NoSQL Databases

From: Principles of Database Management
W. Lemahieu, S. Vanden Broucket, B. Baeses
Cambridge University Press, 2018

Chapter 11

Introduction

The NoSQL movement
Key—value stores

Tuple and document stores
Column-oriented databases
Graph-based databases
Other NoSQL categories

The NoSQL Movement

* RDBMSs put a lot of emphasis on keeping data consistent.
— Entire database is consistent at all times (ACID)

* Focus on consistency may hamper flexibility and scalability

* As the data volumes or number of parallel transactions
increase, capacity can be increased by

— Vertical scaling: extending storage capacity and/or CPU power of
the database server

— Horizontal scaling: multiple DBMS servers being arranged in a
cluster

The NoSQL Movement

RDBMSs are not good at extensive horizontal
scaling

— Coordination overhead because of focus on consistency
— Rigid database schemas

Other types of DBMSs needed for situations with
massive volumes, flexible data structures, and
where scalability and availability are more
important =» NoSQL databases

The NoSQL Movement

The NoSQL Movement

¢ NoSQL databases

— Describes databases that store and manipulate data in
formats other than tabular relations, i.e., non-relational
databases (NoREL)

* NoSQL databases aim at near-linear horizontal
scalability by distributing data over a cluster of
database nodes for the sake of performance as well
as availability

* Eventual consistency: the data (and its replicas) will
become consistent at some point in time after each
transaction (but continuous consistency not guaranteed)y

Relational Databases

NoSQL Databases

Data paradigm

Relational tables

Key-value (tuple) based

Document based

Column based

Graph based

XML, object based

Others: time series, probabilistic, etc.

Distribution Single-node and distributed Mainly distributed

Scalability Vertical scaling, harder to scale Easy to scale horizontally, easy data
horizontally replication

Openness Closed and open source Mainly open source

Schema role Schema-driven Mainly schema-free or flexible schema

Query language

SQL as query language

No or simple querying facilities, or
special-purpose languages

Transaction

mech

Durability

ACID: Atomicity, Consistency, Isolation,

BASE: Basically Available, Soft state,
Eventual consistency

Feature set

Many features (triggers, views, stored
procedures, etc.)

Simple API

Data volume

Capable of handling normal-sized
datasets

Capable of handling huge amounts of
data and/or very high frequencies of
read/write requests

Key—Value Stores

Key—Value Stores

* Key—value-based database stores data as
(key, value) pairs
— Keys are unique
— Hash map, or hash table or dictionary

import java.util.HashMap;
import java.util.Map;
public class KeyValueStoreExample {
public static void main(String... args) {

// Keep track of age based on name

Map<String, Integer> age_by_name = new HashMap<>();

// Store some entries
age_by_name.put("wilfried", 34);
age_by_name.put("seppe", 30);
age_by_name.put(“"bart", 46);
age_by_name.put("jeanne", 19);

// Get an entry

int age_of_wilfried = age_by_name.get("wilfried");

System.out.println("Wilfried's age:

// Keys are unique

" + age_of_wilfried);

age_by_name.put(“seppe”, 50); // Overrides previous entry

Key—Value Stores

Key—Value Stores

* Keys (e.g., “bart”, “seppe”) are hashed by means of a so-
called hash function

— A hash function takes an arbitrary value of arbitrary size and
maps it to a key with a fixed size, which is called the hash value

— Each hash can be mapped to a space in computer memory

Key Hash Key

wilfried 01 (wilfried,34)
seppe |:> 03 (seppe,30)
bart 07 (bart,46)
jeanne 08 (jeanne,19)

* NoSQL databases are built with horizontal
scalability support in mind

* Distribute hash table over different locations

* Assume we need to spread our hashes over three
servers
— Hash every key (“wilfried”, “seppe”) to a server

identifier

— index(hash) = mod(hash, nrServers) + 1

Key—Value Stores

Key—Value Stores

Key Hash Index (= mod 3+ 1)
wilfried o ?
seppe I::\/\ 03 1
bart o7 2
jeanne 08 3
Server#1l Entries Server #2 Entries Server #3 Entries
03 (seppe,30) 01 (willried,34) 08 (jeanne, 19)
07 (bart,46)

Sharding!

