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Benefits of DNN Learning 
Classical Machine Learning Pipeline in Comp Bio 

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Deep Learning in Comp Bio. 

Reduced efforts in 
data cleaning 

Auto Representation 
Learning 

Hidden layers 
extract features 

in various 
resolution 



Various  Applications 

 Regulatory Genomics 
 Alternative Splicing (Leung et al 2014; Xiong et al, 2015) 

 Accessible Genome Analysis (Zhous & Troyanskaya, 2015; Kelley et al, 2016) 

 Protein-Nucleic Acid Binding Prediction (Alipananhi et al, 2015) 

 Variant Analysis 
 Protein Structure Prediction 

 Secondary structure Prediction 
 Order/Disorder Region Prediction 
 Residue-Residue Contact Prediction 

 Applications on High throughput Data 
 QSAR Prediction  
 Circadian Rhythms 

 Other Topics Not Covered 
 Cellular Image Analysis  
 Medical Time Series Data 

 



Early works of DNN in Alternative Splicing 

Fig 1 of Xiong et al. (2015) Science 347(6218):1254806 

Fig 1 of Leung et al. (2014) Bioinformatics 30(12) 121-129  

Fully connected Feedforward NN 
(Bayesian Deep Learning) 

Early works still utilize 
selected (large size) features 

“Deep learning of the tissue-
regulated splicing code” 

Deep Feedforward NN  

1393 features 
extracted from each 
exon of 5 different 

tissue types 

1000 predetermined 
features from 

candidate exon and 
adjacent introns 



Feature listing 

Leung et al. (2014) 
Bioinformatics 30(12)  
121-129  



DNA/RNA Sequence Analysis with  Deep 
CNN 

 

Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Convolution step in Deep CNN resembles traditional 
sequence “windowing” scheme  

Window 
size of 5 



DeepSEA: CNN-based noncoding 
variant effect prediction 

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10), 931–4.  

Innovative points: 
1. Use long seq. 1kbp  
2. multitask architecture  
-> multiple output variables 

DeepSEA CNN structure 

DNase I sensitivity  
Output: 
simultaneously 
predicted 
chromatin-
profile 

1 kbp 

919 chromatin features (125 DNase 
features, 690 TF features, 104 
histone features) 

GOAL: Identifying functional effects of 
noncoding variants 



DanQ: Quantifying the Function of DNA 
 Motivation: Over 98% of the human 

genome is non-coding and 93% of 
disease-associated variants lie in non-
coding regions. 

 Proposed: DanQ, hybrid 
convolutional and bi-directional long 
short-term memory recurrent neural 
network predicting non-coding 
function.  

 Data: 
 Input: GRCh37 reference genome 

segmented into non-overlapping 200-bp 
bins.  

 Labels: Intersecting 919 ChIP-seq and 
DNase-seq peak sets from uniformly 
processed ENCODE and Roadmap 
Epigenomics data 

Daniel Quang and Xiaohui Xie. 2016. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying 
the function of DNA sequences. Nucleic Acids Research 44, 11.  



DanQ vs DeepSEA 

 



Basset: CNN-based Accessible  
Genome Analysis 

1. convert the sequence to a  
“one hot code” representation 

2. scanning weight matrices 
across the input matrix to 
produce an output matrix with 
a row for every convolution 
filter and a column for every 
position in the input 

3. linear transformation of the 
input vector and apply a ReLU. 

4. linear transformation to a 
vector of 164 elements that 
represents the target cells 

Kelley et al. (2016).  Genome Research, 26(7), 990–999 



DeepBind: Protein–Nucleic acid  
Binding Site Prediction 

DeepBind is a CNN based supervised learning where  
Input: segments of sequences and  
labels (output): experimentally determined binding score (ex. ChIP-seq peaks)  

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.  

Motif detector Mk 

padded sequence S 

Threshold of 
each motif 
detector k 

Weighted linear 
combination of pooled 
features 

Update parameter by stochastic gradient descent 



Motif Extraction capability of DEEPBIND 
The trained motif detector Mk and visualization with sequence logo    

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.  

