
Richard McKenna Teaching Statement
Computer Science Department

Stony Brook University richard@cs.stonybrook.edu

As a Computer Science instructor, I run my classes the way I wanted them run when I was a
student. This means the policies should be clear, the material should be made interesting, the work
should be worthwhile, and the grading should be fair. To accomplish this, I make a
conscious effort to incorporate the following components into every class I teach:

• Continuous Improvement
• Engaging Lectures
• Interesting Assignments
• Clear Course Policies on Honesty
• Clear and Fair Course Policies on Grading
• Encourage Undergraduate Research Participation

Below I have described these components in greater detail.

• Continuous Improvement – Every semester I teach a course, I try to improve it. Teaching
the same course for multiple semesters is an opportunity to make gradual progress, and so
at the end of each semester I try to think of ways to update the course, including lectures
and homework assignments. In so doing, I try to keep the following in mind:

o Keep it current – Computing technologies are in constant flux. Every day there are
new techniques, tools, and programming libraries made available that may help me
to do a better job of instruction. I feel it is my obligation to stay informed of recent
developments in whatever field I am teaching.

o Try new approaches to learning – Straight lectures can be an effective teaching
tool, but there are many other approaches that technology is enabling. Films,
tutorials, games, and interactive multimedia demonstrations may also be used
effectively to teach subject matter.

o Use criticism to improve the course – I like to read all course and teacher
evaluations the students submit such that I may get ideas on how to improve the
course. Even those criticisms that I feel are unfair may give me some good ideas.

One example of how I have done this is in CSE 316/416, both of which I teach regularly.
In CSE 316 students learn the basics of full stack application development as well as basic
software design patterns and principles and are asked to complete an incomplete, but
partially architected project. For this I created a MERN stack template that students can use
to quickly start working on such a project. The architecture is well-designed, using
principles I’m teaching, and I use it repeatedly each semester. In CSE 416, students are
then to design their own applications, and most choose to use the architecture I provided as
a starting point. In addition, I have developed a design format for this architecture to help
students learn how to plan and design software. This took time to develop but saves me
time each semester I teach these classes as it provides a common language of design.

• Engaging lectures – Students should feel that attending course lectures is a worthwhile

use of their time. They should feel they are part of the discussion rather than simply being
lectured to, but there is more to it than that. To ensure lectures aren’t stale drains on student
time, but rather an active and important part of the learning process, I do the following:

o Control the classroom – Classrooms where the lecturer has lost the students are
demoralizing. Students feel less serious about learning the material and giving their
best efforts in homework and exams. I try to make my classroom open and fun, but
also disciplined. No sleeping, unproductive talking, or general class disruptions are
permitted. Students breaking such rules are politely asked to answer questions on
the lecture material.

o Encourage fearless inquisitiveness – One of the greatest challenges to teaching is
dealing with students' fear of failure. Asking and/or answering questions in lecture
can be stressful to shy students who fear looking uninformed or even foolish in
front of their peers. In lecture I encourage failure. In fact, as a learning tool,
answering a question incorrectly and then working our way to a correct solution
works better than simply producing the correct solution from the start. Many times,
it is the best students who are most willing to participate in question asking and
answering, but I try not to limit class discussions to the best students producing
correct answers. Instead, I encourage students to go out on a limb and risk
answering questions incorrectly, so that we may share the experience of problem
resolution, which helps students in learning and remembering important course
concepts. In lecture I sometimes specifically ask students for wrong answers, to
disarm them a bit, and to release them from the pressure of having to produce a
correct solution in front of the class.

o Entertain the class – Lectures must first be well-organized and informative, but it
also helps if they are entertaining. Enthusiasm for the subject and providing context
and examples the students can relate to go a long way to keeping the students’
attention. So does a good joke, or even turning the class into a game show now and
then, where students answer questions on the material for prizes. Getting the
students thinking in terms of solving problems, developing their own solutions,
rather than just presenting material in lecture gets them thinking in a dynamic way
about the subject matter.

• Interesting assignments – We make you make stuff. That’s one way I like to think about

our Computer Science Department. Software Engineering is as much about the mechanism
of program development and the feedback loops associated with it as it is the algorithms
and abstract concepts needed for making programs. When making an assignment, my
approach is to first think of an exercise that interests me. It keeps me interested by
continuing my learning development, and it results in assignments that most students can
relate to. I also try to make sure that there is a payoff for the topics we’ve discussed. The
assignments must be a useful application of the concepts we’ve studied in the classroom. It
also helps if the result is something the students would like to show off to family and
friends. Something they, and their peers, can relate to and even enjoy. Finally, I make new

assignments each semester, never rehashing old ones, and so every semester I have a fresh
look at material I may have covered many times before, but that may be applied in ways
that are new and interesting to me.

• Clear course policies on honesty – As a student, one of the things I found most frustrating

and demoralizing in a course was when students submitted work done by others. It is
impossible to prevent this in every form, but as an instructor one should work to minimize
cheating in one’s class. As part of this I make course policies very clear, that plagiarism
will not be tolerated and that assignments will be verified.

• Clear and fair course policies on grading – Grades can be a source of conflict between

teachers and students, to minimize this, I do the following:
o Clearly state graded course components – From day one, all work requirements

should be made clear for the students.
o Be open to any exam re-grading issues – Students deserve each point they earn, so

I never discourage them from correcting possible grading mistakes.

• Encourage Undergraduate Research Participation – Over the years I have supervised
hundreds of undergraduate students working on research projects of all sorts. A complete
list can be found on my homepage. Working on a project for more than one semester is an
opportunity to do something really special. Undergraduate students have great ideas and
many have great abilities, so it has been incredibly rewarding for me. In recent years I have
facilitated this through the College of Engineering’s Vertically Integrated Projects program,
which has been great. In that program, Ete Chan of Biomedical Engineering and I have had
the fortune of working with so many great undergrad students who have done great work
and gone on to great careers in industry. I like to encourage such projects for undergrad
students because it’s important that they learn about the back and forth of starting and
running a worthwhile project. It’s so much more than just coding.

I have really enjoyed my time teaching at Stony Brook, and look forward to continued success.

Richard McKenna, 2025
http://www.cs.stonybrook.edu/~richard

