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Abstract

We present a model based approach to the integration
of multiple cues for tracking high degree of freedom articu-
lated motions and model refinement. We then apply it to the
problem of hand tracking using a single camera sequence.
Hand tracking is particularly challenging because of occlu-
sions, shading variations, and the high dimensionality of
the motion. The novelty of our approach is in the combi-
nation of multiple sources of information which come from
edges, optical flow and shading information in order to re-
fine the model during tracking. We first use a previously
formulated generalized version of the gradient-based opti-
cal flow constraint, that includes shading flow i.e., the vari-
ation of the shading of the object as it rotates with respect
to the light source. Using this model we track its complex
articulated motion in the presence of shading changes. We
use a forward recursive dynamic model to track the motion
in response to data derived 3D forces applied to the model.
However, due to inaccurate initial shape the generalized op-
tical flow constraint is violated. In this paper we use the
error in the generalized optical flow equation to compute
generalized forces that correct the model shape at each step.
The effectiveness of our approach is demonstrated with ex-
periments on a number of different hand motions with shad-
ing changes, rotations and occlusions of significant parts of
the hand.

1. Introduction

In this paper we present a model based approach to high
degree of freedom articulated motion tracking and model
refinement, based on the integration of visual cues and ap-
ply it to the problem of hand tracking using a single camera
sequence. Hand tracking has received significant attention
in the last few years, because of its crucial role in the design
of new human computer interaction methods, gesture anal-
ysis and sign language understanding. Glove based devices

capture human hand motion directly, but are expensive and
hard to use. Vision-based hand tracking is a cost-effective,
non invasive alternative. Serious challenges lie in the high
number of degrees of freedom and the problem of occlu-
sions.

Two general approaches have been suggested for this
problem. Model based approaches try to estimate the po-
sition of a hand by projecting a 3-D hand model to im-
age space and comparing it with image features (fingertips
[25, 24, 28], line segments [25]). Spline- and quadrics-
based hand shape models were used in [23, 27] to minimize
differences between the silhouette of the projected model
and the data. Others [31, 25] have used stereo to avoid
occlusions. Appearance based approaches estimate hand
postures directly from the images after learning the map-
ping from image feature space to hand configuration space
[30, 29]. Such systems are more useful for recognizing dis-
crete hand states than for general purpose hand tracking.

The study of motion and shading together has been for-
malized [20, 22] recently and extended to multiple views
[21]. Our approach is model-based and hence can work
with a single view. Our first contribution is in the combi-
nation of cue forces from edges, optical flow and shading.
In particular we introduce in deformable model theory a
generalized version of the gradient-based optical flow con-
straint, that includes shading flow i.e., the variation of the
shading of the object as it rotates with respect to the light
source. This constraint unifies the shading and the optical
flow constraints and degenerates to each one of them when
the other is not present. Although optical flow and edges in
deformable models have been used in the past [18], as well
as shading [17], these two methods were applied to different
problem domains (moving and static objects respectively).
In this paper we combine them to correct for the errors due
to the brightness constancy assumption. We use cue infor-
mation from the entirety of the hand and we are able to track
its complex articulated motion in the presence of shading
changes. Given the model-based formulation we augment
the optical flow constraint with shading information.



The hand can have as many as 26 degrees of freedom
when we model it as a multiple open chain structure. The
dynamic/kinematic problem of such a large system, which
contains not only open chains but also closed chains, can be
modeled as a sub-problem of robotic mechanisms. There
are many forward and inverse dynamics simulation tech-
niques for human and robotic motion [14, 15, 16, 10, 13].
Using such a formulation we limit the allowable motion of
the fingers with the use of recursive dynamics constraints.
The model’s driving forces are computed from image cues
such as edges, optical flow and shading.

In our formulation we compute 2D data-based forces
from edge, optical flow and shading cue constraints. The
perspective camera model is used to convert these 2D forces
into 3D forces that drive the hand model. These 3D forces
are then used to calculate the acceleration of our dynamic
hand, its new velocity and new position. Since this is a sec-
ond order dynamic hand model we use it to predict finger
motion from one frame to the next so that we are closer
to the data in the next frame. To avoid unnecessary cal-
culations of the shading constraint we monitor the intensity
changes in several hand areas during tracking and use it only
if these changes are significant.