Generating sequence logo to find motifs 
1. Feed all sequences from the test set through the convolutional and rectification 

stages of the DeepBind model,  
2. Align all the sequences that passed the activation threshold for at least one 

position i.  
3. Generate a position frequency matrix (PFM) and transform it into a sequence 

logo. 



RNN for variable length Seq. Input 
 Recurrent Neural Network 

 Able to work with sequence input of variable length 
 Capture long range interactions within the input sequences and 

across outputs.  
 Difficult to work with and train 

 
 
 
 
 
 
 
 
 

 Not many success here 

A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. (fig 5 of 
LeCun et al. 2015 Nature) 



Protein Structure Prediction  
 Protein structure prediction methods tend to apply unsupervised 

method or combination of NN methods 
 Types of unsupervised DNN methods:  

 Restricted Boltzmann Machines (RBM) 
 Deep Belief Networks  

 Combination methods 
 Deep Conditional Neural Fields 

 



Stacking RBM in Protein Fold Recognition 

Same fold or not 

84 features from five types 
of sequence alignment 
and/or protein structure 
prediction tools 

Layer by layer learning 
with restricted Boltzmann 
machine (RBM). 

Jo et al. (2015). Scientific Reports, 5, 17573.  



DEEPCNF: Secondary Structure 
Prediction 

Wang et al. (2016) Scientific Reports, 6(January), 18962.  

Xi the associated input 
features of residue i.   

The architecture of Deep Convolutional Neural Field fixed window size of 11:   
average length of an alpha helix is 
around eleven residues and that of a 
beta strand is around six 

conditional random 
field (CRF) with U and 
T being the model 
parameters. 

5-7 layer 
CNN  

Calculates conditional probability of 
SS labels on input features 



Circadian Rhythms 

BIO_CYCLE: estimate which signals are 
periodic in high-throughput circadian 
experiments, producing estimates of 
amplitudes, periods, phases, as well as 
several statistical significance measures.  
DATA: data sampled over 24 and 48h 

GOAL: inferring whether a given genes oscillate in circadian fashion or not and 
inferring the time at which a set of measurements was taken 

BIO_CLOCK: estimate the time at 
which a particular single-time-point 
transcriptomic experiment was 
carried 

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8–i17.  



Predicting Properties of Drugs 

 Input: transcriptional response data sets (transcriptional 
profile) 

 Goal: classify various drugs to therapeutic categories 

A. Aliper, et al. 2016. Deep learning applications for predicting pharmacological properties of drugs and drug 
repurposing using transcriptomic data. Molecular Pharmaceutics 13, 7.  

input layers of 977 and 271 neural nodes, 



Deep Patient: Unsupervised Prognostic Prediction 
based on EHR 
 Feature learning:  

 three-layer stack of denoising 
autoencoders 

 Data: EHRs of  
 about 700,000 patients from the 

Mount Sinai data warehouse.  
 evaluation using 76,214 test 

patients comprising 78 diseases 
from diverse clinical domains 
and temporal windows 

 Prediction: random forest 
classifier 
 

R. Miotto et al. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients 
from the Electronic Health Records. Scientific reports 6, April.  



 

Disease classification results Disease classification experiment 
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Tensor Flow Tutorial  

Contents and examples extended from Udacity Deep Learning by Google 
https://classroom.udacity.com/courses/ud730/ 



Off-the-shelf Deep learning Tools 

Table 1 in Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

4x slower than competitors  
but it’s expected to be improved.  



Installing 

 Install 64-bit Python 3.5 & pip (or Anaconda3-4.2.0-
Windows-x86_64)  

 Install virtualenv: 
 CMD: pip install virtualenv  
 CMD: pip install virtualenvwrapper-win 

 Create virtual environment 
 CMD: mkvirtualenv tensorflowCPU 

 Install the CPU-only version of TensorFlow in the virtual 
environment 
 (TENSOR~) C:\Users\Name> pip install --upgrade 

https://storage.googleapis.com/tensorflow/windows/cpu/tensorf
low-0.12.1-cp35-cp35m-win_amd64.whl 
 
 
 

https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.1-cp35-cp35m-win_amd64.whl
https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-0.12.1-cp35-cp35m-win_amd64.whl


 The role of the Python code in TensorFlow is to build 
this external computation graph, and to dictate which 
parts of the computation graph should be run.   
 

