packing approach to distribute incoming
segments across workers based on their popularity. The authors define seg-
ment popularity in terms of access count of the segment, and popularity is
aged exponentially. Likewise, Copeland et al. [21] distribute data segments
to worker nodes so as to balance the access frequency of resident data objects.

Furtado [40] proposes a data placement schema based on hash-partitioning
to favor most frequently accessed keys for a relational database. Blow-
Fish [69] maintains a request queue per segment and uses queue length as
an estimator of segment load; this queue length information is then used to
distribute segments across servers. However, the access frequency or out-
standing requests for a segment may not directly correlate with the segment
load. For example, a less popular segment may still contribute significantly
to server load because of its size or its structure (e.g., number of columns).
By contrast, EASY models popularity based on its estimated load, which is
a more direct indicator of the cost of a segment than its access frequency.

We now discuss related works that address problems similar to segment
assignment in Pinot, but in di↵erent types of systems or scenarios. Curino
et al. [23] propose a resource estimation technique to better consolidate mul-
tiple online data processing workloads on physical servers. However, they do
not take the time range of data into account, which is an essential factor in
accurately estimating segment load. Wong et al. [151] consider the subset
of segments required to service a relational database query, and use this in-
formation to consolidate segments onto servers. However, under Pinot, since
segments are created over time, the subset of segments required by a query
changes dynamically. Ozmen et al. [104] address the problem of generating
an optimized layout for a given set of database objects by formulating it as
a non-linear program. The resulting layout both balances load and avoids
interference. By contrast, EASY’s approach is much more e�cient and only
relies on load and popularity estimates, which can be easily obtained. Pinot
partitions data based on timestamps as queries are expected to apply to a
particular range of time. This is not the case for general OLAP where all
dimensions may have equal importance. VOLAP [29] migrates data shards
among OLAP workers to reduce load imbalance.

There are also related works that address the problem of tenant placement
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in Database-as-a-Service deployments (e.g., STeP [124] and Pythia [36]) or
placement of di↵erent databases across servers (e.g., Scha↵ner et al. [116]).
While similar, the SAS problem is distinguished by the concept of time-
ranged segments which complicates the load distribution challenges.

6.5 Evaluation

We first describe our experimental setup and evaluation methodology, and
then present our evaluation results comparing EASY to Pinot SAS and Druid
SAS.

6.5.1 Pinot Benchmark

Before illustrating our Pinot benchmark, we provide more insights on Pinot
basics (see Section 2.2.1). Pinot processes recent data (e.g, a few days old)
using Realtime Workers and older data (may overlap with realtime data)
using Historical Workers, as shown in Figure 2.2. Realtime data is pushed
to Historical Workers as time passes (e.g., daily) or when a given number of
records have been ingested; the data is pushed via Kafka and HDFS. In this
thesis we focus on Historical Workers, that store the bulk of the data.

Historical Workers store data in the form of a pre-built index called seg-
ment ; every table has its own segments. Segments store contiguous data for a
given time range; there is a row of data columns for each time interval within
the range. Every segment thus has an associated start time and end time
for its data (in the Time column). Note that there may be a table-specific
expiry time that dictates how long segments should be retained by Histor-
ical Workers. Once the expiry time, say 3 months, elapses, the associated
segments are deleted.

We implement a query generator benchmark for Pinot. To mimic the
LinkedIn functionality, we create the following (self-explanatory) tables: Pro-
fileView, JobApply, and ArticleRead. Each table has several columns; for
example, ProfileView has columns: Time, ViewerProfileId, ViewerWork-
Place, WereProfilesConnected, etc. For each table, we create several rele-
vant queries. An example query for the ProfileView table is “SELECT *
FROM ProfileView WHERE ViewStartTime > t1 AND ViewStartTime <
t2”, where t1 and t2 are (randomized) query parameters. For every table,
the exact mix (or ratio) of queries, parameter values, and query rate, can
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be specified. Every query requests data from a table with time range length
(based on WHERE clause) being Zipf distributed and end time being the
wall clock time when the query is issued.

Our benchmark is implemented in ⇠2000 lines of code and schema files.
The table and query design is guided by our understanding of the Pinot
system used by LinkedIn (based on the first author’s internship at LinkedIn).
All implementation details, including code, tables, and queries, have been
open sourced for reference [102].