Since we are using a deformable model framework we
can take advantage of the error in the combined generalized
flow and edge constraints to improve the shape of the hand
model we use. The second contribution is that we further
generalize our method by introducing at each integration
step a model shape refinement process based on the error
from the cue constraints. Since the shape of the hand and
fingers is made of articulated piecewise rigid parts we em-
ploy this shape correction step in the first few frames to im-
prove the hand shape. The use of cue error for shape correc-
tion has already been employed [19, 7, 26] for model shape
correction. However, the previous methods used a limited
number of cues.

Our paper is organized as follows. The dynamic hand
model is described in Sec. 2. Sec. 3 presents model initial-
ization and generation of image forces. Sec. 4 introduces
illumination information on the optical flow constraint. Sec.
5 presents the recursive dynamics formulation of the hand
model and the constraints on the allowable motion. Sec.
6 formulates the use of residual error during tracking for
model shape correction. Tracking experiments are shown
in Sec. 7, including complex palm-finger tracking with sig-
nificant rotation and model-shape correction.

2. Hand Model

In our forward dynamics formulation, the hand model
(Fig. 1(a)) consists of a base link (palm), and five link-
chains (fingers) connected to the base link through five two-
degree-of-freedom revolute joints. Each finger is three links

connected by two one-degree-of-freedom revolute joints.
The finger parts are modeled as cylinders and the palm is
modeled as a six-rectangle-side-solid.

A two-degree-of-freedom revolute joint can be sim-
plified as two one-degree-of-freedom revolute joints con-
nected by a zero length and zero mass link, (dummy
link)[4]. In the hand model there are 21 links including 5
dummy links and 20 one-degree-of-freedom revolute joints.
We number the palm (base link) as link 0. For each finger
there are 4 links including one dummy link and 4 joints. The
joint connecting the finger to the palm is joint 1, and link 1
connects joint 1 and joint 2 (Link 1 is the dummy link).Joint
i connects link (i−1) and link i; link i links joint i and joint
(i + 1). Each link has a local coordinate frame fixed to its
starting end.

The above geometric model is based on the measure-
ments of an average male. The user specifies approximately
the joint locations in the image to initialize the model. Us-
ing our proposed method we then correct this basic shape
during tracking to fit the data.

3. Image Based Cues

3.1. Fitting the 3-D Model to 2-D images

This approach needs a geometric 3-D model to transform
2-D forces into 3-D ones which will be applied on the dy-
namic model. Initially the model is fitted to a known pose
of the hand, as can be seen in Figure 1(b). At this stage of
the work, we assume knowledge of the camera parameters.

At each frame visibility checking is performed in order
to match correctly image and model points. The computa-
tion of the relative motion to the palm of occluded fingers,
is based on the rigid motion of the hand. When the rela-
tive motion is not too large, we pick up the finger edges
when they reappear. This method will fail when the fingers
undergo significant relative motions when occluded. In or-
der to track them successfully in that case, other methods
should be integrated in the framework, such as appearance
based methods, which is outside the scope of this paper.

3.2. Force Calculation for Dynamic Model

The 3-D finger motion is recovered by fitting the model
to image-derived data. The external forces are applied on
the dynamic model, then the rotation and translation of fin-
ger joints are calculated. Figure 1(c) shows two kinds of
typical finger motion. We obtain the forces by calculating
displacements using the following procedure.

• Extract the finger edges using the Canny edge operator.
• A curvature-finding operator [6] is used to find the base

points such as Bi, Bj shown in Figure 1(d) for the fin-
gers between the end fingers (little finger and thumb).



(a) (b) (c) (d) (e)

Figure 1. (a) Dynamic Model of Hand. (b) Initial posture of hand model. (c)Finger motion and force
from edge displacement. (d)finger segmentation and base points. (e) Representing the projection of
the model’s articulated segments by their medial axis (thick white line)

For the end fingers we use symmetry to find the begin-
ning of the finger on the outer side (B0), where cur-
vature can not be used. The begnning is the same as
on the inner side of finger where the base point (B1) is
defined based on curvature.

• The edges between Bi and Bj correspond to the fin-
ger segment. The edge points of sub-segments can be
derived from the corresponding 3-D points in the 3-D
model during tracking.

