
DNN Applications to Bioinformatics
CSE549

Sael Lee
Department of Computer Science,

SUNY Korea, Incheon 21985, Korea

Benefits of DNN Learning
Classical Machine Learning Pipeline in Comp Bio

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.

Deep Learning in Comp Bio.

Reduced efforts in
data cleaning

Auto Representation
Learning

Hidden layers
extract features

in various
resolution

Various Applications

 Regulatory Genomics
 Alternative Splicing (Leung et al 2014; Xiong et al, 2015)

 Accessible Genome Analysis (Zhous & Troyanskaya, 2015; Kelley et al, 2016)

 Protein-Nucleic Acid Binding Prediction (Alipananhi et al, 2015)

 Variant Analysis
 Protein Structure Prediction

 Secondary structure Prediction
 Order/Disorder Region Prediction
 Residue-Residue Contact Prediction

 Applications on High throughput Data
 QSAR Prediction
 Circadian Rhythms

 Other Topics Not Covered
 Cellular Image Analysis
 Medical Time Series Data

Early works of DNN in Alternative Splicing

Fig 1 of Xiong et al. (2015) Science 347(6218):1254806

Fig 1 of Leung et al. (2014) Bioinformatics 30(12) 121-129

Fully connected Feedforward NN
(Bayesian Deep Learning)

Early works still utilize
selected (large size) features

“Deep learning of the tissue-
regulated splicing code”

Deep Feedforward NN

1393 features
extracted from each
exon of 5 different

tissue types

1000 predetermined
features from

candidate exon and
adjacent introns

Feature listing

Leung et al. (2014)
Bioinformatics 30(12)
121-129

DNA/RNA Sequence Analysis with Deep
CNN

Angermueller et al. (2016) Molecular Systems Biology, (12), 878.

Convolution step in Deep CNN resembles traditional
sequence “windowing” scheme

Window
size of 5

DeepSEA: CNN-based noncoding
variant effect prediction

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10), 931–4.

Innovative points:
1. Use long seq. 1kbp
2. multitask architecture
-> multiple output variables

DeepSEA CNN structure

DNase I sensitivity
Output:
simultaneously
predicted
chromatin-
profile

1 kbp

919 chromatin features (125 DNase
features, 690 TF features, 104
histone features)

GOAL: Identifying functional effects of
noncoding variants

DanQ: Quantifying the Function of DNA
 Motivation: Over 98% of the human

genome is non-coding and 93% of
disease-associated variants lie in non-
coding regions.

 Proposed: DanQ, hybrid
convolutional and bi-directional long
short-term memory recurrent neural
network predicting non-coding
function.

 Data:
 Input: GRCh37 reference genome

segmented into non-overlapping 200-bp
bins.

 Labels: Intersecting 919 ChIP-seq and
DNase-seq peak sets from uniformly
processed ENCODE and Roadmap
Epigenomics data

Daniel Quang and Xiaohui Xie. 2016. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying
the function of DNA sequences. Nucleic Acids Research 44, 11.

DanQ vs DeepSEA

Basset: CNN-based Accessible
Genome Analysis

1. convert the sequence to a
“one hot code” representation

2. scanning weight matrices
across the input matrix to
produce an output matrix with
a row for every convolution
filter and a column for every
position in the input

3. linear transformation of the
input vector and apply a ReLU.

4. linear transformation to a
vector of 164 elements that
represents the target cells

Kelley et al. (2016). Genome Research, 26(7), 990–999

DeepBind: Protein–Nucleic acid
Binding Site Prediction

DeepBind is a CNN based supervised learning where
Input: segments of sequences and
labels (output): experimentally determined binding score (ex. ChIP-seq peaks)

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.

Motif detector Mk

padded sequence S

Threshold of
each motif
detector k

Weighted linear
combination of pooled
features

Update parameter by stochastic gradient descent

Motif Extraction capability of DEEPBIND
The trained motif detector Mk and visualization with sequence logo

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.

Generating sequence logo to find motifs
1. Feed all sequences from the test set through the convolutional and rectification

stages of the DeepBind model,
2. Align all the sequences that passed the activation threshold for at least one

position i.
3. Generate a position frequency matrix (PFM) and transform it into a sequence

logo.