6.5.2 Implementing EASY on Pinot

We implement EASY in Java for integration with Pinot (also written in Java).
On the controller side, we implement EASY SAS with ⇠200 lines of code. On
the worker side, we implement the EASY RESTless API and Pinot logging
extensions with⇠500 lines of code. The API is used to compute the cost(w, t)
function at each worker w and return the value to the controller. We record
cpu time for each query via java.lang.management.ThreadMXBean; we ver-
ified the correctness of our cpu time implementation with engineering sta↵
at LinkedIn (when the first author was interning at LinkedIn). We also ex-
pose the list of segments being targeted by a query in the final log. The
overhead of EASY is negligible in practice, especially since we integrate our
logging e↵orts with the e�cient LogFactory class used by LinkedIn in their
production Pinot implementation. For reference, we have open sourced our
EASY-equipped Pinot implementation [102].

6.5.3 Experimental Setup

We use two di↵erent setups for our experiments:

1. Physical setup: We use 7 servers for our experiments, with 1 controller,
2 brokers, and 4 worker nodes. All servers are identical with 4 cores
(Intel Xeon CPU E3-1231) and 16GB of memory (of which 12GB is
assigned to Pinot Java processes). Servers are connected through 1GB
network links.

2. Virtual setup: We use 4 Virtual Machines (VMs) for our experiments,
with 1 controller, 1 broker, and 2 worker nodes. All VMs are identical
with 4 cores and 8GB of memory (of which 4GB is assigned to Pinot
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Java processes). Underlying physical servers are connected through
1GB network links.

We use the physical setup, unless otherwise stated. We use the Pinot bench-
mark explained with details in Section 6.5.1.

6.5.4 Evaluation Methodology

Metrics. We evaluate SAS in terms of two metrics:

1. T99: 99%ile query tail latency as seen by the broker(s); a metric that
LinkedIn uses internally [77].

2. CPU�: standard deviation of the CPU usage across workers, a metric
we aim to minimize to, in turn, reduce T99.

Baselines. We compare EASY with the following SAS:

1. BalanceNum: This default Pinot SAS aims to balance the number
of segments across workers. An incoming segment is assigned to the
worker with the least number of segments.

2. Spread: This is the Druid SAS in use at Metamarkets which aims to
avoid hotspots by spreading apart segments that are closer in time as
they are likely to be queried together [34]. For segments X and Y ,
Spread defines:

cost(X, Y ) =

Z x1

x0

Z y1

y0

e��|x�y| dx dy, (6.7)

where [x0, x1) and [y0, y1) is the time range of X and Y , respectively,
and � is the decay rate. For an incoming segment X, Spread selects
the worker k which results in minimum

P
y2Sk

cost(X, Y ), where Sk is
the set of segments on k. The intuition behind this cost function is to
place X at a worker that does not contain too many segments which
are likely to be queried together with X (have neighboring time ranges)
to minimize contention.
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Figure 6.3: Boxplot illustrating the T99 for di↵erent SAS as a function of in-
creasing standard deviation of segment size (�). For � = 5K, 15K, and 25K,
EASY reduces T99 by 1%, 5%, and 6% when compared to BalanceNum and
by 1%, 4%, and 5% when compared to Spread.

6.5.5 Results for Physical Setup Testbed

We illustrate evaluation results under various scenarios. In each case, we
use normalized cpu time and row scan information about segments from the
past interval (one hour) to guide the SAS, as described in Section 6.3.
SAS for di↵erent segment size variability. We first consider a
scenario where 90 segments (for 90 days of data) are assigned to four worker
nodes via the specified SAS. We then run our benchmark and generate queries
over these 90 segments for the next 30 minutes. This experiment uses the
ProfileView table; segment sizes (row count) are Normally distributed with
mean µ = 30K and varying standard deviation, �.

Figure 6.3 shows the boxplot (including median and first and third quar-
tiles) for our experimental results for T99 under BalanceNum, Spread, and
EASY. We find that EASY reduces T99 moderately by around 1-6% when
compared to BalanceNum and Spread. The improvement is larger for higher
variability in segment sizes. This is to be expected as BalanceNum and
Spread do not explicitly take segment size into account, while EASY implic-
itly takes the segment size into account when learning the load contributions
of segments (see Section 6.3).

Finally, EASY reduces CPU� by 18.38% and 3.51% when compared to
BalanceNum and Spread, respectively. These results show that the improve-
ment a↵orded by EASY over BalanceNum is significant. However, the im-
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Figure 6.4: Boxplot illustrating the T99 under di↵erent SAS for the scenario
where a worker node is added. EASY reduces T99 by 21.55% and 1.61% when
compared to BalanceNum and Spread, respectively.

provement over Spread is quite small; we show later that EASY outperforms
Spread significantly when there are multiple data tables.
SAS when adding workers. We next consider the more challenging
scenario where a new worker node is added to scale capacity and accommo-
date new segments. Specifically, we start with three worker nodes which are
assigned 60 segments via their SAS. Then, a fourth worker node is added and
30 new segments are assigned (across all workers). We monitor query laten-
cies from this point onwards for the next 30 minutes. This experiment uses
the ProfileView table; segment sizes are Normally distributed with µ = 30K
and � = 1K.

