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Abstract of the Dissertation

Engineering High-performance Parallel Algorithms with Applications to Bioinformatics

by

Jesmin Jahan Tithi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Since the beginning of the last decade, plateauing of the clock speed of computer processors

has forced us to invest more in parallelism — for both hardware and software. This resulted

in improvements in computing technologies that have favored parallelism over increased clock

speed. Taking advantage of these improvements requires designing algorithms that can leverage

parallelism well. In this dissertation, we show how to take advantage of several algorithm design

techniques to harness modern heterogeneous parallel architectures for solving problems in bioin-

formatics efficiently. Our main goal while designing algorithms is to achieve high-performance in

terms of running time and scalability. Other desirable goals include energy efficiency, portability

and adaptivity.

We solve bioinformatics problems on grids (dynamic programming problems), on graphs (breadth-

first search), and problems that can be solved using spatial trees (Molecular Dynamics using

octrees). We present many novel algorithms, algorithm engineering techniques, theoretical anal-

yses and performance evaluations on a range of state-of-the-art parallel architectures including

multicores, manycores, and special purpose accelerators. Although we mainly target problems

in bioinformatics, the algorithmic techniques we use to solve those problems have general appli-

cability.

For many dynamic programming problems, we show that if we use a cache-oblivious recursive

divide-and-conquer technique to solve them, the resulting algorithms become highly optimiz-

able, cache-optimal and often have asymptotically better parallelism than their standard iter-

ative counterparts. These algorithms not only have good theoretical bounds, but also perform

better than standard iterative and tiled-loop algorithms in terms of running time, scalability,

energy-efficiency, cache-adaptivity and portability. Furthermore, it is often possible to improve

parallelism of these recursive algorithms without sacrificing cache-optimality by removing arti-

ficial dependencies among the tasks introduced by the recursive structure of the algorithm.
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Breadth-first search is a popular graph traversal algorithm that has many applications in bioin-

formatics. We show how to use lock- and atomic instruction-free optimistic parallelization to

improve parallelism and load balancing in a shared-memory parallel breadth-first search (BFS)

algorithm. We present several work-efficient parallel BFS algorithms (including one that uses

recursive divide and conquer) along with their theoretical and empirical performance analyses

on state-of-the-art multicore and manycore architectures.

Spatial trees (e.g., quad tree, octree, k-D tree) are recursive space partitioning data structures

that are often used to store biological molecules efficiently. We present octree-based distributed

and distributed-shared-memory hybrid near-far approximation algorithms to compute molecular

polarization energy. These algorithms outperform all other state-of-the-art Molecular Dynamics

packages by orders of magnitude on multicores and clusters of multicores.

We conclude by discussing implications of our work for future parallel algorithm design, and

ways to extend our research to other domains.
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Chapter 1

Introduction

Since the beginning of the last decade, plateauing of the clock speed and per-core performance

of computer processors due to the “power wall” constraint1 has led the CPU manufacturers to

leverage multiple cores (often heterogeneous) on a single chip. This plateau and the resulting

multicore processors have forced the software community to redesign many algorithms so that

they can take advantage of the parallelism to continue software performance scaling. Indeed,

almost all machines in today’s market have multiple cores, and performance scaling is impossible

without exploiting these cores (i.e., without exploiting parallelism). The aim of this dissertation

is to present algorithms/algorithmic frameworks that solve several problems in bioinformatics

more efficiently than their existing solutions on modern heterogeneous parallel architectures.

The contribution lies not only in the novel algorithms designed to solve the specific problems

but also in the general algorithmic techniques, which can potentially be used solve many other

existing and future problems to gain similar performance benefits.

Why Bioinformatics? Bioinformatics is one of the fastest growing industries which is predicted

to be a $13 billion market by 2020 [7]. Bioinformatics finds markets in medical biotechnology

(i.e., genomics, chemoinformatics and drug design, proteomics, transcriptomics, metabolomics,

and molecular phylogenetics), animal biotechnology, agriculture biotechnology, environmental

biotechnology, homeland security and synthetic life science [7]. That is why, it is interesting to

design efficient algorithms to solve problems in bioinformatics. Due to the recent changes in

computer architectures, faster generation of massive data by the new technology tools and smart

devices, and the introduction of big-data analytics, new bioinformatics problems have started to

emerge, existing problems have grown in scale, and demands for performance have increased. As

a result, traditional computational techniques (e.g., serial sequencing algorithms) are no longer

sufficient to solve those new and existing problems. All these have made bioinformatics a field

of opportunities for algorithms research.

Challenges. After the realization of the fact that single-core performance scaling is not feasible,

computer architectures have changed very rapidly to support performance scaling through paral-

lelism. Changes appeared in terms of computing capability of the processing cores, number of the

1“If scaling continues at present pace, by 2005 high-speed processors would have power density of nuclear
reactor, by 2010 a rocket nozzle, and by 2015, surface of the Sun” - Former Intel CTO Patric Gelsinger (ISSCC
2001).
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processing cores, memory hierarchies and communication paradigms among the processing cores

(e.g., shared-memory, distributed-memory, via PCIe bus or through on-chip channels). This

rapid change has made programming for high-performance (i.e., developing efficient and scalable

software) extremely difficult. At the same time, criteria for high-performance have changed:

researchers are more interested in algorithms that are not only faster but also cache- and energy-

efficient, make efficient use of space, require less data communication, and are portable. Design-

ing high-performance parallel algorithms that are scalable, cache-, space- and energy-efficient,

adaptive and portable is challenging. Nevertheless, it is important to make efforts to achieve that

goal. In this dissertation, we show how to leverage several algorithm design techniques and data

structures to efficiently solve problems that frequently arise in bioinformatics while achieving

many of those performance goals on modern heterogeneous parallel architectures.

Dissertation overview. We explore algorithms under the broad categories of algorithms on

grids (dynamic programming problems [20, 120, 121]), algorithms on graphs (breadth-first

search [120]), and algorithms using spatial trees (octrees [107]). We target a variety of

parallel architectures including multicores, manycores, clusters of multicores, special purpose

accelerators (e.g., Triggered Instruction Spatial Architecture [179]), and hybrid combinations of

those to develop algorithms. We present efficient parallel algorithms for solving many dynamic

programming [14, 44, 49, 172, 179, 182] and graph problems (breadth-first search [178, 181]), and

for computing various molecular energetics [40] terms required in molecular dynamics simulations

[36, 177] on these target parallel architectures.

While designing an algorithm, our main goal is to achieve high-performance in terms of running

time and scalability. However, we still want our algorithms to be energy-efficient, portable, and

adaptive to dynamic fluctuations in the availability of shared resources (e.g., cache-space, band-

width). We want our algorithms to be as resource-oblivious as possible since obliviousness often

helps in portability and adaptivity. A resource-oblivious algorithm does not use any machine pa-

rameter in its algorithm description. Here, machine parameters include number of cache levels,

cache size, block transfer size, number of processing cores, number of sockets, bandwidth limita-

tions, energy-budget, structure of the communication network, etc. In the following paragraphs,

we discuss more about these performance goals.

Parallel runtime, cache complexity and communication complexity. The parallel run-

ning time of a program, Tp(n) is the time it takes to run on p processors, where n is the input

parameter. The work of a multithreaded program, denoted by T1(n), is the total number of CPU

operations performed when run on a single processor. T1(n) is also called the serial running time

of the program. A parallel algorithm is called work-efficient if its T1(n) is not asymptotically

larger than the work done by the fastest sequential algorithm for the problem. The span (also

known as the critical-path length), denoted by T∞(n), is the maximum number of operations

performed on any processor when the program is run on an infinite number of processors. For

each of these metrics, the smaller the value, the better it is. Hence, our target is to design

algorithms that have small values for T1(n), Tp(n) and T∞(n).

Cache complexity of an algorithm is a performance metric that counts the number of block

transfers (or cache misses or I/O transfers or page faults) triggered by a program between

adjacent levels of caches in a memory hierarchy. Every cache miss results in a fetching of data

from the upper level of cache/s, or RAM or even hard disk which takes a lot of time: up to 50
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cycles for L3 cache, close of 80 nanoseconds for RAM, tens of millions of cycles for a hard disk.

As a result, an increase in cache complexity may slow down a program. Therefore, our goal is

to design algorithms that have low cache complexity.

Communication complexity of an algorithm measures the amount of communication among the

processors required to run that algorithm. In case of a shared-memory algorithm, the cache

complexity is the same as the communication complexity. For a distributed-memory algorithm,

communication complexity measures the amount of data transfer among all participating pro-

cessors through a physical network. In the case of a multicore CPU connected with a manycore

coprocessor (e.g., GPU, Xeon Phi), communication complexity includes both the cache complex-

ity and the cost of data transfer through a PCIe bus that connects the CPU and the coprocessor.

Since increased communication complexity often increases running time, for all our algorithms,

we make efforts to keep communication complexity as low as possible.

Scalability and parallelism. Scalability is a performance metric that shows how the runtime

of a program changes as the number of cores and input size vary. There are two types of

scalability metrics that are commonly used in practice: strong scalability and weak scalability.

The strong scalability of a program is measured by keeping the input size fixed while increasing

the number of cores. An algorithm has linear strong scalability if the speedup with respect to

its serial running time is equal to the number of processing cores used. In general, it is harder to

achieve good strong-scalability at larger process counts, since the communication or scheduling

overhead of the program starts dominating at that point. The weak scalability shows how the

runtime of a program varies with the number of processors when the problem size per processor

is fixed. A program has good weak scalability if the run time stays constant while the input size

is increased in direct proportion to the number of processors.

The parallelism of an algorithm is the average amount of work done per step of the critical path

(i.e., T1(n)
T∞(n) ). Parallelism tells us till how many cores a program should scale in theory. So the

higher the value of parallelism, the better it is.

Achieving good scalability and parallelism is one of our primary goals while designing algorithms.

Energy-efficiency. Energy-efficiency of algorithms has become a major concern these days,

as the energy costs of running computer applications and equipment have grown to be a major

factor of the total US energy expense [12]. The most desirable state, in this case, is to be energy-

efficient without any sacrifice in other performance metrics. In general, an algorithm that runs

significantly faster also consumes less CPU energy than a comparatively slower one. Similarly,

an algorithm that incurs fewer cache misses is likely to consume less DRAM energy, since the

latter directly relates to the number of memory accesses that is proportional to the number of

last level cache misses. In general, a cache-efficient algorithm runs faster and consumes less

energy than a cache-inefficient algorithm, especially on modern architectures with hierarchical

caches. Given that future architectures are likely to be energy-limited [35] with deeper cache

hierarchies than the existing ones, we need algorithms that are both cache- and energy-efficient.

Portability. Traditionally, an algorithm is considered portable if its same implementation

performs reasonably well on different machines with the same basic architecture but different

machine parameters (e.g., number of cache levels, block transfer size, overall cache/memory size,
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number of cores, NUMA domains, etc.). Having a portable algorithm is very convenient since it

saves time to re-design and re-implement.

In this dissertation we classify portability as intra-portability and inter-portability depending

on the type of parallelism (e.g., shared-memory, distributed-memory and distributed-shared-

memory) that an algorithm exploits. An algorithm has intra-portability, if it performs with

reasonable efficiency on machines with different machine parameters while exploiting the same

type of parallelism (e.g., shared-memory parallelism); without any change in the implementa-

tion. We call an algorithm inter-portable if it can be easily extended to exploit different

types of parallelism offered by different parallel platforms, such as shared-memory (multicores,

manycores), distributed-memory and distributed-shared-memory platforms (e.g., a cluster of

multicores). In this case, the implementation for each of these parallel platforms is likely to be

different, but the basic algorithm remains the same. For example, our research shows that the

basic cache-oblivious recursive divide-and-conquer algorithm designed for a shared-memory plat-

form can be easily extended to a distributed-shared-memory platform with reasonable scalability

and performance [182]. Often inter-portability is a difficult goal to achieve.

Adaptivity. Like portability, adaptivity is a desirable property of an algorithm, which allows

it to utilize all available shared resources at any point of time efficiently. Adaptivity is mainly

defined in the context of a multiprogramming environment (e.g., typical OS, database, cloud

systems, web servers), where multiple independent programs run in parallel and share common

resources (e.g., cache-space, memory, bandwidth, processing cores, etc.). An algorithm is called

adaptive to fluctuations of a particular shared resource, R, if it runs as fast as any other algorithm

solving the same problem under the same profile of R. For example, a parallel algorithm is

considered to be cache-adaptive [21] if it is less sensitive to dynamic fluctuations in shared-

memory (and cache), and runs as fast as any other algorithm solving the same problem given

any instantaneous memory profile (i.e., the actual size of available memory/cache).

Robustness. We will call an algorithm robust if its running time, energy and bandwidth perfor-

mance remain relatively stable in response to dynamic fluctuations of shared-resources compared

to other algorithms solving the same problem under the same resource profile. Performance sta-

bility is measured by computing the performance degradation due to fluctuations in resource

profile, considering performance with no fluctuation in the total resource capacity as a baseline.

It is quite desirable to have algorithms that are robust; because for robust algorithms, the given

performance guarantees should hold despite minor anomalies in the system.

In this dissertation, we present parallel algorithms and algorithm design techniques that achieve

many of those above mentioned performance goals. That is where the algorithm engineering and

high-performance aspects of this dissertation lie. To group algorithms under the same category,

we have divided this dissertation into three parts. Part I presents algorithms on grids, Part II

presents algorithms on graphs, and Part III covers our work on algorithms using spatial trees.