"

* Example: Memcached
— Implements a distributed memory-driven hash table
(i.e., a key—value store), which is put in front of a
traditional database to speed up queries by caching
recently accessed objects in RAM

— Caching solution

Key—Value Stores

Key—Value Stores

import java.util.Arraylist;

import java.util.List;

import net.spy.memcached.Addrutil;

import net.spy.memcached.MemcachedClient;

public class MemCachedExample {

public static void main(String[] args) throws Exception {
List<String> serverList = new ArraylList<String>() {

{

this.add("memcachedserverl.servers:11211");
this.add("memcachedserver2.servers:11211");
this.add("memcachedserver3.servers:11211");

}

s

MemcachedClient memcachedClient = new MemcachedClient(
AddrUtil.getAddresses(serverList));

// ADD adds an entry and does nothing if the key already exists

// Think of it as an INSERT

// The second parameter (@) indicates the expiration - @ means no expiry
memcachedClient.add("marc", @, 34);

memcachedClient.add("seppe”, 0, 32);

memcachedClient.add("bart", @, 66);

memcachedClient.add("jeanne", @, 19);

// SET sets an entry regardless of whether it exists

// Think of it as an UPDATE-OR-INSERT

memcachedClient.add("marc", @, 1111); // <- ADD will have no effect
memcachedClient.set("jeanne", @, 12); // <- But SET will

Key—Value Stores

Key—Value Stores

// REPLACE replaces an entry and does nothing if the key does not exist

// Think of it as an UPDATE

memcachedClient.replace("not_existing_name", @, 12); // <- Will have no effect
memcachedClient.replace("jeanne", 0, 10);

// DELETE deletes an entry, similar to an SQL DELETE statement
memcachedClient.delete("seppe");

// GET retrieves an entry

Integer age_of_marc = (Integer) memcachedClient.get("marc");

Integer age_of_short_lived = (Integer) memcachedClient.get("short_lived_name");
Integer age_of_not_existing = (Integer) memcachedClient.get("not_existing_name");
Integer age_of_seppe = (Integer) memcachedClient.get("seppe");
System.out.println("Age of Marc: " + age_of_marc);

System.out.println("Age of Seppe (deleted): " + age_of_seppe);
System.out.println("Age of not existing name: " + age_of not_existing);
System.out.println("Age of short lived name (expired): " + age_of_short_lived);

memcachedClient.shutdown();

}
}

* Request coordination

* Consistent hashing

* Replication and redundancy

* Eventual consistency

* Stabilization

* Integrity constraints and querying

Eventual Consistency

Eventual Consistency

* Membership protocol does not guarantee that
every node is aware of every other node at all
times

— it will reach a consistent state over time

State of the network might not be perfectly
consistent at any moment in time, though will
become eventually consistent at a future point in
time

Many NoSQL databases guarantee so-called
eventual consistency

* Most NoSQL databases follow the BASE principle

— Basically Available, Soft state, Eventual consistency

* CAP theorem states that a distributed computer system

cannot guarantee the following three properties at the
same time:
— Consistency (all nodes see the same data at the same time)

— Availability (guarantees that every request receives a response
indicating a success or failure result)

— Partition tolerance (the system continues to work even if nodes go
down or are added)

Eventual Consistency

Stabilization

* Most NoSQL databases sacrifice the consistency part
of CAP in their setup, instead striving for eventual
consistency

* The full BASE acronym stands for:

— Basically Available: NoSQL databases adhere to the
availability guarantee of the CAP theorem

— Soft state: the system can change over time, even
without receiving input

— Eventual consistency: the system will become consistent
over time

19

The operation which repartitions hashes over
nodes in case nodes are added or removed is
called stabilization

If a consistent hashing scheme is being applied,
the number of fluctuations in the hash—node
mappings will be minimized.

Integrity Constraints and Querying

* Key—value stores represent a very diverse gamut
of systems

* Full-blown DBMSs versus caches

* Only limited query facilities are offered
—e.g. put and set

* No means to enforce structural constraints
— DBMS remains agnostic to the internal structure

* No relationships, referential integrity constraints,
or database schema can be defined

Tuple and Document Stores

* A tuple store is similar to a key—value store, with the
difference that it does not store pairwise
combinations of a key and a value, but instead stores
a unique key together with a vector of data

* Example:

—marc -> ("Marc", "McLast Name", 25, "Germany")

* No requirement to have the same length or semantic

ordering (schema-less!)