 Other heavy lifting such as numerical computations are 
don outside Python.  



Mnist data 

 10 labels 
 1 channel 
 28x28 images  



Trying out MNIST tutorials in  
Tensorflow.org 

GOTO: https://www.tensorflow.org/tutorials/mnist/pros/ 

Load MNIST Data  

 stores the training, validation, 
and testing sets 

Start TensorFlow InteractiveSession 

import tensorflow as tf 
sess = tf.InteractiveSession()  

  from tensorflow.examples.tutorials.mnist import input_data 
  mnist = input_data.read_data_sets('MNIST_data', one_hot=True)  

It allows you to interleave operations which 
build a computation graph with ones that run 
the graph. 



MODEL1: Build a Softmax Regression Model 

x 

28 

28 

28x28=784  

x 1 

Y_ 

10 for 10 label values 

784 weights for each 10 output + 1 bias 

• Weight matrix W is a 784x10 matrix  
• we have 784 input features fully connected 

to 10 outputs 
• Bias vector b is a 10-dimensional vector  

• we have 10 classes 

y_1 = softmax(w1*X + b1 ) 



Placeholders: create nodes for the input images and target 
output classes.  

x = tf.placeholder(tf.float32, shape=[None, 784]) 
y_ = tf.placeholder(tf.float32, shape=[None, 10])  

Variables: define & initalize weights W and bias b variables  

W = tf.Variable(tf.zeros([784,10])) 
b = tf.Variable(tf.zeros([10]))  
 

sess.run(tf.global_variables_initializer())  



 Define the regression model.  

z = tf.matmul(x,W) + b  

 Define the loss function : one used to update W and bias 

cross_entropy =  
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(z, y_))  

Applies the softmax on the model's 
unnormalized model prediction (z) 
and sums across all classes 

Takes average over the sums  across 
10 classes 



Training Step  

train_step = 
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)  

Steepest gradient descent, with a step length of 0.5, to 
descend the cross entropy. 
Other built-in optimization functions: 
https://www.tensorflow.org/api_docs/python/train/#o
ptimizers 

• TensorFlow actually added set of new operations to the 
computation graph.  

• Ones to compute gradients,  
• Ones to compute parameter update steps, and  
• Ones apply update steps to the parameters. 



TensorFlow Back-propagation approach  

symbol-to-symbol approach to computing derivatives 

TensorFlow take a computational graph and add additional 
nodes to the graph that provide a symbolic description of the 
desired derivatives. 



print(accuracy.eval(feed_dict={x: mnist.test.images, y_: 
mnist.test.labels})) 

for i in range(1000): 
  batch = mnist.train.next_batch(100) 
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})  

Training iteration  

Evaluate model 

accuracy = tf.reduce_mean(tf.cast(correct_prediction, 
tf.float32)) 

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) 

evaluate our accuracy on the test data 



 

Get 92% accuracy => very bad for MNIST 



MODEL2: Build a Multilayer Convolutional Network 

Weight Initialization 

def weight_variable(shape): 
  initial = tf.truncated_normal(shape, stddev=0.1) 
  return tf.Variable(initial) 
 
def bias_variable(shape): 
  initial = tf.constant(0.1, shape=shape) 
  return tf.Variable(initial)  

Since we're 
using ReLU neurons, we 
should initialize them with a 
slightly positive initial bias to 
avoid "dead neurons" 

One way to randomize. 
initialize weights with a small 
amount of noise for symmetry 
breaking, and to prevent 0 
gradients. 