A brief overview of the rest of the dissertation is as follows:
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1.1 Part I. Algorithms on grids: Dynamic programming

Part I consists of Chapters 2, 3, 4, 5, and 6, and covers several popular dynamic programming

[121] problems encountered in bioinformatics including the edit distance [179] and longest com-

mon subsequence problems [44, 173] (used in sequence similarity and alignment), parenthesis

problem [84] (used in RNA secondary structure predictions [125, 169]), sequence alignment with

general gap penalty [83, 84, 182, 189], Floyd-Warshal’s all pairs shortest paths (used in com-

puting transitive closure and phylogeny analysis [144]), protein accordion folding [112] (models

folding of alpha-beta sheets) and Viterbi algorithm (used in probabilistic sequence matching, and

analysis of long biological sequences [160]). Those are some examples of applications that we are

covering by the algorithms presented in this dissertation. In general, solving dynamic program-

ming problems is interesting, since they arise in a wide range of application areas spanning from

logistics to bioinformatics [16, 64, 67, 74, 85, 87, 97, 111, 140, 145, 151, 160, 163, 189, 192, 196].

Chapter 2: Dynamic Programming on Spatial Architecture. Chapter 2 shows how

the use of special purpose accelerators can boost the performance of an algorithm by many

folds if that architecture can efficiently leverage the inherent parallelism in the problem through

hardware. We mapped the edit distance algorithm on a proposed triggered instruction spatial

architecture [143] that consists of a grid of thousands of small efficient PEs (processing elements).

These PEs can directly communicate with other PEs via on-chip network [179] providing the

opportunity to convert expensive memory operations to inexpensive (faster and energy-efficient)

local PE-to-PE communications. This triggered instruction spatial architecture can exploit the

inherent pipeline parallelism in the edit distance algorithm very efficiently, and almost 97%

of all memory/cache read and write operations can be converted to local PE-to-PE communi-

cation, which eventually translates to 50× better running time and 100× reduction in energy

consumption compared to a highly optimized tiled-loop implementation on a standard x86 CPU.

Although the algorithm designed for a spatial architecture is not portable, it demonstrates the

recent trend of use of special purpose accelerators to boost an application’s performance. Solv-

ing the sequence alignment or other edit distance like algorithms (i.e., algorithms with local

dependencies) on this type of spatial architectures can be a boon for genomics analysis.

Chapter 3: Cache-oblivious recursive divide-and-conquer to solve dynamic pro-

gramming problems. Chapter 3 shows how to achieve high-performance on standard general-

purpose parallel architectures (e.g., multicores, manycores and clusters of multicores) in contrast

to special purpose hardware, while solving dynamic programming problems. We show how to

obtain high-performing parallel algorithms for a class of dynamic programming (DP) problems

by reducing them to highly optimizable flexible kernels using a cache-oblivious recursive

divide-and-conquer technique that reduces an inflexible iterative dynamic programming kernel

into matrix-multiplication like flexible kernels. A flexible kernel reads from and writes to dis-

joint regions of a DP table, and hence there is no read/write dependency among the cells being

updated. In contrast, for an inflexible kernel the read and write regions overlap. Thus, there are

read-write dependencies among the cells being written to, which limit the parallelization and op-

timization opportunities. The generation of flexible kernels exposes optimization opportunities

to make a program high-performing. We solve four non-trivial dynamic programming problems

used in bioinformatics, namely the parenthesis problem, Floyd-Warshall’s all-pairs shortest path,

sequence alignment with general gap penalty and protein accordion folding using cache-oblivious

5



Chapter 1. Introduction

recursive divide and conquer. These algorithms are 5−150× (resp. 3−30×) faster and consume

3−40× (resp. 2−10×) less energy2 than their standard iterative (resp. tiled-loop) counterparts

on modern multicores with 16 − 32 cores, and have better scalability. Furthermore, these algo-

rithms have both intra- and inter-portability, and can be easily extended to hybrid multicores

with manycore coprocessors, and shared-distributed-shared-memory platforms with reasonable

practical performance [180, 182]. All our results basically show that cache-oblivious recursive

divide and conquer is a very powerful algorithmic tool for solving DP problems in practice.

For convenience, we will use CORDAC to mean Cache-Oblivious Recursive Divide-and-Conquer

from now on.

Chapter 4: Adaptivity and robustness of CORDAC algorithms. In Chapter 4 we show

cache-adaptivity, bandwidth benefits and robustness of CORDAC algorithms in a multipro-

gramming environment (e.g., typical operating system, mobile application runtime environment,

cloud, etc.). In such an execution environment multiple independent programs can run concur-

rently which may influence the performance of those programs adversely by reducing available

shared resources otherwise available in a dedicated execution environment where only one pro-

gram is run at a time. We show that due to its cache-efficiency, cache-obliviousness, and recursive

nature, a CORDAC algorithm is more adaptive to dynamic changes in the availability of shared

caches compared to its tiled-loop and standard iterative counterparts. CORDAC algorithms are

less sensitive to memory and bandwidth fluctuations, too. Furthermore, the running time, energy

and bandwidth performance of CORDAC algorithms remain more stable than the corresponding

tiled-loop and iterative algorithms during dynamic fluctuations of shared resources (i.e., robust-

ness property). Understanding the relationships among cache-obliviousness, cache-optimality,

cache-adaptivity, energy-consumption and bandwidth utilization of different algorithmic options

(iterative, tiled-loop and recursive divide-and-conquer) for DP problems is very important in

deciding which algorithm to choose in practice. To the best of our knowledge, we present the

first empirical results to unravel some of those relationships in a multiprogramming setting by

demonstrating adaptivity and robustness of CORDAC algorithms.

Chapter 5: Cache-oblivious wavefront algorithms. The standard cache-oblivious recursive

divide-and-conquer, i.e., CORDAC algorithms for dynamic programming problems often have

artificial dependencies [173] that may reduce their parallelism asymptotically. However, these

artificial dependencies can be removed using a cache-oblivious wavefront technique [173]. In

Chapter 5 we show how to systematically transform a CORDAC algorithm into a cache-oblivious

wavefront algorithm by removing artificial dependencies among the tasks through appropriate

scheduling. Our transformed algorithms achieve optimal parallel cache-complexity and high

parallelism with negligible implementation overhead. We use closed-form formulas to compute at

what time each divide-and-conquer function must be launched in order to achieve high parallelism

without losing cache performance. We present experimental performance and scalability results

showing the superiority of these new algorithms over existing algorithms for the longest common

subsequence, Floyd-Warshall’s all pairs shortest path, and parenthesis problems. Results in

this Chapter show that CORDAC with improved parallelism (i.e., the cache-oblivious wavefront

2We have observed that the CPU energy ratio closely matches with the runtime ratio if we use the same machine
and same input size in the experiment. However, due to limitations in the software tools used to measure the
energy, the runtime and energy experiments were conducted on two different architectures with different input
sizes. Hence, the ratios were not the same.
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algorithms) will be useful for future architectures with many more cores than the state-of-the-art

multicore machines.

Chapter 6: Cache-efficient CORDAC algorithm to solve the Viterbi problem. The

Viterbi algorithm is used to find the most likely path through a Hidden Markov Model (HMM)

given an observed sequence. This algorithm has numerous applications in bioinformatics span-

ning multiple sequence alignment [145], gene finding [32], CG island [67] and conserved elements

detection [160], and protein secondary structure prediction [115]. Chapter 6 shows how the

Viterbi problem (a problem that the Viterbi algorithm solves) can be solved cache-efficiently

using a CORDAC technique by exploiting the rank convergence property of the problem [126].

Apart from its importance, solving the Viterbi problem is interesting because it has an irregular

data access pattern and a space-compute ratio of 1 (per computation data access is ω(1)). Both

of these make designing a cache-efficient algorithm to solve this problem challenging. We present

two algorithms to solve single-instance and multiple-instances of the Viterbi problem along with

performance analyses and comparative results with the existing fastest algorithm showing the

superiority of our approach [49].

One major contribution from this Part. This dissertation shows that cache-oblivious re-

cursive divide and conquer is a very powerful algorithmic tool for solving non-trivial dynamic

programming problems. So far, CORDAC algorithms for dynamic programming problems were

mainly used by researchers in theoretical settings but was not adopted by general scientists and

programmers, partly because they are difficult to develop, program and optimize (due to their

complicated dependency structure). Another popular misconception about CORDAC algorithms

is that although they have good theoretical bounds, in practice they are not high-performing.

In this dissertation, we solve many non-trivial dynamic programming problems using CORDAC

technique and show how to optimize them in a very systematic way to outperform traditional

parallel iterative or tiled-loop algorithms by orders of magnitude. We show that these COR-

DAC algorithms are not only faster, scalable, portable, cache-, energy- and bandwidth-efficient,

but also posses properties such as adaptivity and robustness, that other types of algorithms for

solving dynamic programming problems do not have. Furthermore, we show how to improve par-

allelism of the CORDAC algorithms using cache-oblivious wavefront technique while retaining

the cache-optimality. Our results make a very strong point in favor of using CORDAC algorithms

in practice, especially in a multiprogramming environment such as standard operating system,

mobile application runtime systems, database management system, systems that support mul-

tiple virtual machines simultaneously as well as the cloud. We believe that our research results

will encourage scientists and programmers to adopt these algorithms and algorithmic techniques

to solve their problems in practice.

1.2 Part II. Algorithms on graphs: Breadth-first search

Part II contains Chapter 7 and 8, and describes several level-synchronous parallel breadth-

first search (BFS) graph traversal algorithms on shared-memory architectures. Breadth-first

search has numerous applications in bioinformatics including analyses of biological interaction

networks, metabolic pathway search, finding minimum gene subsets, betweenness centrality [80]

and searching in tries [76]. Therefore, performing breadth first search efficiently is important.
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Chapter 7: In Chapter 7 we show how to avoid locks and atomic instructions during dynamic

load balancing using optimistic parallelization for shared-memory parallel level-synchronous BFS

algorithms [178]. Use of locks and atomic instructions makes programs non-scalable due to se-

rialization. We show that a lock and atomic-instruction free parallel BFS algorithm eventually

does better load balancing, has improved parallelism, and as a result runs faster than the cor-

responding lock-based algorithm. We present algorithms based on recursive divide and conquer,

centralized vertex queue, and randomized work-stealing on distributed queues. We derive the-

oretical performance bounds and prove correctness of our algorithms. We also present experi-

mental results showing scalability of our algorithms on state-of-the-art multicore and manycore

(Xeon Phi) machines, using different parallel programming platforms (cilk++TM, cilkTMplus,

OpenMP), and on various types of graphs, demonstrating portability of these algorithms. We

compare our algorithms with two other contemporary BFS algorithms by Hong et. al. (PACT,

2011) and Leiserson et. al. (SPAA, 2010), and show that our algorithms perform better than

both of these benchmarks.

Chapter 8: In Chapter 8 we present a work-aware parallel level-synchronous BFS algorithm

for shared-memory architectures which achieves the theoretical lower bound on parallel running

time by using an optimal number of processing cores at each computation step. We also analyze

energy performance of this algorithm.

1.3 Part III. Algorithms using spatial trees: Molecular en-

ergetics

In Part III, we describe algorithms that use spatial trees. Spatial trees are a class of recursive

space partitioning data structure that can help to organize high-dimensional data. The R-

tree [98], quad-tree [75], octree [33] and k-D tree [22] are well-known and widely used spatial

trees. Spatial trees have been used in implementing molecular docking programs [41], molecular

dynamics simulations [43], spatial phylogeny reconstructions, clustering and in medical imaging

[165]. In our research we have used one such tree called octree that is cache-friendly, recursive,

and uses only linear-space to represent biological (protein) molecules.

Chapter 9: In Chapter 9 we present hybrid distributed and distributed-shared memory parallel

algorithms for computation of molecular polarization energy [176, 177]. These algorithms use

octree-based Greengard-Rokhlin-type near-far approximation and are built on top of a shared-

memory cache-oblivious recursive divide-and-conquer algorithm. This demonstrates the inter-

portability of a recursive divide-and-conquer, i.e., CORDAC algorithm to different parallel pro-

gramming platforms (i.e., shared-memory to distributed- and distributed-shared-memory). Us-

ing two levels of approximations (numerical and algorithmic), cache-friendly recursive octree data

structure, and efficient hybrid load balancing strategy, our algorithms achieve ∼ 400× speedup

w.r.t Amber [57] (a popular Molecular Dynamics package) with less than 1% error w.r.t. the

näıve exact algorithm, using as few as 144 cores (i.e., 12 compute nodes with 12 cores each) for

molecules with as many as half a million of atoms.

We conclude in Chapter 10 by discussing extensions of our work, open problems and future

research possibilities.
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Algorithms on Grids
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Chapter 2

Exploiting Spatial Architectures

for Edit Distance Algorithms

2.1 Abstract

In this research, we demonstrate the ability of a spatial architecture to significantly improve run-

time performance and energy efficiency of edit distance, a broadly used dynamic programming

algorithm in bioinformatics. Spatial architectures are an emerging class of application accel-

erators that consist of a network of many small and efficient processing elements, and can be

exploited by a large domain of applications. In this research, we show that spatial architecture is

a good fit for edit distance algorithms which can efficiently map the dataflow characteristics and

inherent pipeline parallelism within edit distance to develop efficient and scalable implementa-

tions.

We evaluate our edit distance implementations using a cycle-accurate performance and phys-

ical design model of a previously proposed triggered instruction-based spatial architecture in

order to compare against real performance and power measurements on an x86 processor. We

show that when chip area is normalized between the two platforms, it is possible to get more

than a 50× runtime performance improvement and over 100× reduction in energy consumption

compared to an optimized and vectorized x86 implementation.1 This dramatic improvement

comes from leveraging the massive parallelism available in spatial architectures and from the

dramatic reduction of expensive memory accesses through conversion to relatively inexpensive

local communication.