Figure 6.4 shows our experimental results for T99 under BalanceNum,
Spread, and EASY. We find that EASY reduces T99 by 21.55% and 1.61%
when compared to BalanceNum and Spread, respectively. Likewise, EASY
improves query throughput (not shown) by 13.38% and 1.04% when com-
pared to BalanceNum and Spread, respectively. Finally, EASY reduces
CPU� by 18.38% and 3.51% when compared to BalanceNum and Spread,
respectively.

The above results show that the improvement a↵orded by EASY over
BalanceNum is significant. This is because BalanceNum assigns most of the
30 new segments to the fourth (empty) worker node, resulting in a hotspot as
newer segments are queried more often. By contrast, both EASY and Spread
take recency of segments into account, thus providing better load balancing.
SAS with multiple tables. We now experiment with segments from all
three tables (see Section 6.5.3). We assign 28 segments (for the month of
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Figure 6.5: Boxplot illustrating the T99 under di↵erent SAS for the case of
multiple tables. EASY reduces T99 by 4.93% and 6.33% when compared to
BalanceNum and Spread, respectively.

February) for each table to 4 workers; assignment follows the specified SAS.
We assign segments chronologically – segments for a given day for all tables,
and then segments for the next day for all tables.

BalanceNum tries to balance the number of segments for each table across
workers. Spread considers segments from all tables on a worker node, but
assigns a higher cost in Eq. (6.7) (by a factor 2⇥) if a pair of segments belong
to the same table as they are then more likely to be queried together [34].
EASY does not use a pair-wise cost function (as in Spread), and easily ex-
tends to the case of multiple tables by considering segments from all tables
on a worker (s 2 Sw in Eq. (6.6) can be from any table) when computing the
cost for a worker.

Figure 6.5 shows our experimental results for T99. This time, EASY re-
duces T99 by 4.93% and 6.33% when compared to BalanceNum and Spread,
respectively. Likewise, EASY improves query throughput (not shown) by
13.38% and 1.04% when compared to BalanceNum and Spread, respectively.
Finally, EASY reduces CPU� by 18.38% and 3.51% when compared to Bal-
anceNum and Spread, respectively. These results show that EASY a↵ords
moderate improvements over Spread as well. Spread performs poorly in this
case as it does not take into account the relative di↵erence in the load con-
tributed by segments of di↵erent tables. That is, segments of di↵erent tables
with the same age are treated equally, even though they may induce di↵erent
loads on the workers due to di↵erences in their structure and content as well
as incoming query rate and pattern. By contrast, EASY learns these di↵er-
ences over time and thus treats segments from di↵erent tables di↵erently.
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Figure 6.6: Empirical and modeled estimates for normalized cpu time and
row scan for segments of three di↵erent tables (cluster of virtual machines).
Also shown are the regression fit model equations for each case. The mean
modeling error is less than 3.75% for cpu time and less than 3.15% for
row scan for all tables.

6.5.6 Results for Virtual Server Testbed

To further emphasize the benefits of EASY, we extend Pinot benchmark
queries and tune their parameters such that segments of di↵erent tables in-
duce varying CPU load. The regression results for the new models are shown
as dotted lines in Figure 6.6 along with the modeled equations. The model-
ing error for cpu time (g(x) in Figure 6.6(a)) is 2.82%, 4.68%, and 3.76% for
ProfileView, JobApply, and ArticleRead tables, respectively. The modeling
error for row scan (h(x) in Figure 6.6(b)) is 1.67%, 3.18%, and 4.51% for
ProfileView, JobApply, and ArticleRead tables, respectively.
SAS with multiple tables. We now experiment with segments from
all the three tables. We assign 90 segments per table chronologically to 2
workers; assignment follows the specified SAS. We repeat this experiment 10
times. Figure 6.7 shows our experimental results for T99. This time, EASY
reduces T99 by 19.77% and CPU� by 86.84% when compared to BalanceNum.
The reduction of T99 when compared to Spread is negligible. These results
show that EASY a↵ords significant improvements over BalanceNum, but de-
livers equal improvements when compared to Spread. In the next experiment
we show how BalanceNum a↵ords considerable improvements over Spread as
well.
SAS when adding workers. We next consider the more challenging sce-
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Figure 6.7: Boxplot illustrating the T99 under di↵erent SAS for the case of
multiple tables and cluster of virtual machines. EASY reduces T99 by 19.77%
when compared to BalanceNum.

nario where a new worker node is added to scale capacity and accommodate
new segments. Specifically, we start with one worker node which is assigned
45 segments per table via the SAS. Then, a second worker node is added
and 45 new segments per table are assigned (across all workers). We monitor
query latencies from this point onwards for the next 10 minutes. We repeat
this experiment 10 times.