Tuple and Document Stores

* Various NoSQL implementations do, however, permit
organizing entries in semantical groups (aka
collections or tables)

* Examples:

— Person:marc -> ("Marc", "McLast Name", 25, "Germany")
— Person:harry -> ("Harry", "Smith", 29, "Belgium")

Tuple and Document Stores

* Document stores store a collection of attributes
that are labeled and unordered, representing
items that are semi-structured

* Example:
{
Title = "Harry Potter"
ISBN = "111-1111111111"
Authors = ["J.K. Rowling"]
Price = 32
Dimensions = "8.5 x 11.0 x 0.5"
PageCount = 234
Genre = "Fantasy"

Tuple and Document Stores

Tuple and Document Stores

* Most modern NoSQL databases choose to
represent documents using JSON

{
"title": "Harry Potter",
“authors": ["J.K. Rowling", "R.J. Kowling"],
"price": 32.00,
"genres": ["fantasy"],
“dimensions": {
"width": 8.5,
"height": 11.0,
"depth": 0.5
1
“pages": 234,
"in_publication": true,
"subtitle": null
}

* Items with keys
* Filters and queries

* Complex queries and aggregation with
MapReduce

sSQl after all ...

26

ltems with Keys

Filters and Queries

* Most NoSQL document stores will allow you to
store items in tables (collections) in a schema-less
manner, but will enforce that a primary key be
specified
— e.g. Amazon’s DynamoDB, MongoDB (_id)

* A primary key will be used as a partitioning key to
create a hash and determine where the data will
be stored

27

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.client.FindIterable;

import com.mongodb.client.MongoDatabase;

import java.util.Arraylist;

import static com.mongodb.client.model.Filters.*;
import static java.util.Arrays.aslist;

public class MongoDBExample {

public static void main(String... args) {
MongoClient mongoClient = new MongoClient();
MongoDatabase db = mongoClient.getDatabase("test");

// Delete all books first

db.getCollection("books").deleteMany(new Document());
// Add some books
db.getCollection("books").insertMany(new ArrayList<Document>() {{
add(getBookDocument("My First Book", "Wilfried", "Lemahieu", 12, new String[]{"drama"}));
add(getBookDocument("My Second Book", "Seppe", “vanden Broucke", 437, new String[]{"fantasy", "thriller"}));
add(getBookDocument("My Third Book", "Seppe", “vanden Broucke", 200, new String[]{"educational"}));
add(getBookDocument("Java Programming”, "Bart", "Baesens", 100, new String[]{"educational"}));
139N

28

Filters and Queries

// Perform query

FindIterable<Document> result = db.getCollection("books").find(
and(eq("author.last_name", “vanden Broucke"),

eq("genres”, “"thriller"),

gt("nrPages”, 100)));

for (Document r : result) {
System.out.println(r.toString());

// Increase the number of pages:
db.getCollection("books").updateOne(

new Document("_id", r.get("_id")),

new Document("$set",

new Document(“nrPages”, r.getInteger("nrPages"”) + 100)));
}

mongoClient.close();}

public static Document getBookDocument(String title,

String authorFirst, String authorLast,

int nrPages, String[] genres) {

return new Document("author", new Document()

.append(“"first_name", authorFirst)

.append(“last_name", authorLast))

.append("title", title)

.append(“"nrPages", nrPages)

.append(“genres", asList(genres));}} 29

Filters and Queries

Document{{ id=567ef62bc0c3081f4c04b16c,
author=Document{{first_name=Seppe, last_name=vanden Broucke}},
titte=My Second Book, nrPages=437, genres=[fantasy, thriller]}}

30

Filters and Queries

// Perform aggregation query
AggregateIterable<Document> result = db.getCollection("books")
.aggregate(asList(
new Document("$group”,
new Document("_id", "$author.last_name")

.append("page_sum", new Document("$sum",
"$nrPages")))));

for (Document r : result) {
System.out.println(r.toString());

}

Document{{_id=Lemahieu, page_sum=12}}
Document{{_id=Vanden Broucke, page_sum=637}}
Document{{_id=Baesens, page_sum=100}}

31

Filters and Queries

* Queries can still be slow because every filter (such
as “author.last_name = Baesens”) entails a
complete collection or table scan

* Most document stores can define a variety of
indexes
— unique and non-unique indexes
— compound indexes
— geospatial indexes
— text-based indexes

32

SQL After All

SQL After All

* GROUP BY-style SQL queries are convertible to an
equivalent map—reduce pipeline