2.2 Introduction

There is a continuing demand in many application domains for increased levels of performance

and energy efficiency. While the number of transistors is expected to continue to scale with

1The energy profiling has been done by Neal Crago from Intel Corporation. He also optimized the x86
implementation. This work was done during my internship at Intel and was managed by Emer Joel.
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Moore’s law for at least the next five years, the “power wall” has dramatically slowed single-core

processor performance scaling. Recently, several accelerator architectures have emerged to fur-

ther improve performance and energy efficiency over multi-core processors in specific application

domains. These architectures are tailored using the properties inherently found in these do-

mains, and can range in programmability. Perhaps the best-known examples are fixed-function

accelerators, which are tailored to single algorithms such as video decoding, and GPUs, which

are fully programmable and target data parallel and SIMT-amenable code.

Spatially programmed architectures are an emerging class of programmable accelerators that tar-

get application domains with workloads whose best-known implementation involves asynchronous

actors performing different tasks while frequently communicating with neighboring actors. The

application domains that spatially-programmed architectures target spans a number of impor-

tant areas such as signal processing, media codes, cryptography, compression, pattern matching,

and sorting.

Spatially programmed architectures are typically made up of hundreds of small processing ele-

ments (PEs) connected together via an on-chip network. When an algorithm is mapped onto a

spatial architecture, the algorithm’s dataflow graph is broken into regions, which are connected

by producer-consumer relationships. A set of PEs from the spatial architecture is then assigned

to execute a particular region. Input data is then streamed through this pipelined set of regions.

Edit distance is a broad class of algorithms that find use in many important applications, span-

ning domains such as bioinformatics, data mining, text and data processing, natural language

processing, and speech recognition. The edit distance problem determines the minimum number

of “non-match” data edits to convert a source string or data object S to a target string or data

object T . The algorithm also keeps track of the specific data edits required to convert S to T ,

from a set of four possible data edits: insertion, deletion, match or substitution. For example, if

S = “computer” and T = “commute”, the minimum number of “non-match” edits to convert S

to T is 2 and the edits are, MMMSMMMD (where M = Match, S = Substitute, D = Delete).

The edit distance problem is ripe for acceleration, as the dynamic programming techniques

typically used to solve the problem take O(nm) time and space, where m and n are the lengths of

the strings S and T respectively. However, the nature of data dependencies within the algorithm

makes vectorization and parallelization non-trivial on modern CPUs and GPUs. On the other

hand, these same data dependencies have very nice dataflow properties which are quite naturally

mapped on spatial architectures using pipeline parallelism [25, 117]. Moreover, the exploitation

of pipeline parallelism also enables the conversion of many memory references into much less

expensive local PE-to-PE (PE = Processing Element) communication which further improves

efficiency.

In this chapter, we first build intuition on why spatial architectures are a good fit for edit

distance and similar algorithms with local dependencies. We then describe three different al-

gorithmic implementations of edit distance tailored to spatial architectures. We evaluate these

implementations by conducting a detailed experimental analysis of performance and energy con-

sumption on a triggered instruction-based spatial architecture [143]. Finally, we compare the

performance and energy consumption of our implementations to highly optimized and vectorized

x86 implementations.
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2.3 Background

2.3.1 Spatial Architectures

In the spatial programming paradigm, an algorithm’s dataflow graph is broken up into regions so

that it can be represented as a pipeline of computation. Sets of independent regions act as stages

within the pipeline, with producer-consumer relationships between stages. Ideally, the number of

operations in each region is kept small, as performance is usually determined by the rate-limiting

step. Figure 2.1 presents an example dataflow graph and its corresponding representation in the

spatial programming paradigm. In this example, each region is made up of three nodes from the

original dataflow graph, and the total number of pipeline stages is two. Note that in Stage 0,

two regions are independent and are executed in parallel. After the pipeline is generated, the

input dataset can be streamed through the pipeline and the inherent pipeline parallelism can be

exploited.

Figure 2.1: Spatial programming example. Converting a dataflow graph to a spatial
pipeline of regions.

While the pipeline can, in theory, be mapped to general-purpose processors, executing the algo-

rithm on the appropriate accelerator architecture can provide significant benefits. Accelerator

architectures execute alongside general-purpose processors with the end goal of improving the

performance and energy consumption of a selected set of algorithms and application domains.

Similar to how vector engines and GPUs are chosen to accelerate many vectorizable algorithms,

spatial architectures are chosen to accelerate algorithms amenable to spatial programming. Spa-

tial architectures are a computational fabric of hundreds or thousands of small processing ele-

ments (PEs) directly connected together with an on-chip network. The algorithm’s pipeline is

successfully mapped onto a spatial architecture by utilizing some number of PEs to implement

each region of the dataflow graph, and then by connecting the regions using the on-chip network.

As performance depends on minimizing the execution time of each pipeline stage, the regions

are typically sized as small as possible, with the algorithm utilizing all of the available PEs.

Spatial architectures broadly fall into two categories, primarily based upon the basic unit of

computation: logic-grained and coarse-grained. Field-programmable gate arrays (FPGAs) are

among the most well known logic-grained spatial architectures and are most commonly used for

ASIC prototyping and as stand-alone general logic accelerators. FPGAs are designed to emulate

a broad range of logic circuits and use very fine-grained lookup tables (LUTs) as their primary

unit of computation [53, 128]. More complex logical operations are constructed by connecting

many LUTs together using the on-chip network. While the use of fine-grained LUTs results

in a high degree of generality, this generality results in much lower clock speeds for mapped

algorithms when compared with ASIC implementations. In general, FPGAs and logic-grained

12
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Figure 2.2: Example spatial architecture. Network of PEs, scratchpad memory, and
caches are shown alongside a PE diagram.

spatial architectures sacrifice compute density for complete bit-level generality. It is also well

known that the programming environment for FPGAs is particularly complex. FPGAs typically

use a low-level programming model (e.g. VHDL or Verilog) due to being used primarily for ASIC

prototyping. Additionally, the fine-grained nature of the LUTs creates a large solution search

space for place and route algorithms, which can lead to unacceptably long compilation times.

However, a common observation is that many algorithms primarily utilize byte- or word-level

primitive operations, which are not efficiently mapped to bit-level logic and logic-grained spa-

tial architectures such as FPGAs. To partially address these inefficiencies, some FPGAs now

provide digital-signal processing datapaths alongside the traditional LUTs. In contrast to FP-

GAs, coarse-grained spatial architectures are designed from the ground up to suit the prop-

erties of these algorithms. Coarse-grained spatial architectures optimize byte- and word-level

primitive operations into hardened logic and through the utilization of ALUs within PE datap-

aths [99, 130, 132]. The hardened logic results in much higher compute density, which leads to

faster clock speeds and reduces compilation times substantially compared to FPGAs. Generally

speaking, these coarse-grained spatial architectures have a higher-level programming abstrac-

tion, which typically includes some notion of an instruction set architecture. In other words,

PEs can be programmed by writing a sequence of software instructions, rather than requiring

the hardware-level programming of an FPGA. The distinct advantages and large possible design

space of coarse-grained spatial architectures have resulted in a significant amount of recent re-

search. Specifically, there has been research into evaluating architectures, control schemes, and

levels of integration with host processor cores [91, 143, 159, 168].

Given the clear benefits of coarse-grained compared to logic-grained, in this paper, we focus

on implementing edit distance on coarse-grained spatial architectures. Figure 2.2 presents the

high-level architecture and PE-level architecture of the coarse-grained spatial architecture we

consider. The architecture consists of a collection of PEs, scratchpad memory, a cache hierarchy,

and an on-chip network. For our architecture, each PE has some control logic, an instruction

memory, a register file, an ALU, and some number of input and output connections to an on-

chip network. To further support high compute density and provide efficiency, the instruction

memory and register file within the PE are kept quite small, and the complexity of the ALU

is kept low. PEs connect to each other, scratchpad memory, and the cache hierarchy using the

on-chip network.
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2.3.2 Edit Distance

In this section, we describe the edit distance problem and explain what makes it amenable to

pipeline parallelism and spatial architectures. The edit distance problem is defined as finding

the minimum edit cost to convert one string or data object into another string or data object.

Solving the edit distance problem is interesting because of its prevalence in important application

domains including bioinformatics, data mining, text and data processing, natural language pro-

cessing, and speech recognition. In addition to those domains, achieving better performance and

energy efficiency on edit distance through exploiting spatial architectures can also provide insight

into how other applications with similar local dependencies might benefit when mapped to spatial

architectures. Such domains include dynamic programming problems with local dependencies

(e.g., longest common subsequence, Smith-Waterman and Needleman-Wunch algorithms), virus

scanners, security kernels, stencil computations, and financial engineering kernels.

2.3.2.1 Overview of the Edit Distance Problem

ED(S[1 : i], T [1 : j]) =

0 if i = j = 0,
CostOfInsert(T [1 : j]) if i = 0, 1 ≤ j ≤ n,
CostOfDelete(S[1 : i]) if j = 0, 1 ≤ i ≤ m,

min

 MatchOrSub(S[i], T [j]) + ED(S[1 : i− 1], T [1 : j − 1]),
CostOfInsert(T [j]) + ED(S[1 : i], T [1 : j − 1]),
CostOfDelete(S[i]) + ED(S[1 : i− 1], T [1 : j])


if i, j > 0.

(Recurrence 1)

Figure 2.3: Solving for edit distance
using dynamic programming. The dark-
shaded cells are the edits for solving the
base cases, and the light-shaded cells are

the required minimum edits.

Recurrence 1 solves the edit distance problem. The

edit distance for converting S of length i to T of

length j can be computed by taking the minimum

of solutions to three smaller sub-problems. The first

sub-problem is to match or substitute S[i] with T [j],

and then recursively find the edit distance of con-

verting S of length i − 1 to T of length j − 1. The

second sub-problem is to insert the last character of

T (T [j]) at the end of S, and then recursively find

the edit distance of converting S of length i to T of

length j − 1. The third sub-problem is to delete the

last character of S (S[i]), and then recursively find

the edit distance of converting S of length i− 1 to T of length j.

The costs of match, substitute, delete and insert are user-defined and can vary depending upon

the application. In the most general edit distance problem, all costs are assumed to be the same

(typically 1, except a cost of 0 for a match). In the rest of the Chapter, we assume that the cost

of a single insertion, deletion, and substitution is 1. The three base cases for Recurrence 1 are

as follows:

. Converting a string S of length 0 to another string T of length 0 is a cost of 0.

. To convert a string S of length 0 to any string T of any length j, we insert all j characters

of T which incurs a total cost of the sum of inserting all characters from T of length j.
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. To convert a string S of length i to a string T of length 0, we delete all characters from S

which incurs a total cost of the sum of deleting all characters from S of length i.

It is inefficient to use recursion to solve the edit distance problem due to the large number of

sub-problem re-computation required. Therefore, dynamic programming principles are typically

used to solve the problem in a bottom-up manner. The dynamic programming approach saves

the result of each sub-problem in a table, enabling reuse rather than requiring recomputation.

To find the required number of edits to convert a source string S to the target string T , a two-

dimensional m×n cost matrix “M” is allocated, where m and n are the lengths of the two strings

S and T , respectively. Each cell of the matrix M(i, j) gives us the minimum number of edits to

convert S[1 : i] to T [1 : j]. We first populate the matrix with the base case solutions and then

compute the remaining cells row by row following the same recursive formula. Figure 2.3 shows

the filled out cost matrix after executing the dynamic programming algorithm on S = “sort”

and T = “sport” where cell M [m][n] = M [4][5] gives the final edit distance.

2.3.2.2 Exploitation of Pipeline Parallelism

Figure 2.4: Data flow de-
pendencies for calculating a
cell in edit distance. Depen-
dencies are found along the
row and column of the cost
matrix, which limits the abil-

ity to vectorize.

In the dynamic programming approach to the edit distance prob-

lem, the matrix cells have local dependencies. Figure 2.4 presents

the data dependencies in calculating a single cell M [i][j]. Observe

that the value of a cell M [i][j] depends on its top cell (M [i−1][j]),

left cell (M [i][j− 1]) and diagonal cell (M [i− 1][j− 1]). Because

of these dependencies, this computation is not vectorizable along

the row or the column of the 2D cost matrix. While it is possi-

ble to vectorize along the diagonal by reshaping the cost matrix

into a diamond, such an implementation requires dummy com-

putations and frequent communication between cells must still

be facilitated using expensive memory accesses. Conversely, the

data dependencies found in edit distance naturally compose into

pipeline parallelism: values produced by a worker responsible for

computing a cell of the cost matrix can be consumed by workers

computing adjacent cells. It is possible to get very efficient cell-level parallelism for edit distance

in a spatial architecture because spatial architectures have the benefit of small efficient PEs and

direct PE-to-PE communication capability. Note that cell-level parallelism is not feasible on

multicore machines at all because of the prohibitive overhead of communication and scheduling.

2.4 Edit Distance on Spatial Architectures

In this section, we discuss how the edit distance problem maps down to spatial architectures. We

start by describing the basic unit of computation, a worker, and utilize that worker to develop

an initial näıve implementation. We analyze that näıve implementation and describe several

possible optimizations. We also explain how a spatial implementation of edit distance makes

more efficient use of memory.
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2.4.1 Designing a Worker

Cell 
Worker 

S[i] 

T[j] 

Top 

Left 

Diag 

Score 

Path 

(a)

Row  
Worker 

S[i]  

T[j] 

Top 

Left 

Diag 

Score 

Path 

TopOut 

(b)

Figure 2.5: (A) A simple cell worker that computes
a single cell of the cost matrix, (B) An optimized row

worker.