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)


Define Convolution and Pooling function 

Model:  
• Convolution stride of 1 and are zero padded so that the 

output is the same size as the input (same padding).  
• Pooling: max pooling over 2x2 blocks. 

def conv2d(x, W): 
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
def max_pool_2x2(x): 
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 
                        strides=[1, 2, 2, 1], padding='SAME')  



def conv2d(x, W): 
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

*Computes a 2-D convolution given 4-D input and filter tensors. 
    tf.nn.conv2d(input, filter, strides, padding,  
           use_cudnn_on_gpu=None, data_format=None, name=None) 
 
1. Flattens the filter to a 2-D matrix with shape [filter_height * filter_width 

* in_channels, output_channels]. 
2. Extracts image patches from the input tensor to form a virtual tensor of 

shape [batch, out_height, out_width, filter_height * filter_width * 
in_channels]. 

3. For each patch, right-multiplies the filter matrix and the image patch 
vector. 

 
 https://www.tensorflow.org/api_docs/python

/nn/convolution#conv2d 



ARGUMENTS: 
• value: A 4-D Tensor with shape [batch, height, width, channels] and 

type tf.float32. 
• ksize: A list of ints that has length >= 4. The size of the window for 

each dimension of the input tensor. 
• strides: A list of ints that has length >= 4. The stride of the sliding 

window for each dimension of the input tensor. 
• padding: A string, either 'VALID' or 'SAME'. The padding algorithm. 
• data_format: A string. 'NHWC' and 'NCHW' are supported. 
• name: Optional name for the operation. 

def max_pool_2x2(x): 
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 
                        strides=[1, 2, 2, 1], padding='SAME')  

tf.nn.max_pool(value, ksize, strides, padding,  
                                   data_format='NHWC', name=None) 



1st Convolutional Layer 

x_image = tf.reshape(x, [-1,28,28,1])  

W_conv1 = weight_variable([5, 5, 1, 32]) 
b_conv1 = bias_variable([32])  

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 
h_pool1 = max_pool_2x2(h_conv1)  

2nd Convolutional Layer 
W_conv2 = weight_variable([5, 5, 32, 64]) 
b_conv2 = bias_variable([64]) 
 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 
h_pool2 = max_pool_2x2(h_conv2)  

convolution will compute 32 
features for each 5x5 patch 

patch size, #input channel, # output channel 

Bias per each 32 output channel 

Reshape x to 4d tensor 
2nd&3rd 2d image dim. 4th #of input 
channel   

Convolve 
X_image with the 
weight tensor, add 
the bias, apply the 
ReLU function reduce the image size to 14x14.  

 image size has been reduced to 7x7 



W_fc1 = weight_variable([7 * 7 * 64, 1024]) 
b_fc1 = bias_variable([1024]) 
 
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  

Densely Connected Layer 

fully-connected layer with 1024 neurons to allow processing on 
the entire image. 



Add Dropout 

keep_prob = tf.placeholder(tf.float32) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  

To reduce overfitting, apply dropout before the readout layer.  

Create placeholder for probability that a neuron's output 
is kept during dropout. 

tf.nn.dropout op automatically handles 
scaling neuron outputs in addition to 
masking them 



W_fc2 = weight_variable([1024, 10]) 
b_fc2 = bias_variable([10]) 
 
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2  

Readout Layer 



Train and Evaluate the Model 

Almost similar the SoftMax example with the following 
differences:  

 

• Replace the steepest gradient descent optimizer with the more 
sophisticated ADAM optimizer. 

• Include the additional parameter keep_prob in feed_dict to 
control the dropout rate. 

• Add logging to every 100th iteration in the training process. 

WARNING but it does 20,000 training iterations and may take a while 
(possibly up to half an hour), depending on your processor. 



cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_)) 

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) 

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

sess.run(tf.global_variables_initializer()) 

for i in range(20000): 

  batch = mnist.train.next_batch(50) 

  if i%100 == 0: 

    train_accuracy = accuracy.eval(feed_dict={ 

        x:batch[0], y_: batch[1], keep_prob: 1.0}) 

    print("step %d, training accuracy %g"%(i, train_accuracy)) 

  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) 

 

print("test accuracy %g"%accuracy.eval(feed_dict={ 

    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  

Let’s change this to 2000 not to 
crush your laptop 
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