• Because the hand motion will result to the change
of base-point position between the current- and after-
frame, a normalization process is necessary to match
the base-points in current- and after- frame according
to the distance of two base-points and the length of fin-
ger segment.

• Let pk(i) and pk+1(i) corresponding edge points in k-
th frame and k +1-th frame. The 2-D force fedge from
edge displacement can be calculated by the equation.

fedge(i) = pk+1(i) − pk(i) (1)

Another force fopt can be directly derived from the opti-
cal flow of the image. In the optical flow equation:

Ixu + Iyv + ft = 0, (2)

the temporal differential e = (u, v) at position (x, y) will be
considered as the external force. The optical flow of hand
motion is computed by the Lucas-Kanade method[9].

Optical flow near finger edges is not as reliable due to
possible mismatches of edge points, so we will only con-
sider the optical flow of the inside area of the finger segment
(obtained from the projection of the 3-D model in the image
plane). For optical flow computation, we select points with
significant gradient magnitude only. In Fig. 2 we see the
edge forces and the optical flow forces, applied to different
regions of the image.

3.3. Force transformation from 2-D to 3-D

We assume a perspective projection model. Therefore,
the point x = (x, y, z) in the world coordinate system and
the point xc = (xc, yc, zc)

T in the camera coordinate sys-
tem ensure the following equation.

x = Rcxc + Tc, (3)

where, Tc and Rc are translation and rotation matrices.
In the deformable model formulation presented in

[8], by taking the time derivatives of the perspective
projection equation, with an image point xp they get
ẋp = Hẋc = H(R−1

c ẋ) , with

H =
f/zc 0 −xc/z2

cf
0 f/zc −yc/z2

cf
(4)

The focal length f is obtained by pre-calibration of the
camera. According to deformable model theory these 3D
forces are converted to generalized forces fq = J>f3d on
the model parameters q, with J = ∂x(x, y, z)/∂q the Ja-
cobian of the model points, by q̇ = fq . Consequently,
the generalized forces calculated from 2-D images will be
fq = (JpJ)>f2d with Jp = HR−1

c the Jacobian of the
model points under perspective projection.

To apply the external forces on the dynamic model, we
transform the individual forces obtained from edges and
the optical flow within every hand segment into one total
force and torque to be used in the recursive dynamic frame-
work. The total force and torque for each hand segment are
F =

∑n

i=1 fi,
∑n

i=1 ri × fi, respectively. fi and ri are the
individual force vectors and force position vectors, respec-
tively.

4. Extending the Optical Flow Constraint

In [17] a methodology was developed for the incorpo-
ration of illumination constraints (any type that is differen-
tiable w.r.t. the model parameters) in a deformable model



1 2 3 4 5 6 7
80

100

120

140

160

180

200

Frame number

A
ve

ra
ge

 G
ra

y 
Le

ve
l (

30
x5

0 
ar

ea
)

Top light
Side Light

(a) (b) (c) (d)

Figure 2. Forces applied to the hand model, and the effects of shading. (a) Edge forces (b) optical
flow forces in the interior of the model. (d) is the change in average intensity in a small smooth area
of the hand (depicted in (c), when the illumination comes from the top (blue line) and from the side
(green dashed line) respectively.

formulation. In that work, the fitting of the model was done
based on a static image, i.e. that data did not change dur-
ing the fitting process. Hence, any partial derivatives with
respect to time in the illumination constraint C were zero.
In this paper we generalize this constraint formulation to
include image motion. Instead of one image, the fitting pro-
cess will be guided by a sequence of moving images.

We will start by taking the reflectance equation. Let us
assume that we have a reflectance function of the general
form IL = L(lp,q), where IL is the observed image in-
tensity , lp are the lighting model parameters (both light
source parameters and shape reflectance properties such as
the surface albedo of a Lambertian model), and q are the
hand model parameters. L(lp,q) can be differentiated with
respect to the model parameters q. This means that the re-
flectance of the surface is locally computable and that there
are no global illumination effects. We also assume that the
illumination parameters do not change with time. The con-
straint equation is C = IL − L(lp,q), and we differentiate
it w.r.t. time, and apply Baumgarte stabilization [3] in order
to obtain