RNN for variable length Seq. Input
 Recurrent Neural Network

 Able to work with sequence input of variable length
 Capture long range interactions within the input sequences and

across outputs.
 Difficult to work with and train

 Not many success here

A recurrent neural network and the unfolding in time of the
computation involved in its forward computation. (fig 5 of
LeCun et al. 2015 Nature)

Protein Structure Prediction
 Protein structure prediction methods tend to apply unsupervised

method or combination of NN methods
 Types of unsupervised DNN methods:

 Restricted Boltzmann Machines (RBM)
 Deep Belief Networks

 Combination methods
 Deep Conditional Neural Fields

Stacking RBM in Protein Fold Recognition

Same fold or not

84 features from five types
of sequence alignment
and/or protein structure
prediction tools

Layer by layer learning
with restricted Boltzmann
machine (RBM).

Jo et al. (2015). Scientific Reports, 5, 17573.

DEEPCNF: Secondary Structure
Prediction

Wang et al. (2016) Scientific Reports, 6(January), 18962.

Xi the associated input
features of residue i.

The architecture of Deep Convolutional Neural Field fixed window size of 11:
average length of an alpha helix is
around eleven residues and that of a
beta strand is around six

conditional random
field (CRF) with U and
T being the model
parameters.

5-7 layer
CNN

Calculates conditional probability of
SS labels on input features

Circadian Rhythms

BIO_CYCLE: estimate which signals are
periodic in high-throughput circadian
experiments, producing estimates of
amplitudes, periods, phases, as well as
several statistical significance measures.
DATA: data sampled over 24 and 48h

GOAL: inferring whether a given genes oscillate in circadian fashion or not and
inferring the time at which a set of measurements was taken

BIO_CLOCK: estimate the time at
which a particular single-time-point
transcriptomic experiment was
carried

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8–i17.

Predicting Properties of Drugs

 Input: transcriptional response data sets (transcriptional
profile)

 Goal: classify various drugs to therapeutic categories

A. Aliper, et al. 2016. Deep learning applications for predicting pharmacological properties of drugs and drug
repurposing using transcriptomic data. Molecular Pharmaceutics 13, 7.

input layers of 977 and 271 neural nodes,

Deep Patient: Unsupervised Prognostic Prediction
based on EHR
 Feature learning:

 three-layer stack of denoising
autoencoders

 Data: EHRs of
 about 700,000 patients from the

Mount Sinai data warehouse.
 evaluation using 76,214 test

patients comprising 78 diseases
from diverse clinical domains
and temporal windows

 Prediction: random forest
classifier

R. Miotto et al. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients
from the Electronic Health Records. Scientific reports 6, April.

Disease classification results Disease classification experiment

Reference
1. Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding

proteins by deep learning. Nature Biotechnology, 33(8), 831–838.
2. Dahl, G., Jaitly, N., & Salakhutdinov, R. (2014). Multi-task Neural Networks for QSAR Predictions. arXiv Preprint

arXiv:1406.1231, 1–21.
3. Eickholt, J., & Cheng, J. (2012). Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics,

28(23), 3066–3072.
4. Eickholt, J., & Cheng, J. (2013). DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics,

14(1), 88.
5. Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep Learning in Drug Discovery. Molecular Informatics, 35(1), 3–14.
6. Jo, T., Hou, J., Eickholt, J., & Cheng, J. (2015). Improving Protein Fold Recognition by Deep Learning Networks. Scientific

Reports, 5, 17573.
7. Kelley, D. R., Snoek, J., & Rinn, J. L. (2016). Basset: learning the regulatory code of the accessible genome with deep

convolutional neural networks. Genome Research, 26(7), 990–999.
8. Leung, M. K. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the tissue-regulated splicing code.

Bioinformatics, 30(12), 121–129.
9. Sønderby, S. K., & Winther, O. (2014). Protein Secondary Structure Prediction with Long Short Term Memory Networks.

Retrieved from http://arxiv.org/abs/1412.7828
10. Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

Scientific Reports, 6(January), 18962.
11. Wang, S., Weng, S., Ma, J., & Tang, Q. (2015). DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep

Convolutional Neural Fields. International Journal of Molecular Sciences, 16(8), 17315–17330.
12. Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C., & Zeng, J. (2015). A deep learning framework for modeling structural

features of RNA-binding protein targets. Nucleic Acids Research, 44(4), 1–14.
13. Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nature

Methods, 12(10), 931–4.
14. A. Aliper, et al. 2016. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using

transcriptomic data. Molecular Pharmaceutics 13, 7.
15. R. Miotto et al. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health

Records. Scientific reports 6, April.