To implement edit distance, we first

create a core module that incorpo-

rates the data flow and state tran-

sitions needed to compute the value

of a single cell of the cost matrix M .

Part of this process is deciding which

inputs and outputs are required for

a cell computation and the relation-

ship between the inputs and outputs

of a cell with its neighboring cells.

Figure 2.5(a) depicts an abstract worker which implements the core module and its inputs and

outputs. As shown in Figure 2.4, the score of a cell M [i][j] of the cost matrix depends primarily

on its top (M [i − 1][j]), left (M [i][j − 1]) and diagonal (M [i − 1][j − 1]) cells, as well as the

string characters S[i] and T [j], where S[i] and T [j] is the ith character of S and jth character of

T , respectively. The score of the current cell M [i][j] is determined by calculating the minimum

of insert cost (left + CostOfInsert(T [j])), delete cost (top + CostOfDelete(S[i])) and match/-

substitution cost (diagonal + MatchOrSub(S[i], T [j])). The path chosen for each cell, i.e., the

edit that resulted in the minimum score, can also be stored in a separate path array, where

path[i][j] = (delete, insert, match/substitute). The data stored in the path array can later be

used to reconstruct the actual edits used to convert S to T in linear time. Therefore, in this

initial approach we need 5 memory reads (S[i], T [j], Top, Left, Diagonal), 2 memory writes

(score, path), 3 additions and 3 subtractions to compute the value for each cell.

CalculateCell( row i, column j) 
{ 
    insert_cost = M[ i ][ j-1 ] + CostOfInsert (T[ j ]) 
    delete_cost = M[ i-1 ][ j ] + CostOfDelete (S[ i ]) 
    match_substitute_cost = M[ i-1 ][ j-1 ] + MatchOrSub (S[ i ], T[ j ]) 
    [score, path] = Min (insert_cost, delete_cost, match_substitute_cost) 
    M[ i ][ j ] = score; 
    Path[ i ][ j ] = path; 
} 

Figure 2.6: Pseudocode for the calculation of a single
cell.

Figure 2.6 shows simplified pseudo-

code for a single cell computa-

tion of M [i][j]. First, the insert,

delete, and match/substitute costs

are computed using values from

M [][], S[i], and T [j]. Next, the

minimum between the three costs

is chosen, returning both the score

and the path values. Finally, the

score and path values are written out to memory. In practice, we find that we can split this

core module into two other smaller modules, each of which can be mapped onto a PE, in order

to reduce the length of the critical path. We define a worker as the unit of these two PEs that

implements the core module. A collection of these workers is used to compute the score values

of the entire cost matrix.

2.4.1.1 Optimization

One possible implementation of edit distance on a spatial architecture would be to use distinct

workers to calculate the value of each cell M [i][j]. However, the scalability of such an approach

to large problem sizes is quite limited considering that the requirement for O(mn) workers would

require at least O(mn) PEs. Spatial architectures have finite physical resources by definition,
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and thus, a scalable implementation needs to be able to map to those finite resources regardless

of m and n. Therefore, we need to find an alternative solution to compute all the mn cells

using only a limited number of workers, w. For example, if we consider assigning one worker to

compute all the cells of a row of the cost matrix, we can observe the following patterns in the

inputs and outputs of that row worker (see Figure 2.5(b)):

. Top (M [i − 1][j]) at current cell position M [i][j] becomes the diagonal for the next cell

M [i][j + 1].

. The current computed score M [i][j] becomes left for the next cell M [i][j + 1].

. S[i] needs to be read only once from memory for the entire ith row.

. T [j] and top need to be read for each cell from memory.

Compare S[i], T[j] 

Forward T[j] to Next Worker 

Calculate MatchSub Cost 

Compute Delete Cost  
(Top + Delete_Cost) 

Compute Insert Cost  
(Left + Insert_cost) 

Min2= minimum of  
Delete and Insert Cost 

Pass Top as Next Diagonal 

Find minimum of Min2 & 
MatchSub cost and send Min3 

le
ft

 

Send Path 

Check for end 

Check for end 

Module 1 Module 2 

Compare Insert & Delete 
Cost 

Figure 2.7: Flow chart for the control flow
path of a single worker. Blue arrows show state
transitions, green arrows show self-feedback,
and red arrows show communication with other

PEs.

Therefore, if we can reuse the values already

read from memory and produced by the same

row worker, that will save O(3n) memory reads

(S[i], left, diagonal) for each row (i.e., saves

around 3mn reads out of 5mn reads in total).

Figure 2.7 presents a flow chart for the control

path of the two row worker modules mapped to

PEs. First, the delete and insert costs are com-

puted and the minimum between the two is cho-

sen, while in parallel the match-substitute cost

is also computed and communicated. Then the

minimum of the three costs is chosen, and the

final score and path values are determined. Ob-

serve the feedback loops added to the module

to reuse the top as diagonal and current score

as left.

If we consider two consecutive row workers

working on two consecutive rows of the score or cost matrix M , it is possible to observe some

further memory access optimizations. A row worker working on the ith row can send its current

computed score, M [i][j] as the top value to the row worker working on the (i+ 1)th row. Simi-

larly, T [j] can also be reused by the row worker working on the jth column of the score matrix

by propagating T [j] using the local PE-to-PE communication channel. In fact if we have more

row workers working on consecutive rows, once a character T [j] has been read from memory

by the first row worker, it can forward T [j] to the second row worker, second row worker can

forward it to the third row worker, and so on. Therefore, if we use w row workers to compute

w consecutive rows of the cost matrix, any row worker k for 1 < k ≤ w, does not need to read

T [j] from memory. Similarly, each kth row worker (1 < k ≤ w) receives its top value from row

worker k − 1’s computed scores. Hence, only the first row worker of a strip of w rows (strip:

w consecutive rows of the cost matrix) needs to read the top and T [j] values from memory.

Other workers can get them from prior worker through the PE channels. As a result, nearly

all memory read operations remaining can be removed and converted into less expensive local

PE-to-PE communication, saving both memory bandwidth and energy consumption.
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2.4.1.2 Mapping
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Figure 2.8: (A) Two row workers working on two
consecutive rows and connected together using com-
munication channels. (B) A possible layout of the

row workers on a grid of PEs.

Note that the row workers here proceed

as a diagonal wavefront. For example,

when row worker k works on cell M [i][j],

row worker k + 1 works on cell M [i +

1][j − 1] and row worker k + 2 works

on cell M [i + 2][j − 2] and so on, in a

pipelined manner. Figure 2.8 shows the

interconnection between two consecutive

row workers and a possible serpentine

layout of the row workers on a spatial ar-

chitecture made with a grid of PEs where

row worker Wk receives input from row

worker Wk−1 and sends output to row

worker Wk+1.

Based on these observations and the

resulting optimized row worker (Fig-

ure 2.8), we have designed three differ-

ent algorithms to solve the edit distance

problem, namely: näıve, strip mining, and tiling. For each of these algorithms, we primarily

focus on computing the score, as prior work has shown that the edits can be reconstructed by

recomputing the required subsections of the cost matrix while tracing in the backward direc-

tion [46, 47, 103, 137]. Hence, showing that our algorithms do better in computing the score

should mean that they will also perform better in computing the edits. In each of these algo-

rithms we use w row workers to compute the scores (and paths) of the first w consecutive rows

from 1 to w, and then compute rows from 1 +w to 1 + 2w, and so on until the entire cost matrix

has been computed. Note that string S is padded (and T for the tiled version), as needed to

make the length divisible by w (or tile height, d).

2.4.2 Näıve Implementation

In the näıve approach, we use O(mn) memory space to store the scores of the cost matrix

(and path), and each row worker stores the score (and path) value to memory for each cell

it computes. We connect a row worker’s output to its own input and to other row workers

as shown in Figures 2.5(b) and 2.8. These optimizations remove most of the memory reads

otherwise required. However, O(mn) memory writes are still required to store the O(mn) score

values for all cells in the resulting cost matrix.

2.4.3 Optimization: Use of Linear Memory Space

“Quadratic space kills before quadratic time”. In the standard edit distance problem, the two-

dimensional cost matrix M consumes O(mn) memory space. However, this quadratic use of

memory space becomes infeasible for large strings. Fortunately, it is possible to use linear
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memory space (O(n)) to store the cost matrix. Observe that for edit distance, the resulting

output data is the final cost of converting S to T which can be found in cell M [m][n]. Therefore,

we do not need to maintain data storage for other cells when they are no longer actively being

used. To compute the score/cost for the ith row, we only need the (i− 1)th row as input. Rows

before (i− 1) can be forgotten. Therefore, it is possible to use a cost matrix of linear size n+ 1,

from which the first row worker (from a set of w row workers) reads its top inputs, and the last

row worker writes its computed cost values which can be used as input for the next set of rows

(computed using the same w row workers). We use this linear memory space optimization in

our strip mining and tiling based algorithms.
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Figure 2.9: Strip mining using standard
memory and scratchpad memory. Initial
and final rows are read from and written
to memory, while the intermediate rows use

either memory or scratchpad memory.

Although it is sufficient to use linear memory space

(O(n)) to store the cost matrix, use of a two-

dimensional cost matrix can aid in the reconstruc-

tion of actual edits/path in linear time. It is also

possible to use a separate two-dimensional path

matrix while using linear memory space for the cost

matrix, which allows linear time reconstruction of

edits. Finally, it is also possible to use only linear

memory space for the cost matrix, and reconstruct

the edits in quadratic time without saving any path

matrix [46, 47] which is discussed later in this sec-

tion.

2.4.4 Strip Mining

The strip mining technique involves computing the two dimensional cost matrix in a strip-by-

strip manner (strips of w consecutive rows from the cost matrix). In this approach, we virtually

divide the two-dimensional cost matrix into strips of size w × n, where w denote the number of

row workers and n denote the width of the cost matrix. In the strip mining approach, we use a

linear cost matrix array of size n + 1, from which the first row worker reads its top inputs and

the last row worker writes its computed cost values which are used as input for the next strip.

As before, we use the optimized row worker for this algorithm. We use two different strategies

for the strip mining algorithm as described below:

2.4.4.1 Strip Mining using Memory

In the strip mining using memory algorithm, only the first row worker of a strip of size w reads

the score values from cost matrix and string T from memory, and only the last row worker stores

the computed score values to memory (Figure 2.9). This organization reduces the total number

of memory writes to the cost matrix to O
(
m
w n
)

from O(mn) in addition to the reduction in

memory reads as described before. Furthermore, the number of memory reads of string T as

well as the cost matrix reduces to O
(
m
w n
)
. To optimize this approach further, each row worker

starts computing from the 0th column instead of the 1st column of the cost matrix. Note that

in a typical edit distance algorithm, computation starts from the 1st column while using the 0th

column as input. If we had started computing from the 1st column, we would need to read the
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left and diagonal cells from memory. However, if we start from the 0th column, we can use the

top value to compute the left and diagonal by adding 1 to the top value (which comes from

memory for the first row worker and from the previous row worker for all other row workers).

This approach reduces the number of memory reads by 2m. Figure 2.9 shows how the strip

mining algorithm works. The hash-patterned cells in the cost matrix are stored in memory by

the last row worker and read by the first row worker (in total mw times), while the white colored

cells are not stored to memory and are instead communicated directly between the row workers.

2.4.4.2 Strip Mining using PEs’ scratchpad memory

Note that memory accesses can be expensive and involve various levels of the cache hierarchy and

main memory. As an alternative, we can leverage the scratchpad memory of the PEs (Figure 2.2)

to store intermediate cost matrix values. In the strip mining using scratchpad memory algorithm,

the first row worker reads the cost matrix from memory only during the first iteration (i.e., only

for the first strip of the algorithm). Similarly, the last row worker stores the scores to the linear

space cost matrix M in memory only in the last iteration (last strip of the algorithm). In all

other intermediate iterations, the first row worker reads the cost matrix values from scratchpad

memory, where the last row worker has saved its computed cost matrix values in the previous

iteration. This reduces the number of memory reads and writes for the cost matrix to O(n).

The scratchpad memory based algorithm operates similarly as the memory based strip mining

algorithm. The key difference is that only the initial and final rows are read from or written

to memory. In Figure 2.9, the hash-patterned cells of the cost matrix are stored in internal PE

scratchpad memory by the last row worker and read by the first row worker m
w − 2 times.

One drawback of this approach is that the amount of scratchpad memory on spatial architectures

is limited and therefore can limit the maximum length of T . Note that although the use of

scratchpad reduces the number of memory reads and writes from/to the linear cost matrix from

O
(
m
w n
)

to O (n), O
(
m
w n
)

reads of string T are required in both strip mining approaches. The

tiling based computation as discussed in the next subsection provides a way to deal with this

limited amount of scratchpad storage, and can reduce the number of memory reads and writes

even further if a proper tile size is chosen.

Memory Loads/Stores and Time Complexity:

For the strip mining algorithm using memory, the total number of memory reads and writes is

O
(
(3(mw n) +m

)
. This cost comes from O

(
m
w

)
memory reads of the cost matrix and string T

of length n, and m
w memory writes to cost matrix of the same size. String S of size m must

also be read once for the entire computation. Similarly, for the strip mining algorithm that uses

scratchpad memory to store and read the cost matrix values, the total number of memory reads

and writes is O
(
(mw n) + 2n+m

)
where (mw n) comes from reading T , 2n comes from reading

and writing to linear space cost matrix and m comes from reading S. The running time of this

algorithm with w row workers is: Tw = Θ((mw n) + wm
w ) = Θ((mw n) +m) where the second term

comes from the synchronization cost of w row workers at the end of each strip. Hence, the running

time with an infinite number of row workers (as well as m row workers) is: T∞ = Θ(m + n),

which is the best span one can achieve for edit distance problem.
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2.4.5 Tiling
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Figure 2.10: Tiled approach. Computation oc-
curs on a column strip of tiles. Initial and final
rows are read from and written to memory, while
intermediate rows use scratchpad memory. Col-

umn results are saved to memory as well.