Figure 6.8 shows our experimental results for T99 under BalanceNum,
Spread, and EASY. We find that EASY reduces T99 by 16.11% and 12.84%
when compared to BalanceNum and Spread, respectively. Finally, EASY re-
duces CPU� by 85% and 63.96% when compared to BalanceNum and Spread,
respectively.

The above results show that the improvement a↵orded by EASY over
BalanceNum and Spread is significant. This is because BalanceNum assigns
all of the 45 new segments (per table) to the second (empty) worker node, re-
sulting in a hotspot as newer segments are queried more often. While Spread
takes recency of segments into account and provides better load balancing,
EASY delivers significant improvements over Spread as well because EASY
takes both recency and varying induced loads of segments into account.

6.6 Conclusion

E�ciently using cloud resources is important for cloud tenants. The schedul-
ing component of cloud-deployed applications plays a crucial role in how
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Figure 6.8: Boxplot illustrating the T99 under di↵erent SAS for the case of
multiple tables and cluster of virtual machines where a worker node is added.
EASY reduces T99 by 16.11% and 12.84% when compared to BalanceNum
and Spread, respectively.

e�ciently a cluster of cloud resources are used. The broad scheduling chal-
lenge is how to prevent hotspots and load imbalance among the cluster of
cloud resources. We consider this challenge in the context of OLAP systems
that are important due to the emergence of the big-data paradigm. OLAP
systems typically split a big table into several data segments and distribute
these data segments among a cluster of worker nodes. To serve a query, every
worker node runs the query on its assigned data segments, and then these
local results are integrated to compute the final response. Accordingly, we
have a data segment scheduling problem with the goal of having a balanced
load among the worker nodes to prevent hotspots and high tail latency.

In this chapter, we presented EASY, an e�cient SAS (Segment Assign-
ment Strategy) for OLAP systems, such as Pinot [108] and Druid [159]. The
key idea in EASY is to model the CPU time contribution of each segment,
and leverage this modeling to predict the future load induced by segments of
a server. Experimental results show that SAS based on our accurate model
predictions provides significantly lower query tail latencies when compared
to the SAS of Pinot and Druid.
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Chapter 7

Conclusions

Cloud computing is a leading technology that delivers virtually unlimited
computing services over the Internet. Cloud users often acquire a cluster of
resources (e.g., VMs) to run their applications. The scheduling component
of applications plays a crucial role in determining the end-to-end application
performance (e.g., tail latency). In emerging cloud environments, scheduling
decisions are complicated by the fact that underlying resource capacity may
vary dynamically due to resource contention, in addition to the traditional
challenge of varying workload demand and data popularity. Our goal in
this dissertation is to address some of the important scheduling challenges
in cloud environments, and to provide practical and analytically rigorous
solutions that empower both cloud provider and cloud user. We specifically
address three challenges and we now summarize the contributions made by
this thesis regarding these three challenges:

1. Cloud tenant VM’s variable resource capacity: Due to the per-
formance interference challenge, we have a request scheduling problem
for load-balanced applications with the goal of having minimum tail
latency where the applications are running on a cluster of VMs facing
unpredictable performance.

We presented DIAL (Chapter 4), a user-centric Dynamic Interference-
Aware Load balancing framework that can be employed directly by
cloud users without requiring any assistance from the hypervisor or
cloud provider to reduce tail response times during interference. DIAL
works by leveraging two critical components: (i) an accurate, user-
centric response time-monitoring based interference detector, classifier,
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and estimator, and (ii) a framework for deriving theoretically optimal
load balancer weights under interference. We use analytical tools for
both components resulting in a rigorous and generic methodology that
can be extended to other scenarios. Our experimental results for web
and OLAP applications on several cloud platforms, under interference
from realistic benchmarks, demonstrate the benefits of DIAL.