Reference to Reviews
1. Angermueller, C., Pärnamaa, T., Parts, L., & Oliver, S. (2016). Deep Learning for

Computational Biology. Molecular Systems Biology, (12), 878.
2. Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep Learning in Drug Discovery.

Molecular Informatics, 35(1), 3–14.
3. Mamoshina, P., Vieira, A., Putin, E., & Zhavoronkov, A. (2016). Applications of Deep

Learning in Biomedicine. Molecular Pharmaceutics, acs.molpharmaceut.5b00982.
4. Ladislav Rampasek and Anna Goldenberg. 2016. TensorFlow: Biology’s Gateway to

Deep Learning? Cell Systems 2, 1: 12–14.

Tensor Flow Tutorial

Contents and examples extended from Udacity Deep Learning by Google
https://classroom.udacity.com/courses/ud730/

Off-the-shelf Deep learning Tools

Table 1 in Angermueller et al. (2016) Molecular Systems Biology, (12), 878.

4x slower than competitors
but it’s expected to be improved.

Installing

 Install 64-bit Python 3.5 & pip (or Anaconda3-4.2.0-
Windows-x86_64)

 Install virtualenv:
 CMD: pip install virtualenv
 CMD: pip install virtualenvwrapper-win

 Create virtual environment
 CMD: mkvirtualenv tensorflowCPU

 Install the CPU-only version of TensorFlow in the virtual
environment
 (TENSOR~) C:\Users\Name> pip install --upgrade

https://storage.googleapis.com/tensorflow/windows/cpu/tensorf
low-0.12.1-cp35-cp35m-win_amd64.whl

https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.1-cp35-cp35m-win_amd64.whl
https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.1-cp35-cp35m-win_amd64.whl

 The role of the Python code in TensorFlow is to build
this external computation graph, and to dictate which
parts of the computation graph should be run.

 Other heavy lifting such as numerical computations are
don outside Python.

Mnist data

 10 labels
 1 channel
 28x28 images

Trying out MNIST tutorials in
Tensorflow.org

GOTO: https://www.tensorflow.org/tutorials/mnist/pros/

Load MNIST Data

 stores the training, validation,
and testing sets

Start TensorFlow InteractiveSession

import tensorflow as tf
sess = tf.InteractiveSession()

 from tensorflow.examples.tutorials.mnist import input_data
 mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

It allows you to interleave operations which
build a computation graph with ones that run
the graph.

MODEL1: Build a Softmax Regression Model

x

28

28

28x28=784

x 1

Y_

10 for 10 label values

784 weights for each 10 output + 1 bias

• Weight matrix W is a 784x10 matrix
• we have 784 input features fully connected

to 10 outputs
• Bias vector b is a 10-dimensional vector

• we have 10 classes

y_1 = softmax(w1*X + b1)

Placeholders: create nodes for the input images and target
output classes.

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

Variables: define & initalize weights W and bias b variables

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

sess.run(tf.global_variables_initializer())

 Define the regression model.

z = tf.matmul(x,W) + b

 Define the loss function : one used to update W and bias

cross_entropy =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(z, y_))

Applies the softmax on the model's
unnormalized model prediction (z)
and sums across all classes

Takes average over the sums across
10 classes

Training Step

train_step =
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

Steepest gradient descent, with a step length of 0.5, to
descend the cross entropy.
Other built-in optimization functions:
https://www.tensorflow.org/api_docs/python/train/#o
ptimizers

• TensorFlow actually added set of new operations to the
computation graph.

• Ones to compute gradients,
• Ones to compute parameter update steps, and
• Ones apply update steps to the parameters.

TensorFlow Back-propagation approach

symbol-to-symbol approach to computing derivatives

TensorFlow take a computational graph and add additional
nodes to the graph that provide a symbolic description of the
desired derivatives.

print(accuracy.eval(feed_dict={x: mnist.test.images, y_:
mnist.test.labels}))

for i in range(1000):
 batch = mnist.train.next_batch(100)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})

Training iteration

Evaluate model

accuracy = tf.reduce_mean(tf.cast(correct_prediction,
tf.float32))

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

evaluate our accuracy on the test data

Get 92% accuracy => very bad for MNIST

MODEL2: Build a Multilayer Convolutional Network

Weight Initialization

def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

Since we're
using ReLU neurons, we
should initialize them with a
slightly positive initial bias to
avoid "dead neurons"