In the tiling algorithm, we virtually divide

the two-dimensional cost matrix into tiles of

size w × D, where w denote the number of

row workers (also the height of the tiles in

this case), and D denote the width of the

tiles. We solve the column of tiles (column

strips) one by one starting from the leftmost

column of tiles, ending with the rightmost

column of tiles. For the tiling algorithm

also, we use linear O(n) memory space to

store the cost matrix values from which the

first row worker reads its top inputs and the

last row worker writes its computed cost val-

ues. Additionally, we use two other O(m)

sized memory arrays to store the left most

column of a column strip and the right most

column of a column strip. These two arrays

work as input and output in alternative iterations (column strips). All w row workers first com-

pute values for the first column strip of mw tiles of size w×D, each of which ends at the (D+1)th

column of the original cost matrix M . Then the row workers compute the next column strip

consisted of m
w tiles ending at (2D + 1)th column as shown in Figure 2.10 and so on.

The computation for a single column of tiles (column strip) is similar to the strip mining algo-

rithm using scratchpad memory with a few exceptions.

. Each row worker starts from the 1st column, instead of the 0th column. Therefore, each

row worker needs to read left and diagonal cells for the very first column of each tile from

memory.

. Each row worker of a tile needs to store the last value of its row to memory so that they

can be used as input (left and diagonal cells) for the next column strip.

. Only the first row worker of a column strip reads a segment of string T from memory at

the beginning of that column strip and all other row workers receive T from the previous

row worker and forward T to the next row worker. The last row worker stores T in local

scratchpad memory, so that for the next tile the first row worker does not need to read T

from memory.

Therefore, over all the tiles, T needs to be read only once (cost (O(n)) to compute all O(mn)

cells of the cost matrix.

Figure 2.10 shows how the tiling based algorithm works. The two-dimensional cost matrix has

been divided into tiles where the hash-patterned cells along the rows are stored in scratchpad

memory and the checkerboard-patterned cells along the columns are stored in memory. Those

checkerboard-patterned cells are used as left, diagonal inputs and the hash-patterned cells are
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used as top inputs for the next column of tiles. Note that we have a choice on whether the

intermediate rows, intermediate columns, or both dimensions should be saved in scratchpad

memory based upon each dimension’s size and the amount of available scratchpad memory. In

general the maximum tile width Dmax = min(Total Scratchpad Memory Size
2 , n2 ).

Memory Loads/Stores and Time Complexity:

To show that the tiling approach has better theoretical memory bandwidth utilization than that

of the strip mining approach, we count the total number of memory reads and writes required

by the tiled approach. The total number of memory reads in this approach is O(
(
3(nmD )

)
+ 2n),

where the O
(
3(nmD )

)
comes from reading S, left and diagonal cells at the beginning of each

tile. Because for each of those terms, there are m memory reads for each column strip, and in

total we have n
D column strips/iterations. On the other hand, the 2n term comes from reading

T and the cost matrix of size n from memory. In addition, there are O(n) writes to memory

for writing the final cost values (hashed-patterned cells in Figure 2.10) and O
(
nmD
)

writes for

writing the end cells (rightmost column) for each column strip (checkerboard-patterned cells in

Figure 2.10). Therefore, in the tiled approach, we have
(
4nmD + 3n

)
memory operations. Clearly,

the tiled based approach will perform better than the strip mining with scratchpad memory based

approach iff
(
4nmD + 3n

)
<
(
(nmw ) + 2n+m

)
=⇒ Dmin > 4w (considering n = m). As w is

constrained by the number of PEs in the spatial architecture and D is constrained by the total

aggregated scratchpad memory for all PEs, D will satisfy the condition trivially. The running

time for this algorithm with w row workers is Tw = Θ
(
n
D (mDw + wm

w )
)

= Θ
(
mn
w + mn

D

)
.

2.4.6 Linear Memory Space Traceback Path

In both of our strip-mining and tiled algorithms, we use linear memory space for computing

the score. In addition to that, we reduce the number of actual memory reads and writes in

the spatial architecture by utilizing direct PE-to-PE communication, something not possible in

a general-purpose processor architecture. However, the specific edits required to achieve the

minimum edit distance are often needed alongside the scores. Storing the edits for each cell

in the cost matrix requires quadratic memory space which is very expensive for large string

inputs. Fortunately, there are algorithms that can reproduce the edits without storing the ed-

its initially (Hirschberg [103] and Chowdhury [47]) and without the requirement for quadratic

memory space. However, such algorithms require extra O(mn) work to do so. The algorithm

in [47] is a divide-and-conquer based recursive algorithm which executes the edit distance al-

gorithm in two passes: the forward pass and the backward pass. The algorithm assumes that

it is given input boundaries (the 1st row and 1st column of the cost matrix) and at the end it

will produce output boundaries (rightmost column and bottommost row). In the forward pass,

the algorithm computes the score by recursively dividing a virtual two-dimensional cost matrix

into four quadrants and keeps dividing until it reaches a small base case size when it solves for

edit distance using the standard dynamic programming algorithm using linear memory space.

During the forward pass, the algorithm saves additional information about where the path from

each cell of the output boundary (rightmost column and bottommost row) intersects the input

boundary (leftmost column and topmost row). In the backward pass, it recursively executes the

edit distance in backward direction to reconstruct the path information. The algorithm decides
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PEs 32 Total - Each with 16 Instructions
8 local registers, 8 predicates

Network Mesh (1 cycle link latency)
Scratchpad 8KB (distributed)
L1 Cache 4KB (4 banks, 1KB/bank)
L2 Cache 24 KB shared slice
DRAM 200 cycle latency

Estimated Clock Rate 3.4 GHz

Table 2.1: Block architectural parameters

which quadrant to explore based on where the path from the bottom-right point intersects the

input boundaries and hence solves only those segments required to reconstruct the edits/paths.

As we have theoretically shown that use of spatial architecture reduces the total memory foot-

prints significantly by using the PE-to-PE communications, it is easy to predict that all the

traditional linear memory space algorithms (Hirschberg’s or Chowdhury’s) can achieve huge

performance boost by using our optimized linear memory space edit distance row workers to

compute the cost as well as the required edits on spatial architectures. In that case, the recur-

sive control structure needs to be kept in the host process and whenever a basecase needs to be

executed it can be executed on the spatial architecture.

2.5 Experimental Setup

2.5.1 Spatial Architecture Performance

We evaluate our edit distance implementations on a cycle-accurate performance model that sim-

ulates the triggered instruction-based scalable spatial architecture (TIA) in [143]. The perfor-

mance model is developed using Asim, an established performance modeling infrastructure [71].

We use a model of the detailed microarchitecture of each TIA PE in the array, the mesh inter-

connection network, L1 and L2 caches, and DRAM.

The architectural organization of our evaluation architecture can be found in Figure 2.2. The

architecture is built from an array of TIA PEs organized into blocks. Each block contains a

grid of interconnected PEs, a set of scratchpad memory slices distributed across the block, a

private L1 cache, and a slice of a shared L2 cache that scales with the number of blocks on

the fabric. Table 2.1 provides the parameters that we use in our evaluation. The TIA PEs use

32-bit integer/fixed-point datapaths, and do not include hardware floating point units. As a

reference, 12 blocks (each including PEs, caches, etc.) are about the same size as our baseline

Intel R© CoreTMi7− 3770 core (including L1 and L2 caches), normalized to the same technology

node. Also note, that the length of a clock cycle of both a high-end x86 core and TIA are

estimated to be the same [143]. We used one block of PEs (32 PEs in total) to conduct all

our experiments, and then extrapolated the results to 12 blocks. As in other accelerators, a

general-purpose processor is used as the host device responsible for the setup of the kernel on

the TIA architecture. The interface between the two devices is shared memory managed using

cache coherence to transfer data, eliminating much of the communication overhead to transfer

the initial strings as input and score (and the path) as output.
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2.5.2 Spatial Edit Distance Implementation

Module MatchCost()  
{ 
    predicate match; 
    predicate p0 = false, p1 = false; 
    doCMP_Si_Tj: 
      when (!p0 && !p1 && %Si_In.tag != EOL && %Tj_In.tag != EOL) do 
          cmp.ge match, %Si_In.data, %Tj_In.data (deq % Si_In, p0:=1) 
 
     Forward_Tj: 
       when (p0 && !p1) do 
                 enq %TjOut, % Tj_In.data (deq % Tj_In, p1:=1) 
       
      Write_Match_Cost:  
 when (p0 && p1 && match && %diag.tag != EOL  ) do 
                 enq %score, % diag.data (deq % diag, p0 := 0, p1=0) 
       
    Write_Substitute_Cost:  
 when (p0 && p1 && !match && %diag.tag != EOL  ) do 
 enq %score, ADD(% diag.data, 1)  (deq % diag, p0 := 0, p1=0) 
} 

Figure 2.11: Sample code for a module that matches
S[i] with T[j] and computes the cost of cell M[i][j]

based on the diagonal cell M[i-1][j-1].

We translate the data flow diagram of

the row worker to triggered instruc-

tion code by mapping each step of the

data flow diagram to one or more rules

and their corresponding guard conditions

that fire/trigger those rules. A sample

code snippet that calculates the match/-

substitute cost is shown in Figure 2.11

that follows a similar convention to code

as in [143]. In this example, the predi-

cates help to define states and guard con-

ditions that determine relevant program

state transitions and enable specific in-

structions to fire. For example, a PE first

checks whether it is in state 0 and both

the channels Si In (S[i]) and Tj In (T[j]) have inputs, then the PE compares Si In with Tj In, de-

cides whether there is a match, dequeues the Si In channel, and moves to state 1 (p1=0, p0=1).

In state 1 the PE forwards Tj In to the next row worker through its Tj Out channel, dequeues

the Tj In channel and moves to state 3 (p1=1, p0=1). Finally, based on whether the PE found

a match or mismatch in state 0, it computes the match/substitute cost from either diagonal or

(diagonal + 1) and again moves to state 0.

It turned out that we need only 2 PEs to implement a row worker. For integration with the host

processor, we set up the input and output datasets and leverage control registers within the TIA

architecture. The host sets up the memory space for the cost matrix and writes the memory

pointers of the cost matrix and input strings into the TIA architecture registers. Then the host

signals the TIA architecture to start computation. The host waits for the TIA to signal that

the row workers have finished their computation before leveraging cache coherence hardware to

collect the resultant data.

2.5.3 x86 Comparison

For our comparisons to a general-purpose processor, we performed real runtime and power mea-

surements using an Intel R© CoreTMi7-3770. The i7-3770 is a four-core, eight-thread processor

which operates at a 3.4 GHz frequency (3.9 GHz Turbo Boost) and is manufactured in 22nm

technology. To capture runtime for each experiment, we looped over the computation with

enough iterations so that the caches were properly warmed up and so that execution took on

the order of seconds in wall time, which enabled us to use operating system timers. To cap-

ture energy consumption, we utilized the LIKWID tool set which reads registers included in the

Intel R©Core R© i7-3770 processor to read energy consumption and power [184]. Note that while

we do not model power for DRAM accesses, we eliminated most DRAM accesses using code

optimizations.
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Score and Path x86 Optimized – 0.36 1.0 1.0
TIA StripMem 16 : 32 1.11 3.08 37.0
TIA StripSP 14 : 30 1.53 4.25 51.0

TIA Tiled 10 : 22 1.12 3.11 37.3
Score Only x86 Optimized – 0.48 1.00 1.00

TIA StripMem 16 : 32 2.14 4.45 53.5
TIA StripSP 14 : 30 1.80 3.75 45.0

TIA Tiled 14 : 30 1.88 3.92 47.0

Table 2.2: Performance of edit distance on the spatial architecture and a comparison
with a typical modern processor.

For our x86 software version, we started with a C++ näıve implementation of edit distance and

progressively applied both source-level and compiler-level optimizations to improve performance

and energy consumption. To enable parallelization of the x86 implementation of edit distance to

multiple threads, we tiled computation and used OpenMP. Tiling divides the two-dimensional

cost matrix into blocks, and then uses multiple threads to compute blocks of cells along a diagonal

starting from the top-left diagonal and ending to the bottom-right diagonal (see Figure 2.12).

Figure 2.12: Execution pattern
of the x86 based tiled-loop code.
The numbers on the tile shows
when a tile get executed. Tiles
with the same numbers gets exe-

cuted in parallel.

Each diagonal wavefront of blocks can be computed in par-

allel, with synchronization occurring between wavefronts.

To improve scalability of our x86 implementation for edit

distance to larger string sizes, we performed an additional

source-level transformation to our tiled version to enable the

use of linear memory space and reduce the size of the cost

matrix [47]. In practice, this often reduces the memory foot-

print requirements from gigabytes of memory to kilobytes,

which further improves cache behavior and avoids energy ex-

pensive DRAM accesses. For the final source-level transfor-

mation, we transformed each tile computation to enable vec-

torization by the compiler. As parallelism is found along the

diagonals, we transformed each tile into the shape of a dia-

mond so that parallel work exists horizontally in memory.For

our compiler, we used the Intel R© icc compiler version 14.0 and experimented with optimization

levels −O0 through −O3 and AVX vectorization. For details please see [179].