Ċ(q, t) + αC = Cqq̇ + Ct + αC = 0, (5)

In this case we cannot ignore the partial derivatives Ct w.r.t.
time. Therefore, using the above formulas we expand Equa-
tion 5 to:

∂IL

∂q
q̇−

∂L(lp,q)

∂q
q̇+

∂IL

∂t
−

∂L(lp,q)

∂t
+a(IL − L(lp,q)) = 0

(6)

We notice that if J is the Jacobian of the model points, and
Jp is the Jacobian of the model points under perspective
projection, as described in Sec. 3, then

∂IL

∂q
q̇ +

∂IL

∂t
= ∇ILJp Jq̇ +

∂IL

∂t
(7)

is the left hand side of the model based optical flow con-
straint equation that was presented in [18]. As explained in

this paper, in model based optical flow, motion field vectors
are vectors of velocities of model points, and hence ẋ = Jq̇

applies. Typically in the literature [11] this optical flow term
is set to 0. This is correct in the case of ambient only illu-
mination. For the case of light sources at infinity it is also
correct for pure translational motion. For the simplest case
of a Lambertian surface with a light source at infinity it can
be shown [12] that if ω is the angular velocity of the rota-
tional motion, n is the normal of surface, l is the light source
direction, and ρ is the albedo of the surface, the magnitude
of the error |Dv| between the true motion field and the ap-
parent (and computable) optical flow is

|Dv| = ρ
|l(ω × n)|

‖∇E‖
(8)

This error is small when the change of gradient ∇E is big,
but in the case of smooth surfaces this effect becomes much
more pronounced. Similarly ∂L(lp,q)

∂t
= 0 since normals

change based only on the model parameters q.
This means that when there is no motion the constraint

equation simplifies to the shading constraint. Therefore

∂IL

∂q
q̇ −

∂L(lp,q)

∂q
q̇ +

∂IL

∂t
− a(L(lp,q) − IL) = 0 (9)

encompasses both constraints. In the case of a smooth mov-
ing object (9) allows to deal with errors due to directed illu-
mination and offers the possibility of recovering the motion
of relatively smoothly shaded surfaces. Fig. 2(c), (d) shows
the change in average intensity in a small smooth area of the
hand, when the illumination comes from the top and from
the side respectively. In the second case, changes in the in-
tensity of the points are dramatic.

5. Dynamic Tracking of Hand Motion

In our methodology we estimate the hand motion in re-
sponse to the applied 3D forces on the hand as a Forward



Dynamics problem where given the external forces we want
to compute the velocity and position of the palm.

Since we use a recursive dynamic formulation we will
use Featherstone’s[2] spatial notation to model our kine-
matic and dynamic variables. We integrate the constraint
of Eq. 9 in the above formulation to determine the vec-
tor q of the model’s degrees of freedom which includes the
joint variables, global rotation and translation based on the
method of Lagrange mulipliers. In addition we also use
generalized edge forces computed from image-based edge
forces as outlined in Sections 3.2 and 3.3. In summary we
solve for

q̇ = fq (10)

subject to:
Equation (9) and fedges (11)

where fq are generalized forces computed from the two cos-
traints above.

Furthermore, human fingers are not ideal dynamic links,
their joints have upper and lower bounds. Therefore, we
need to solve the above dynamic equations under joint limit
constraints. These joint limits which constrain the relative
motion of fingers together with our dynamic formulation
which does not allow the inter-penetration of fingers make
hand tracking significantly more robust. Our method has
the following steps:

1. At time t, mark the joints that reach their joint limits.
2. Solve the dynamic equations of the hand (i.e., solve for

q) at time t + dt recursively using (10).
3. For each finger, starting at joint 1 (the joint that con-

nects the palm and the finger), mark the first joint that
keeps at its joint limit during the time period from t to
t + dt. If there is no such joint, go to step 6.

4. Fix the joints marked at step 3, and merge two links
connected by a fixed joint to one link. Update the dy-
namic hand model.

5. Go back to step 2.
6. Output the status of the dynamic model of the hand at

time t + dt. Increase time t = t + dt, and go to step 1.