* Many document store implementations express queries
using an SQL interface

* Couchbase also allows defining foreign keys and
performing join operations

SELECT books.title, books.genres,
authors.name

FROM books
JOIN authors ON KEYS books.authorId

* Many RDBMS vendors start implementing NoSQL
by the following:
— Focusing on horizontal scalability and distributed querying
— Dropping schema requirements

— Support for nested data types or allowing storing JSON directly
in tables

— Support for map—reduce operations
— Support for special data types, such as geospatial data

Column-Oriented Databases

Column-Oriented Databases

* A column-oriented DBMS is a database
management system that stores data tables as
sections of columns of data

e Useful if:

— Aggregates are regularly computed over large numbers
of similar data items

— Data are sparse, i.e., columns with many null values

* Can also be an RDBMS, key—value, or document
store

* Example
Id Genre Title Price Audiobook price
1 fantasy My first book 20 30
2 education Beginners guide 10 null
3 education SQL strikes back 40 null
4 fantasy The rise of SQL 10 null

* Row-based databases are not efficient at performing
operations that apply to the entire dataset
— Need indexes which add overhead

Column-Oriented Databases

* |In a column-oriented database, all values of a
column are placed together on disk

Genre: fantasy:1,4 education:2,3

Title: My first book:1 Beginners guide:2 SQL strikes back:3 The rise of SQL:4
Price: 20:1 10:2,4 40:3

Audiobook price: 30:1

* A column matches the structure of a normal index in
a row-based system

* Operations such as find all records with price equal
to 10 can now be executed directly

* Null values do not take up storage space anymore

Column-Oriented Databases

* Disadvantages

— Retrieving all attributes pertaining to a single entity
becomes less efficient

— Join operations will be slowed down
* Examples
— Google BigTable, Cassandra, HBase, and Parquet

Graph-Based Databases

* Graph databases apply graph theory to the
storage of information of records

* Graphs consist of nodes & edges (“follows”

relation)
Bart Senme

Wiiricd Anng

Graph-Based Databases

One-to-one, one-to-many, and many-to-many structures can
easily be modeled in a graph

Consider the N—M relationship between books and authors
RDBMS needs three tables: Book, Author and Books_Authors

SQL query to return all book titles for books written by a
particular author would look like this:

SELECT title
FROM books, authors, books_authors
WHERE author.id = books_authors.author_id

AND books.id = books_authors.book_id
AND author.name = "Bart Baesens"

10N

Graph-Based Databases

* In a graph database (using Cypher query language from
Neo4))

WROTE

Author Book

WRITTEN_BY

MATCH (b:Book)<-[:WRITTEN_BY]-(a:Author)
WHERE a.name = "Bart Baesens"”
RETURN b.title

Graph-Based Databases

* A graph database is a hyper-relational database, in
which JOIN tables are replaced by more
interesting and semantically meaningful
relationships that can be navigated and/or queried
using graph traversal based on graph pattern
matching.

42

Graph-Based Databases

* Cypher Overview (Neo4j)
* Exploring a social graph

Graph Databases

* Location-based services

* Recommender systems

* Social media (e.g., Twitter and FlockDB)
* Knowledge-based systems

44

11

Other NoSQL Categories

XML databases
OO databases

Database systems to deal with time series and
streaming events

Database systems to store and query geospatial
data

Database systems such as BayesDB which let users
query the probable implication of their data

Evaluating NoSQL DBMSs

* Most NoSQL implementations have yet to

prove their true worth in the field

* Some queries or aggregations are particularly

difficult; map—-reduce interfaces are harder to
learn and use

* Some early adopters of NoSQL were

confronted with some sour lessons
—e.g., Twitter and HealthCare.gov

Evaluating NoSQL DBMSs

NoSQL vendors start focusing again on robustness
and durability, whereas RDBMS vendors start
implementing features to build schema-free,
scalable data stores

NewSQL: blend the scalable performance and
flexibility of NoSQL systems with the robustness
guarantees of a traditional RDBMS

Evaluating NoSQL DBMSs

RDBMSs NoSQL Databases | NewSQL
Relational Yes No Yes
sQL Yes No Yes
Column stores No Yes Yes
Scalability Limited Yes Yes
Eventually consistent |Yes Yes Yes
BASE No Yes No
Big volumes of data No Yes Yes
Schema-less No Yes No

48

19

Conclusion

The NoSQL movement
Key—value stores

Tuple and document stores
Column-oriented databases
Graph-based databases
Other NoSQL categories

49

11