2.6 Experimental Results and Analysis

2.6.1 Overview of Performance Results

Table 2.2 presents the overview of the performance results for a fixed input string size of 1024

for both S and T . While in this paper we focus on computing the score matrix, the results
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for computing the score and path (i.e., edits) together are also presented. Scores are calculated

using O(n) memory space and edits are saved using O(nm) memory space. Recall that it is

possible to reconstruct the edits without saving the edits at the first place, by recomputing a

smaller subset of the scores in the backward direction. Therefore, showing that computing the

scores on TIA is significantly faster than computing the score on x86 is still of great interest.

The x86 implementation presented uses all the optimizations previously mentioned (i.e., linear

space tiling, vectorization and compiler optimizations). Though the TIA implementations are

scalable with the total number of PEs available, we limit the computation fabric to a single block

and normalize to the area of an x86 core by multiplying by a factor of 12 (since approximately

12 blocks consume the area of an Intel R© CoreTMi7− 3770 core).

(a) Throughput performance comparison. (b) Energy consumption comparison.

Figure 2.13: Results showing that implementations on triggered instruction spatial
architecture (TIA) run 50× faster while consuming 1/100× energy compared to the

optimized single-threaded x86 based tiled-loop implementation.

From Table 2.2 we can see that strip mining using scratchpad memory is the fastest (achieves

a 51 times speedup with respect to x86) among the algorithms that compute both score and

path. We were only able to use 10 row workers (22 PEs) for the tiled based approach as we

were resource constrained by the number of communication channels used by the row workers

to read to and write from the memory. Despite these constraints, the tile-based approach was

slightly better than strip mining using memory in this case. For algorithms that only compute

the score, the performance of all algorithms improved because the overall work was reduced by

not saving O(nm) edits to memory. When computing the score only, all our algorithms on TIA

also performed, at least, 45 times faster than the x86 based version. Note that our extrapolated

performance when scaling TIA to 12 blocks is conservative, as we assume the number of row

workers is kept constant for each block. For example, strip mining using scratchpad memory

requires two control PEs to work as a multiplexer and de-multiplexer attached to the first and

last row workers, effectively limiting the maximum number of row workers to 14 instead of 16.

However, this control overhead need not be replicated when scaling to 12 blocks, and performance

would therefore be better than our extrapolated number. Figures 2.13a and 2.13b show that in

addition to be 50× faster, TIA based implementation consumes 100× less energy and 2× less

power than the x86 based implementation. The experiments related to energy/power consump-

tion and memory footprints were conducted by my co-author Neal Crago [179]2. Nevertheless,

2My contributions in this work are to find this class of DP problems that can be mapped naturally to spatial
architecture, all algorithms and their implementations for edit distance on the TIA architecture and the näıve
linear space x86 implementation. Results presented in Table 2.2 and Figure 2.13a were also produced by me,
which were later updated with the x86 optimized results. All theoretical analyses of memory operations and
runtime complexity were also done by me.
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some of those results are reproduced for showing significance of this work.

2.6.2 Memory References and Communication
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Figure 2.14: Comparison of memory, local communi-
cation, and scratchpad memory accesses between x86 and
TIA based implementations. While register file activity is
not shown, TIA local communication numbers include what

would be register file accesses on x86.

Figure 2.14 compares the number of

memory accesses, local communica-

tion between PEs, and scratchpad

memory accesses between x86 and

TIA. In this analysis, we compare

our fully-optimized single-threaded

x86 implementation with two of our

TIA implementations on a dataset

where strings S and T are both of

length 1024. Activity numbers for

TIA were gathered from the per-

formance model, while the number

of memory accesses on x86 were

gathered using cachegrind, a per-

formance instrumentation tool from

Linux [138]. We find that over 95.2% and 97.3% of memory accesses in both TIA implementations

are successfully converted into less expensive local communication between PEs and scratchpad

memory accesses. The dramatic reduction in memory accesses is a key benefit in accelerating

applications using spatial architectures. Note that the amount of local communication on TIA is

of the order of the number of memory accesses in the x86 version. While register file accesses are

not explicitly shown, the TIA local communication numbers include accesses that would be facil-

itated on x86 using the register file. This conversion of memory accesses to local communication

corroborates well with the organization of our TIA implementations, where local communication

is primarily used to send scores and other inputs between PEs.

2.6.3 Coding Effort Analysis

To further compare the two platforms, we analyzed the code footprint of the x86 and TIA ker-

nels. Performing this analysis provides further insight into the natural mapping of edit distance

onto spatial architectures. Table 2.3 presents the lines of source code for x86 (C++) and TIA

(Assembly). For this analysis, we only included lines in each kernel containing real work, and

excluded lines entirely devoted to comments, whitespace characters, and control characters such

as braces {}. For the C++ x86 version, we further optimized code footprint by aggressively

modularizing code into reusable functions that could be inlined by the compiler.

We find that the number of lines of TIA assembly is nearly on the order of the fully optimized

C++ x86 version. This is an interesting result, given the superior expressibility of C++ for

computation. However, the effort required to optimize the x86 version for scalability and per-

formance adds significant code complexity. While scaling the number of row workers is trivial in

TIA, x86 must change the algorithm and implement blocking and OpenMP support to facilitate

parallelization. Similarly, implementing vectorization on x86 results in an algorithmic change
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Platform Version Lines of source code
x86 (C++) Naive 10

+blocking 65
+linear memory space 144
+vectorization 168

TIA (Assembly) StripMem 222
Tiled 313

Table 2.3: Coding effort for edit distance (code footprint).

and corner cases that must be handled with additional code. Overall, we feel that this data

analysis reflects the natural mapping of edit distance onto TIA.

2.7 Related Work

There is considerable amount of prior research in developing and optimizing edit distance and

its several variants on general-purpose processors such as x86. Hirschberg [103] first discovered

a linear-space algorithm for sequence alignment, which was then popularized and extended by

Myers and Miller [137]. There are also several multicore-based implementations of edit distance

as well as sequence alignment. In [47] the authors have presented a cache-oblivious divide-

and-conquer algorithm for multicores, where the cost matrix is divided into four quadrants to be

solved recursively, and the diagonal quadrants are solved in parallel. Other prior research on edit

distance has focused on parallelization targeting both MIMD [106] and SIMD [94] architectures.

Vectorization of the sequence alignment problem by reshaping the cost matrix has been described

in [101].

With the recent surge of research on accelerator architectures, edit distance and its variants have

also been mapped to GPUs, FPGAs, and reconfigurable hardware. These prior researches focus

on mapping to the data-parallel nature of the architectures, with optimization utilizing inter-

and intra- task parallelism, tiling, pruning, and approximate solutions. Given the difficulty in

vectorizing edit distance, much of this prior research finds parallelism by performing computation

across multiple sets of small gene sequences [62, 73]. However, there exists some research which

focuses on improving performance for a single large sequence alignment problem [114]. Some

FPGA and reconfigurable hardware research leverage the strong dataflow properties within the

algorithm in order to exploit parallelism [68, 150, 156]. While much of this research focuses on

improving throughput performance, some work also emphasizes reducing logic footprint [113].

In contrast to our work, no prior research focuses on analyzing energy or power consumption

of edit distance or compares fully-optimized implementations on two platforms with different

architectural properties. We develop edit distance algorithms for the emerging class of coarse-

grained spatial architectures, and leverage best-known techniques to develop an optimized x86

implementation of edit distance. We concentrate on developing a scalable implementation for

spatial architectures that operates on arbitrarily large source and target strings while minimizing

memory bandwidth by optimizing communication among the PEs. We also optimize for a single

instance of edit distance operating on a single pair of strings, rather than gaining parallelism

through multiple computations. Finally, both x86 and TIA implementations are evaluated on

high-end evaluation platforms to further ensure a fair comparison.
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2.8 Conclusion and Future Research

This research shows that finding the right type of parallelism and a right architecture to map

that parallelism can save both memory bandwidth and energy consumption significantly while

giving the desired speedup. We demonstrate the ability of a triggered instruction-based spatial

architecture to solve the edit distance problem, a broadly used dynamic programming problem in

bioinformatics. Our experiments show that this proposed spatial architecture has a tremendous

potential of providing high performance for applications with local communications. We conclude

that for applications where vectorization is not straightforward or inefficient due to horizontal

and vertical dependencies between the computation elements, it is possible to map them to a

spatial architecture more efficiently than an x86 processor.

Exploring the possibility of mapping of other dynamic programming problems with non-local

dependencies efficiently on this kind of spatial architecture can be considered as the next step

in this research. Solving cache-oblivious wavefront (COW) algorithms [173] on the Triggered

Instruction Spatial Architectures (TIA) seems to be a very interesting research to pursue, since

both use the concept of the trigger: COW algorithms use the triggers in its software sched-

uler, where triggered instruction spatial architecture implements that in hardware. Offloading

basecases of cache-oblivious recursive divide-and-conquer algorithm for edit distance algorithms

to TIA may improve performance even further. All these are open problems and need further

investigations.
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Chapter 3

Recursive Dynamic Programming

With Matrix-multiplication-like

Flexible Kernels

3.1 Abstract

In Chapter 2 we have shown how to get high-performance for edit distance like dynamic pro-

gramming algorithms using a special-purpose hardware that can efficiently leverage the inherent

data-flow property of the algorithm. In this chapter we show how to achieve high-performance

while solving dynamic programming problems on general-purpose hardware, e.g., traditional

multicore processors.

We show how to obtain high-performing parallel implementations for a class of dynamic program-

ming (DP) problems by reducing them to highly optimizable flexible kernels using cache-oblivious

recursive divide and conquer (CORDAC). We implement parallel CORDAC algorithms for four

non-trivial DP problems, namely the parenthesis problem, Floyd-Warshall’s all-pairs shortest

path (FW-APSP), sequence alignment with general gap penalty (gap problem) and protein ac-

cordion folding. To the best of our knowledge, our algorithms for protein accordion folding and

the gap problem are novel. All four algorithms have asymptotically optimal cache performance,

and all but the FW-APSP have asymptotically more parallelism than their looping counterparts.

We show that the base cases of our CORDAC algorithms are predominantly matrix-multiplication-

like (MM-like) flexible kernels that expose many optimization opportunities not offered by tra-

ditional looping DP codes. As a result, one can obtain highly efficient DP implementations

by optimizing those flexible kernels only. Our implementations for these CORDAC algorithms

achieve 5 − 150× speedup and 3 − 40× reduction in energy consumption over their standard

loop based DP counterparts on modern multicore machines with 16−32 cores. We also compare

our implementations with parallel tiled codes generated by existing polyhedral compilers: Polly,

PoCC, and PLuTo, and show that our implementations run significantly faster than these auto-

generated tiled codes. Finally, we present results on manycores (Intel Xeon Phi) and clusters
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of multicores obtained using simple extensions for SIMD (Single Instruction Multiple Data) and

shared-distributed-shared-memory architectures, respectively, demonstrating the versatility and

portability of these algorithms. Our optimization approach is highly systematic and suitable for

automation.

3.2 Introduction

Dynamic programming (DP) [20, 120, 162] is a popular algorithm design technique for finding

optimal solutions to a problem by combining optimal solutions to many overlapping subproblems.

DP is used in a wide variety of application areas [121] including operations research, compilers,

sports and games, economics, finance, and agriculture. DP is extensively used in computational

biology, such as in protein-homology search, gene-structure prediction, motif search, phylogeny

analysis, analysis of repetitive genomic elements, RNA secondary-structure prediction, and in-

terpretation of mass spectrometry data [67, 97, 189].

Traditional Loop-based DP Algorithms. Dynamic programs are traditionally implemented

using simple loop-based algorithms. For example, Figure 3.2 shows looping code snippets for

four DP problems. Such loop-based algorithms are straightforward to implement, sometimes

have good spatial locality1, and benefit from hardware prefetchers. But looping codes suffer in

performance due to poor temporal cache locality2. Low temporal locality leads to increased pres-

sure on memory bandwidth which increases with the number of active cores. More cache misses

also result in more energy consumption. Therefore, there is a significant room for improvement

in the cache usage of these algorithms, and consequently also in their running times and energy

usage, especially on parallel machines.

Loop-Parenthesis( c, n ) //Inflexible Code

(Input is an n × n matrix c[1 : n, 1 : n] with c[i, j] = vj for
1 ≤ i = j − 1 < n and c[i, j] =∞ otherwise (i.e., i 6= j − 1).)

1. for i← n− 2 downto 1 do

2. for j ← i+ 2 to n do

3. for k ← i+ 1 to j do

4. c[i, j]← min { c[i, j], c[i, k] + c[k, j] + w(i, k, j) }

Loop-MM( d, a, b, n ) //Flexible Code

(Inputs are disjoint n×n matrices a, b and d. This function
computes the product of a and b in d.)

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. d[i, j]← d[i, j] + a[i, k]× b[k, j]

Figure 3.1: Inflexible looping code for the parenthesis problem vs. the flexible looping
code for matrix multiplication.