6. Model Shape Correction from Cue Residual
Error

Based on the above methodology we estimate the
model’s rotation and translation parameters q at each time
step. In our presentation of the approach we have so far as-
sumed that the model shape is known. We now relax this
assumption and extend our method to allow the estimation
of the model shape. This extention will allow us to start
with a rough approximation of the model shape which we
will refine over time. The approach is as follows. Assuming
that the initial hand model is not accurate, we will compute

the change of its shape based on the residual error from the
cues, i.e., the generalized optical flow and the edges. Our
assumption here is that the residual error is primarily caused
by errors in the initial hand shape. This assumption is justi-
fied since we do not allow any abrupt changes in illumina-
tion during tracking. Based on the above our algorithm is
as follows at a time step i:

1. Compute the first component of the residual error at
time step i from the generalized optical flow constraint
equation (9). In this equation the error is computed
based on the estimated motion of the model at time
step i and the difference between the projected esti-
mated model’s intensities and the image data at time
step i.

2. Compute the second component of the residual error at
time step i from the edge difference between the pro-
jected estimated model location at step i and the image
data at time step i. This computation is described in
Section 3.2.

3. Add the two components of the residual error and use
them as a constraint to modify the shape of the model
in a fashion similar to the one described in the previous
section. The difference is that instead of modifying the
motion of the hand model we modify its shape. For
the purposes of this paper we allowed non-isotropic
scaling deformations and we found them sufficient as
is shown in our results section.

The shape correction step is done at every step i right after
the estimation of the model’s motion parameters. However,
in our experiments, approximately 10− 20 frames after the
initial step we stop correcting the model shape. Since the
hand model is comprised of articulated rigid parts 10 − 20
frames are usually sufficient to correct for the shape of the
hand.

7. Experiments

We have performed experiments to test our method with
a variety of hand motions. All our experiments run on a P4
1.0GHz processor at approximately 4 frames per second.
The experimental results are shown in Fig. (3) and Fig.(4),
respectively.

The first experiment (Fig.3) demonstrates the process of
fitting the model to the image by simultaneous motion track-
ing and model shape change. From the rotational motion of
whole hand, the width and the length of palm and the fin-
gers are modified to fit the image. (the first and second rows
in Fig. 3.) In the third and fourth rows in Fig. 3, individual
fingers bend towards the direction of the thumb. The thick-
ness of the fingers also changes to fit the images. At the last
frames in the sequence (the fifth row in Fig. 3), the shape of



Figure 3. Projected wire frame images from a sequence tracking hand rotation and finger movements.
The shape of the palm and the fingers are being dynamically modified from the initial shape during
tracking. The wire frames of the model projected on the original images show that the modified
shape fits very well the image data.

hand model does not change anymore, and the whole hand
rotates back to the original position.

The second experiment depicted in Fig.4 used the fitted
model shown in Fig.3. The sequence has been taken with
the same camera position as in Fig.3. From the first to the
third row, the ringer finger and little finger bended largely
away from camera. Finally, the little finger has been oc-
cluded completely. Then, the whole hand rotates at about
90 degrees. To show the accuracy of the tracking we project
the wire frames of the hand model back onto the image.

The full sequences and the tracking results
are available as movie files and can be found at
http://www.dcis.rutgers.edu/˜shanlu/hand/ for the above
two experiments.

The above experiments demonstrate the successful track-
ing of complex hand and finger motions involving large ro-
tations and large relative finger motions. The dynamic esti-
mation of the hand shape model significantly improved the
tracking accuracy and robustness.

8. Conclusions

In this paper we have augmented traditional optical flow
and replaced it with a more general equation that includes
shading information. We then further extended this formu-
lation to use the cue residual error to correct for the model’s
shape. We have used this formulation within a deformable
model framework and we were able to track difficult hand



motions under a variety of illumination conditions. Our
dynamic hand model formulation allows the integration of
multiple cues and for robustness we also use edges in our
tracking. We have shown tracking results for simple and
complex palm and finger motions. Future work includes
better occlusion recovery handling using Kalman Filtering
and the incorporation of other sources of visual information
such as color, in order to work on cluttered backgrounds.
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Figure 4. 25 Frames from a sequence, tracking flexing of fingers and hand rotation. After the initial
shape estimation as shown in Figure 3, the movements of the hand and the fingers have been tracked
accurately. The tracking results are shown by projecting the wire frame of the hand model on the
original images.


