Client Puzzles for DoS

SSL

\[P = e, N \]

\[S = d, N, \text{ where } d \text{ is large} \]

\[y = \text{sig}((d, N), x) = x^d \mod N \]

\[\text{ver}((e, N), x, y) = y^e = x \mod N \]

- Assume server can do about 100 sig/sec
- Client work
 - Almost nothing
- Server work
 - 1 RSA sig

Number of RSA request

50 (request/sec) \(\rightarrow\) 100 queue size = 0
100 \(\rightarrow\) 50 queue fill, slower
Computing is more expensive than verifying
Cannot ask server to pick small exponent because it is vulnerable to other attack
Attack: if you allow to choose your public private key pair, you can swap the exponent and allow you to generate signature fast and server verification slow

Puzzle also used in SPAM
- Need to upgrade SMTP server, can be deploy one at a time
- Attacker user botnet, does not care about additional computation

\[
x', \ H(x) \hspace{1cm} x
\]

- Where \(x' \) is \(x \) with lsb set to 0
- e.g. \(l = 16 \)bits
- suppose botnet size about \(2^{17} \)
- server can perform about \(2^{10} \) signatures per second
- require puzzle difficulty: \(2^7 \) seconds

Side Channel Attacks
- any information channel other than the explicit channel
 - time
 - power
 - temperature
 - disk usage
 - sound
 - light/EMR
 - cache miss
 - CPU load
- Covert channel deliberately leak information to communication
- Side channel leak information by accident

Card perform signature = \(\text{sig}(Ss, m) \)
sig(Sc, m) = m^d \mod N
mod (m, d, N) {
 acc=1
 for l = |d| - 1 to 0
 acc = acc^2 \mod N
 if di = 1
 acc \cdot m \mod N
 else
 dummy = acc \cdot m \mod N // fix with 33 to 50% slower
 return acc
}

Power consumption of computing RSA

Power Analysis Attack
e.g.,

Measured time = computation + rtt
 = computation + noise
Simple Executing Trace of mod N

\[
\begin{aligned}
\text{acc} &= 1 \\
\text{acc} &= \text{acc}^2 \quad \text{//ignore} \\
\text{acc} &= \text{acc} \cdot m \\
\text{acc} &= \text{acc}^2 \\
\text{acc} &= \text{acc} \cdot m \\
\text{...} \\
\text{...} \\
\end{aligned}
\]

equals to about average operation time

\[
x \# \text{ of remaining operation} = \text{test}
\]

Several hundreds more operations

If the bit is 1 "\text{acc} = \text{acc} \cdot m" executed

take mfast)_{i=1} and mslow)_{i=1}

get tfast avg and tslow = avg

if tfast = tslow

then \(d_{|d|-1} = 0 \)

else \(d_{|d|-1} = 1 \)