Flexible vs. Inflexible Kernels. Iterative DP implementations are often inflexible in the

sense that the loops and the data in the DP table cannot be suitably reordered in order to

optimize for better spatial locality, parallelization, and/or vectorization. Such inflexibility arises

from the strict read-write ordering of the DP table cells imposed by the code that reads from

and writes to the same table. For example, irrespective of whether matrix c is stored in row-

major order or column-major order, the given i-j-k ordering of the loops in Loop-Parenthesis

of Figure 3.1 incurs Θ
(
n3
)

cache misses under the ideal-cache model [81]. Observe that i-k-j

ordering of the loops will incur only O
(
n3/B + n2

)
cache misses, where B is the cache line size,

1Spatial locality — whenever a cache block is brought into the cache, it contains as much useful data as possible.
2Temporal locality — whenever a cache block is brought into the cache, as much useful work as possible is performed

on it before removing the block from the cache.
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and will also lead to better stride lengths for efficient vectorization. However, the i-k-j ordering

will make the algorithm incorrect. Compare this DP implementation with the iterative matrix

multiplication (MM) code Loop-MM shown in Figure 3.1. Both code snippets look similar

except that Loop-MM reads from and writes to two disjoint matrices making all 6 orderings

of the loops valid, and thus making the code much easier to optimize. Though the given i-j-k

ordering will incur Θ
(
n3
)

cache misses, one can easily reduce that to O
(
n3/B + n2

)
either by

reordering the loops to i-k-j or by storing matrix b in column-major order and a in row-major

order. Furthermore, since no cell in d depends on any other cell of d, one can correctly update

all its n2 cells in parallel by parallelizing both i- and j-loops. One cannot extract that much

parallelism from Loop-Parenthesis because almost every cell in c depends on many other cells

of c, and thus imposes an order in which the cells must be updated. We refer to kernels, such as

Loop-MM, that perform reads and writes on disjoint matrices as flexible kernels.

DP using Recursive Divide and Conquer. DP algorithms based on the cache-oblivious

recursive divide-and-conquer (CORDAC) technique can often overcome many limitations of their

iterative counterparts. Because of their recursive nature, such algorithms are known to achieve

excellent (and often optimal) temporal locality. Efficient implementations of these recursive

algorithms use iterative kernels when the problem size becomes reasonably small [195]. In this

research, we show that for several DP problems the recursive decomposition reduces the original

inflexible looping code into recursive functions and iterative kernels that are predominantly

flexible (i.e., reading from and writing to disjoint submatrices). Such flexibility does not only

lead to highly optimizable codes, but often to algorithms with asymptotically better parallelism

than the original looping code. The size of the iterative kernel can often be kept independent of

the cache parameters3 without paying a significant performance penalty, and thus keeping the

algorithms both cache-efficient and cache-oblivious4 [81].

Tiled Loops vs. Recursive Divide and Conquer. Though one can achieve optimal cache

performance by tiling the looping code, unlike CORDAC, tiling remains a cache-aware approach.

Tiling for machines with hierarchical caches is very inconvenient and challenging. Moreover,

simply tiling a parallel loop nest does not improve its asymptotic parallelism. While tiling

can produce flexible iterative kernels too, CORDAC’s strength lies in its ability to utilize flex-

ible recursive functions. High level of parallelism achieved by these functions often leads to a

CORDAC-based DP algorithm with asymptotically better parallelism than its parallel looping

counterpart.

Our Contributions. We consider four DP problems with applications to computational biol-

ogy. Among them, the parenthesis problem [84] arises in sequence analyses and in RNA secondary

structure prediction [125, 169] as well as in optimal matrix chain multiplication, construction

of optimal binary search trees, and optimal polygon triangulation. The gap problem occurs in

sequence alignment with gaps, Floyd-Warshall’s all-pairs shortest path (FW-APSP) has appli-

cations in computing transitive closure and phylogeny analysis [144], and the protein accordion

folding (PAF) problem has its roots in protein structure prediction.

Our major contributions in this work are as follows.

3since cache sizes on modern machines are almost never less than 8KB
4Cache-oblivious algorithms — algorithms that do not use the knowledge of cache parameters in the algorithm

description.
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. [Reduction to Flexible Computations for Better Parallelism and Optimizations] We

show that for our benchmark problems the CORDAC approach basically reduces the computa-

tions to flexible recursive functions and highly optimizable flexible kernels which asymptotically

dominate the total computation cost. The flexible recursive functions often lead to asymptotic

improvements in parallelism over the corresponding parallel looping codes (with/without tiling).

. [Novel CORDAC Algorithms] We present the first efficient parallel CORDAC algorithms

for protein accordion folding and sequence alignment with general gap penalty. We analyze their

theoretical time and cache complexities.

. [Optimizations and Experimental Analyses on Shared-Memory Machines] We de-

scribe general optimization strategies for our CORDAC implementations that can lead up to

5 − 150× speedup w.r.t. to the optimized parallel looping implementations on multicores with

16−32 cores, and up to 180× speedup on Intel Xeon Phi manycores. Our optimization approach

is systematic enough for automation and incorporation into a compiler.

. [Comparison with Codes Generated by Polyhedral Compilers] We show that our COR-

DAC implementations run significantly faster than parallel tiled DP implementations generated

by polyhedral compilers - PLuTo [29], PoCC [148] and Polly [95].

. [Energy, Power and Runtime Tradeoff] We show that CORDAC implementations con-

sume significantly less energy than looping implementations. They can afford to slowdown (by

using fewer cores) to reduce power consumption while still running faster than the looping codes.

We explore this tradeoff between power consumption and running time.

. [Extension to Heterogeneous Platforms] We show that CORDAC algorithms achieve

almost linear scalability on multicores for large enough inputs, and reasonable scalability when

run on a cluster of multicore machines under hierarchical dynamic load-balancing without any

change in the basic CORDAC structure. Moreover, the same basic CORDAC algorithms also

perform very well on manycores Xeon Phi as well as on hybrid CPU + Xeon Phi platforms.

These results show portability of these algorithms on different parallel platforms.

3.3 Algorithms

In this section, we present standard parallel loop-based and CORDAC algorithms for the paren-

thesis, protein accordion folding, gap, and FW-APSP problems. For simplicity of exposition we

assume n = 2t for some integer t ≥ 0 for all problems, where n × n is the size of the DP table.

Table 3.1 lists span and cache complexity of all the four CORDAC algorithms and their iterative

counterparts.

3.3.1 Parenthesis Problem

The parenthesis problem [84] asks for the minimum parenthesization cost of a given sequence

X = x1x2 · · ·xn. Let c[i, j] denote the minimum cost of parenthesizing xi · · ·xj (e.g., in case

of the equivalent matrix-chain multiplication problem, the cost refers to the computational cost
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Par-Loop-Parenthesis( c, n ) (Input is an n × n matrix c[1 : n, 1 : n] with c[i, j] = vj for 1 ≤ i = j − 1 < n and
c[i, j] =∞ otherwise (i.e., i 6= j − 1).)

1. for t← 2 to n− 1 do

2. par for i← 1 to n− t do

3. j ← t+ i

4. for k ← i+ 1 to j do

5. c[i, j]← min { c[i, j], c[i, k] + c[k, j] + w(i, k, j) }

Par-Loop-FW( d, n ) (Input is an n× n matrix d[1 : n, 1 : n] with d[i, j] for 1 ≤ i, j ≤ n initialized with entries from a
closed semiring (S,⊕,�, 0, 1). )

1. for k ← 1 to n do

2. par for i← 1 to n do

3. par for j ← 1 to n do

4. d[i, j]← d[i, j]⊕ (d[i, k]� d[k, j])

Par-Loop-Protein-Folding( S, F, n ) (Inputs are two n × n matrices S[1 : n, 1 : n] and F [1 : n, 1 : n]. For a given
protein sequence P[1 : n], the cost of an optimal accordion score of the segment P[i : j] will be computed in S[i, j]. F is
a precomputed array with F [j+1,min (k, 2j − i+ 1)], 1 ≤ i < j < k−1 < n, storing the number of aligned hydrophobic
amino acids when the protein segment P[i : k] is folded only once at indices (j, j + 1). For n− 1 ≤ j ≤ n, each S[i, j] is
initialized to 0.)

1. for i← n− 1 downto 1 do

2. par for j ← n− 1 downto i+ 1 do

3. for k ← j + 2 to n do

4. S[i, j]←
max { S[i, j], S[j + 1, k] + F [j + 1,min (k, 2j − i+ 1)] }

Par-Loop-Gap( G, x, m, y, n ) (Inputs are two sequences x = x1x2 . . . xm and y = y1y2 . . . yn, and an (m+1)×(n+1)
matrix G[0 : m, 0 : n]. Row 0 and column 0 of G re assumed to be appropriately initialized. )

1. for t← 2 to m+ n do

2. par for i← max {1, t− n} to min {t− 1,m} do

3. j ← t− i
4. G[i, j]← G[i− 1, j − 1] + s(xi, yj)

5. for q ← 0 to j − 1 do

6. G[i, j]← min {G[i, j], G[i, q] + w1(q, j)}
7. for p← 0 to i− 1 do

8. G[i, j]← min {G[i, j], G[p, j] + w2(p, i)}

Figure 3.2: Loop-based parallel codes for the parenthesis problem (Par-Loop-
Parenthesis), Floyd-Warshall’s APSP (Par-Loop-FW), protein accordion folding
(Par-Loop-Protein-Folding) and the gap problem (Par-Loop-Gap). In addition
to the parallel for loops already shown, the serial for loops in lines 5 and 7 of Loop-
Gap and in line 4 of Loop-Parenthesis and Par-Loop-Protein-Folding can be

parallelized using reducers [82].

of multiplying matrices from xi · · ·xj). For 1 ≤ i < n, each c[i, i + 1] is assumed to be already

known (= vi+1), and for 1 ≤ i ≤ n each c[i, i] is assumed to be ∞.

A function w(·, ·, ·) is given such that for 1 ≤ i < k ≤ n, w(i, k, j) returns the cost of com-

bining parenthesizations of xi · · ·xk and xk · · ·xj which can be computed without additional

cache/memory accesses. Then for 1 ≤ i < j − 1 ≤ n, c[i, j] is computed as follows.

c[i, j] = min
i≤k≤j

{
(c[i, k] + c[k, j]) + w(i, k, j)

}
The optimal parenthesizing cost c[1, n] for the entire sequence can be found using the parallel

looping code Par-Loop-Parenthesis given in Figure 3.2. Observe that the parallel looping

code is different from the serial code Loop-Parenthesis shown in Figure 3.1 as none of the

loops in that serial code can be directly parallelized because of the dependencies in the order of
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cell computation. Par-Loop-Parenthesis computes cells diagonal by diagonal starting from

c[1, 1] and ending at c[1, n]. All cells on the same diagonal can now be computed in parallel.

A parallel CORDAC algorithm for solving the parenthesis problem is shown in Figure 3.5 which is

a special case of the algorithm we proposed in [47]. This algorithm uses three recursive functions:

Apar, Bpar and Cpar.

Function Apar( X ) updates the upper triangular part of square matrix X (initially X ≡ c[1 :

n, 1 : n]) using data from X, i.e., each c[i, j] in X is updated using only the 〈c[i, k], c[k, j]〉
pairs that lie completely inside X. The recurrence for c[i, j] suggests that X11 and X22 are

self-dependent like X, and hence can be updated recursively by Apar. Then we need to update

the cells in X12, and each such update of a cell c[i, j] ∈ X12 must use 〈c[i, k], c[k, j]〉 pairs such

that either c[i, k] ∈ X11 ∧ c[k, j] ∈ X12 or c[i, k] ∈ X12 ∧ c[k, j] ∈ X22. This is done by calling

function Bpar( X, U, V ) with X = X12, U = X11 and V = X22, which updates a square matrix

X (= X12) using data from itself and upper triangular matrices U (to the left of X) and V

(below X).

In function Bpar( X, U, V ), clearly, X21 depends only on data in upper triangular submatrices

U22 and V11, and hence can be updated recursively before updating X11, X22 and X12. Next we

can update X11, X22 while using X21 as input. Observe that each update of a cell c[i, j] ∈ X11

must use either (i) c[i, k] ∈ U12∧ c[k, j] ∈ X21, or (ii) c[i, k] ∈ U11∧ c[k, j] ∈ X11, or (iii) c[i, k] ∈
X11 ∧ c[k, j] ∈ V11. Case (i) is handled by calling function Cpar( X11, U12, X21 ) which we de-

scribe later, and the remaining two cases are handled by calling Bpar( X11, U11, V11 ) recursively.

Similar argument holds for updating X22. Once we have updated X11 and X22, next we can up-

date X12. Each update of a cell c[i, j] ∈ X12 must use either (i) c[i, k] ∈ U12∧c[k, j] ∈ X22, or (ii)

c[i, k] ∈ X11∧ c[k, j] ∈ V12, or (iii) c[i, k] ∈ U11∧ c[k, j] ∈ X12, or (iv) c[i, k] ∈ X12∧ c[k, j] ∈ V22.

The first two cases can be solved by calling Cpar( X12, U12, X22 ) and Cpar( X12, X11, V12 )

recursively, and the last two cases are solved by calling Bpar( X12, U11, V22 ) recursively.

Function Cpar( X, U, V ) updates square X using data from squares U and V , i.e., c[i, j] ∈ X
is updated using 〈c[i, k], c[k, j]〉 pairs such that c[i, k] lies inside U and c[k, j] lies inside V , and

hence, Cpar is MM-like, and has the same form as the recursive square matrix-multiplication

algorithm.

Table 3.1 shows that the kernel function of Cpar is asymptotically dominating (i.e., invoked

asymptotically more times than the other two kernel functions) and is also the only flexible

kernel among the three.

Serial Cache Complexity. For f ∈ {A,B,C}, let Qf (n) denote the cache complexity of

fpar on a matrix of size n × n when run on a serial machine. Then Qf (n) = O
(
n+ n2/B

)
if

n2 ≤ γfM for some suitable constant γf ∈ (0, 1]. Otherwise, QA(n) = 2QA (n/2) + QB (n/2),

QB(n) = 4 (QB (n/2) +QC (n/2)), and QC(n) = 8QC (n/2).