2. Background workload impact on cloud tenant VM perfor-
mance: Running batch workloads in the background is a common
practice to improve server utilization in cloud data centers. However,
background workloads can severely impact the cloud tenant VM per-
formance due to the resource contention. Note that cloud providers are
not aware of the cloud tenants’ (foreground) workloads. Having black-
box foreground workloads is a significant challenge that has not been
adequately addressed by the several prior works (see Section 3.2). Fur-
thermore, Section 2.4 illustrated that there is still significant room for
utilization improvement by analyzing real-world resource usage traces.
Accordingly, to address these challenges, batch workloads need to be
scheduled next to the black-box foreground workloads (tenants’ VMs)
with two competing goals: (1) foreground workloads’ SLO are not vi-
olated, and (2) background workloads’ progress rate is maximized.

Chapter 5 presented Scavenger, an application-agnostic resource man-
ager to improve resource utilization in public cloud servers. Scavenger
works by colocating Spark batch job containers with black-box cus-
tomer VMs on host servers and dynamically regulating the resource
usage of batch jobs to meet the resource demands of the VMs. Impor-
tantly, Scavenger does so without instrumenting or o✏ine profiling the
customer VMs. The design of Scavenger exploits the cgroups feature
in Linux to address CPU and LLC contention; we believe our design
ideas could be extended to other cache levels as well. For memory man-
agement, we rely on carefully monitoring and regulating the memory
assigned to background Spark containers. Comprehensive experimental
results on our Lab and Cloud testbeds using KVM and Docker show
that Scavenger can significantly increase resource utilization while min-
imizing the impact on the resource demands of the black-box customer
VMs (often less than 10%).
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3. Impact of hotspots and load imbalance on application tail la-
tency: E�ciently using cloud resources is important for cloud tenants.
The scheduling component of cloud-deployed applications plays a cru-
cial role in how e�ciently a cluster of cloud resources are used. The
broad scheduling challenge is how to prevent hotspots and load imbal-
ance among the cluster of cloud resources. We consider this challenge
in the context of Online Analytical Processing (OLAP) systems that
are important due to the emergence of the big-data paradigm. OLAP
systems typically split a big table into several data segments and dis-
tribute these data segments among a cluster of worker nodes. To serve
a query, every worker node runs the query on its assigned data seg-
ments, and then these local results are integrated to compute the final
response. Accordingly, we have a data segment scheduling problem
with the goal of having a balanced load among the worker nodes to
prevent hotspots and high tail latency.

In Chapter 6, we presented EASY, an e�cient SAS (Segment Assign-
ment Strategy) for OLAP systems, such as Pinot [108] and Druid [159].
The key idea in EASY is to model the CPU time contribution of each
segment, and leverage this modeling to predict the future load induced
by segments of a server. Experimental results show that SAS based on
our accurate model predictions provides significantly lower query tail
latencies when compared to the SAS of Pinot and Druid.

The design of our scheduling solutions in this dissertation demonstrated
that using analytical approaches for dynamic scheduling can improve cloud-
deployed applications’ performance. We showed that our proposed approaches
reduce the applications’ tail latency significantly compared to the baseline
scenarios where our dynamic solutions are not deployed and compared to
other state-of-art approaches.

7.1 Future Work

Running background workloads next to primary workloads to improve data
center utilization has been a hot research topic for many years and has been
deployed in production by many IT companies. While in this dissertation we
explored this topic from new perspectives, including the realistic black-box
assumption for customer workloads, there are still interesting and promising
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perspectives that can be explored. Some of these new research directions
that are beyond this thesis are as follows:

• It will be interesting to study the e�cacy of Machine Learning (ML)
techniques to predict the resource demand of customer workloads in
the next time interval and increase or decrease background workloads’
pressure accordingly. Besides, ML techniques can help us dynamically
tune our solution parameters in response to, for example, workload
variability. The primary requirement will be the design and integra-
tion of ML methods with Scavenger that can be easily implemented in
production systems without introducing additional complexity.

• It will be promising to extend Scavenger, our proposed background
workload manager, by taking new hardware technologies into account.
For instance, in our current study we did not have access to physical
servers equipped with Intel Cache Allocation Technology (CAT) [98].
CAT enables fine-grained LLC capacity management by providing a
mechanism to assign cache ways to cores to enable cache isolation. In
our current study, the goal was to propose a technique that can be de-
ployed in di↵erent generations of servers. However, it will be interesting
to leverage Scavenger’s resource regulation algorithm for dynamic LLC
allocation to background workloads in CAT-equipped servers. This can
significantly outperform the static LLC allocation schemes in terms of
LLC utilization, and thus background workloads’ progress rate. In such
a scenario, background workloads will be allowed to use idle cores in
full capacity while their assigned LLC is dynamically regulated. We
think that the CPU utilization improvement can be significant while
the LLC regulation governs the trade-o↵ between potential foreground
workloads’ performance degradation and the progress rate of the back-
ground workloads.
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