One way to randomize.
initialize weights with a small
amount of noise for symmetry
breaking, and to prevent 0
gradients.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Define Convolution and Pooling function

Model:
• Convolution stride of 1 and are zero padded so that the

output is the same size as the input (same padding).
• Pooling: max pooling over 2x2 blocks.

def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 strides=[1, 2, 2, 1], padding='SAME')

def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

*Computes a 2-D convolution given 4-D input and filter tensors.
 tf.nn.conv2d(input, filter, strides, padding,
 use_cudnn_on_gpu=None, data_format=None, name=None)

1. Flattens the filter to a 2-D matrix with shape [filter_height * filter_width

* in_channels, output_channels].
2. Extracts image patches from the input tensor to form a virtual tensor of

shape [batch, out_height, out_width, filter_height * filter_width *
in_channels].

3. For each patch, right-multiplies the filter matrix and the image patch
vector.

 https://www.tensorflow.org/api_docs/python

/nn/convolution#conv2d

ARGUMENTS:
• value: A 4-D Tensor with shape [batch, height, width, channels] and

type tf.float32.
• ksize: A list of ints that has length >= 4. The size of the window for

each dimension of the input tensor.
• strides: A list of ints that has length >= 4. The stride of the sliding

window for each dimension of the input tensor.
• padding: A string, either 'VALID' or 'SAME'. The padding algorithm.
• data_format: A string. 'NHWC' and 'NCHW' are supported.
• name: Optional name for the operation.

def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 strides=[1, 2, 2, 1], padding='SAME')

tf.nn.max_pool(value, ksize, strides, padding,
 data_format='NHWC', name=None)

1st Convolutional Layer

x_image = tf.reshape(x, [-1,28,28,1])

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

2nd Convolutional Layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

convolution will compute 32
features for each 5x5 patch

patch size, #input channel, # output channel

Bias per each 32 output channel

Reshape x to 4d tensor
2nd&3rd 2d image dim. 4th #of input
channel

Convolve
X_image with the
weight tensor, add
the bias, apply the
ReLU function reduce the image size to 14x14.

 image size has been reduced to 7x7

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Densely Connected Layer

fully-connected layer with 1024 neurons to allow processing on
the entire image.

Add Dropout

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

To reduce overfitting, apply dropout before the readout layer.

Create placeholder for probability that a neuron's output
is kept during dropout.

tf.nn.dropout op automatically handles
scaling neuron outputs in addition to
masking them

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

Readout Layer

Train and Evaluate the Model

Almost similar the SoftMax example with the following
differences:

• Replace the steepest gradient descent optimizer with the more
sophisticated ADAM optimizer.

• Include the additional parameter keep_prob in feed_dict to
control the dropout rate.

• Add logging to every 100th iteration in the training process.

WARNING but it does 20,000 training iterations and may take a while
(possibly up to half an hour), depending on your processor.

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess.run(tf.global_variables_initializer())

for i in range(20000):

 batch = mnist.train.next_batch(50)

 if i%100 == 0:

 train_accuracy = accuracy.eval(feed_dict={

 x:batch[0], y_: batch[1], keep_prob: 1.0})

 print("step %d, training accuracy %g"%(i, train_accuracy))

 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={

 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

Let’s change this to 2000 not to
crush your laptop

	DNN Applications to Bioinformatics
	Benefits of DNN Learning
	Various Applications
	Early works of DNN in Alternative Splicing
	Slide Number 6
	DNA/RNA Sequence Analysis with Deep CNN
	DeepSEA: CNN-based noncoding�variant effect prediction
	DanQ: Quantifying the Function of DNA
	DanQ vs DeepSEA
	Basset: CNN-based Accessible �Genome Analysis
	DeepBind: Protein–Nucleic acid �Binding Site Prediction
	Motif Extraction capability of DEEPBIND
	RNN for variable length Seq. Input
	Protein Structure Prediction
	Stacking RBM in Protein Fold Recognition
	DEEPCNF: Secondary Structure Prediction
	Circadian Rhythms
	Predicting Properties of Drugs
	Deep Patient: Unsupervised Prognostic Prediction based on EHR
	Slide Number 22
	Reference
	Reference to Reviews
	Tensor Flow Tutorial
	Off-the-shelf Deep learning Tools
	Installing
	Slide Number 31
	Mnist data
	Trying out MNIST tutorials in �Tensorflow.org
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	TensorFlow Back-propagation approach
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