Solving, QA(n) = O
(
n+ n2/B + n3/M + n3/

(
B
√
M
))

.

Span. For f ∈ {A,B,C}, let Tf (n) denote the span of fpar on a matrix of size n × n.

Then Tf (n) = Θ (1) if n = 1. Otherwise, TA(n) = TA (n/2) + TB (n/2) + Θ (1), TB(n) =

3 (TB (n/2) + TC (n/2)) + Θ (1), and TC(n) = 2TC (n/2) + Θ (1). Solving, TA(n) = O
(
nlog2 3

)
.
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Table 3.1: Complexities of the iterative and recursive divide-and-conquer (CORDAC)
algorithms, and the number of invocations of iterative kernels by CORDAC algorithms
when run on an input matrix of size n× n with basecase size ≤ b× b. Flexible kernels
are shown on yellow background and asymptotically dominating kernels are shown in
bold red. Here, M = size of the cache and B = cache line size. Runtime on p process-
ing elements is Tp = O (T1/p+ T∞), cache complexity is Qp = O (Q1 + p(M/B)T∞)

(w.h.p.) when run under Cilk’s work-stealing scheduler.

3.3.2 Protein Accordion Folding

A protein can be viewed as a string P [1 : n] over the alphabet { A, R, N, D, C, E, Q, G, H, I, L,

K, M, F, P, S, T, W, Y, V } of amino acids5. A protein sequence is never straight, and instead,

it folds itself in a way that minimizes the potential energy. Some of the amino acids (e.g., A, I,

L, F, G, P, V) are called hydrophobic as they do not like to be in contact with water. A desire

to minimize the total hydrophobic area exposed to water is a major driving force behind the

folding process. In a folded protein, hydrophobic amino acids tend to clump together in order

to reduce water-exposed hydrophobic area.

In the protein accordion folding problem (PAF) we assume that a protein is folded into a 2D

square lattice in such a way that the number of pairs of hydrophobic amino acids that are next

to each other in the grid (vertically or horizontally) without being next to each other in the

protein sequence is maximized (see [112]). We assume that the fold is always an accordion fold

where the sequence first goes straight down, then straight up, then again straight down, and so

on. Beta sheets often fold this way (Figure 3.3).

The recurrence below computes the optimal accordion score, S[i, j] of the protein segment P[i : j]

which assumes S[i, j] = 0 for j ≥ n − 1. The optimal score for the entire sequence is given by

max1<j≤n {S[1, j]}.

S[i, j] = max
j+1<k≤n

{SOF(i, j, k) + S[j + 1, k]}

The function SOF(i, j, k), which stands for Score-One-Fold, counts the number of aligned

hydrophobic amino acids when the protein segment P[i : k] is folded only once at indices (j, j+1).

The function is illustrated graphically in Figure 3.4. Observe that

SOF(i, j, k) =

{
SOF(1, j, k) if k ≤ 2j − i+ 1,
SOF(1, j, 2j − i+ 1) otherwise.

(3.1)

5Amino acids: Alanine (A), Arginine (R), Asparagine (N), Aspartic acid (D), Cysteine (C), Glutamic acid (E),
Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), Methionine (M), Phenylalanine
(F), Proline (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y), Valine (V).
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Figure 3.3: A protein accordion
fold where each star represents a
hydrophobic amino acid and each
circle a hydrophilic one. The ac-
cordion score of this folded se-
quence is 4 which is not the max-
imum possible accordion score for

this sequence.

Figure 3.4: SOF(i, j, k) counts
the number of aligned hydrophobic
amino acids when the protein seg-
ment P[i : k] is folded only once
at indices (j, j+ 1). In this figure,
each star represents a hydrophobic
amino acid and each circle a hy-

drophilic one.

Hence, in O
(
n2
)

time one can precompute an array F[1 : n, 1 : n] such that for all 1 ≤ i < j <

k − 1 < n, SOF(i, j, k) = F[j + 1,min {k, 2j − i+ 1}].

Thus Recurrence for accordion fold, S reduces to the following.

S[i, j] =

{
0 if j ≥ n− 1,
maxj+1<k≤n {SOF[j + 1,min {k, 2j − i+ 1}] + S[j + 1, k]} otherwise.

(3.2)

In Figure 3.5 we present a CORDAC algorithm for computing S[1 : n, 1 : n] based on the

recurrence above. The algorithm uses four recursive functions Afold, Bfold, Cfold and Dfold.

Function Afold( X ) updates the upper triangular part of X (which is originally set to 〈S[1 :

n, 1 : n], F [1 : n, 1 : n]〉) using data completely inside that part of X. Function Afold recursively

calls itself and functions Bfold and Cfold. Function Bfold( X, V ) updates a square X using

data from X and from the upper triangular part of another square V that lies below X in the

original input n × n square. This function recursively calls itself and function Dfold. Function

Cfold( X, U ) updates the upper triangular part of X using data from X and a square U that

lies to the right of X. Function Cfold recursively calls itself and function Dfold. Finally, function

Dfold( X, V ) updates a square X using data from another square V that lies below and to the

right of X. This function recursively calls only itself and is flexible. Table 3.1 shows that though

the iterative kernels Bfold−loop and Dfold−loop are both flexible (no read-write constraint), only

Dfold−loop is asymptotically dominating.

Serial Cache Complexity. For f ∈ {A,B,C,D}, let Qf (n) denote the cache complexity of

ffold on a sequence of length n when run on a serial machine. Then Qf (n) = O
(
n+ n2/B

)
if

n2 ≤ γfM for some suitable constant γf ∈ (0, 1]. Otherwise, QA(n) = 2QA
(
n
2

)
+ QB

(
n
2

)
+

QC
(
n
2

)
, QB(n) = 4QB

(
n
2

)
+ 2QD

(
n
2

)
, QC(n) = 4QC

(
n
2

)
+ 2QD

(
n
2

)
, and QD(n) = 8QD

(
n
2

)
.

Solving, QA(n) = O
(
n+ n2

B + n3

M + n3

B
√
M

)
.

Span. For f ∈ {A,B,C}, let Tf (n) denote the span of ffold on a sequence of length n. Then

Tf (n) = Θ (1) if n = 1. Otherwise, TA(n) = 2TA
(
n
2

)
+ TB

(
n
2

)
+ TC

(
n
2

)
+ Θ (1), TB(n) =

TB
(
n
2

)
+TD

(
n
2

)
+Θ (1), TC(n) = 2 max

{
TC
(
n
2

)
, TD

(
n
2

)}
+Θ (1), and TD(n) = 2TD

(
n
2

)
+Θ (1)

Solving, TA(n) = O (n log n).
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Apar(X)

1. if X is a small matrix then Apar−loop(X)

else

2. par : Apar(X11), Apar(X22)

3. Bpar(X12, X11, X22)

Bpar(X, U, V )

1. if X is a small matrix then Bpar−loop(X, U, V )

else

2. Bpar(X21, U22, V11)

3. par :

Cpar(X11, U12, X21), Cpar(X22, X21, V12)

4. par :

Bpar(X11, U11, V11), Bpar(X22, U22, V22)

5. Cpar(X12, U12, X22)

6. Cpar(X12, X11, V12)

7. Bpar(X12, U11, V22)

Cpar(X, U, V ) //Flexible Function

1. if X is a small matrix then Cpar−loop(X, U, V )

else

2. par :

Cpar(X11, U11, V11), Cpar(X12, U11, V12),

Cpar(X21, U21, V11), Cpar(X22, U21, V12)

3. par :

Cpar(X11, U12, V21), Cpar(X12, U12, V22),

Cpar(X21, U22, V21), Cpar(X22, U22, V22)

Afold(X)

1. if X is a small matrix then Afold−loop(X)

else

2. Afold(X22)

3. Bfold(X12, X22)

4. Cfold(X11, X12)

5. Afold(X11)

Bfold(X, V ) //Flexible Function

1. if X is a small matrix then Bfold−loop(X, V )

else

2. par : Bfold(X11, V11), Bfold(X12, V22),

Bfold(X21, V11), Bfold(X22, V22)

3. par : Dfold(X11, V12), Dfold(X21, V12)

Cfold(X, U)

1. if X is a small matrix then Cfold−loop(X, U)

else

2. par : Cfold(X11, U11), Dfold(X12, U21),

Cfold(X22, U21),

3. par : Cfold(X11, U12), Dfold(X12, U22),

Cfold(X22, U22),

Dfold(X, V ) //Flexible Function

1. if X is a small matrix then Dfold−loop(X, V )

else

2. par : Dfold(X11, V11), Dfold(X12, V21),

Dfold(X21, V11),Dfold( X22, V21)

3. par : Dfold(X11, V12), Dfold(X12, V22),

Dfold(X21, V12), Dfold(X22, V22)

Figure 3.5: Parallel cache-oblivious recursive divide-and-conquer (CORDAC) algo-
rithms for solving the parenthesis and the protein accordion folding problems. For sim-
plicity, we assume n to be a power of 2. Initial function calls are as follows. (1)
parenthesis problem: Apar(c) for an n × n input matrix c and (2) protein accordion
folding Afold( X ), where X = 〈S[1 : n, 1 : n], F [1 : n, 1 : n]〉 are n× n input matrices.

3.3.3 Sequence Alignment with General Gap Penalty

The problem of sequence alignment with general gap penalty (gap problem) [83, 84, 189] is a

generalization of the edit distance problem that arises in molecular biology, geology, and speech

recognition. When transforming a string X = x1x2 . . . xm into another string Y = y1y2 . . . yn, a

sequence of consecutive deletes corresponds to a gap in X, and a sequence of consecutive inserts

corresponds to a gap in Y . Although, an affine gap penalty function is predominantly used in

bioinformatics, for which O(n2) algorithms are available [189], [50], in many applications the

cost of such a gap is not necessarily equal to the sum of the costs of each individual deletion

(or insertion) in that gap. To handle any general case, we define two new cost functions w and

w′, where w(p, q) (0 ≤ p < q ≤ m) is the cost of deleting xp+1 . . . xq from X, and w′(p, q)

(0 ≤ p < q ≤ n) is the cost of inserting yp+1 . . . yq into X. The substitution function S(xi, yj)

is the same as that of the standard edit distance problem. Let G[i, j] denote the minimum cost

of transforming Xi = x1x2 . . . xi into Yj = y1y2 . . . yj (where 0 ≤ i ≤ m and 0 ≤ j ≤ n) under

this general setting. Then G[0, 0] = 0, G[0, j] = w(0, j) for 1 ≤ j ≤ n, and G[i, 0] = w′(0, i) for
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Agap(X)

1. if X is a small matrix then Agap−loop(X)

else

2. Agap(X11)

3. par : Bgap(X12, X11), Cgap(X21, X11)

4. par : Agap(X12), Agap(X21)

5. Bgap(X22, X21)

6. Cgap(X22, X12)

7. Agap(X22)

Bgap(X, U) //Flexible Function

1. if X is a small matrix then Bgap−loop(X, U)

else

2. par : Bgap(X11, U11), Bgap(X12, U11), Bgap(X21, U21), Bgap(X22, U21)

3. par : Bgap(X11, U12), Bgap(X12, U12), Bgap(X21, U22), Bgap(X22, U22)

Cgap(X, V ) //Flexible Function

1. if X is a small matrix then Cgap−loop(X, V )

else

2. par : Cgap(X11, V11), Cgap(X12, V12), Cgap(X21, V11), Cgap(X22, V12)

3. par : Cgap(X11, V21), Cgap(X12, V22), Cgap(X21, V21), Cgap(X22, V22)

Figure 3.6: Parallel cache-oblivious recursive divide-and-conquer (CORDAC) algo-
rithms for solving the gap problem. For simplicity, we assume n to be a power of
2. Agap( G[1 : n, 1 : n] ) is the initial function call, where G[0 : n, 0 : n] is the

(n+ 1)× (n+ 1) input matrix.

1 ≤ i ≤ m. Otherwise,

G[i, j] = min

 G[i− 1, j − 1] + S(xi, yj),
min0≤q<j { G[i, q] + w(q, j) },
min0≤p<i { G[p, j] + w′(p, i) }

.
In the rest of the discussion, we will assume m = n for simplicity.

The parallel iterative DP algorithm Par-Loop-Gap shown in Figure 3.2 solves the gap problem.

In Figure 3.6 we present a parallel CORDAC algorithm for solving the problem which uses three

recursive functions Agap, Bgap and Cgap. Agap updates a square X based on values inside itself,

Bgap(X, U) updates a square X using values from another square U that lies left to X, and

Cgap(X, U) updates a square X based on another square V that lies bellow X. The iterative

kernels invoked by Bgap and Cgap are asymptotically dominating and flexible (Table 3.1). Table

3.1 shows the span and cache complexity of these algorithms.

Serial Cache Complexity. For f ∈ {A,B,C}, letQf (n) denote the cache complexity of fgap on

sequences of length n when run on a serial machine. Then Qf (n) = O
(
n+ n2/B

)
if n2 ≤ γfM

for some suitable constant γf ∈ (0, 1]. Otherwise, QA(n) = 4QA
(
n
2

)
+ 2QB

(
n
2

)
+ 2QC

(
n
2

)
,

QB(n) = 8QB
(
n
2

)
, and QC(n) = 8QC

(
n
2

)
. Solving, QA(n) = O

(
n3

B
√
M

+ n3

M + n2

B + n
)

.

Span. For f ∈ {A,B,C}, let Tf (n) denote the span of fgap on a sequence of length n. Then

Tf (n) = Θ (1) if n = 1. Otherwise, TA(n) = 3TA
(
n
2

)
+max {TB

(
n
2

)
, TC

(
n
2

)
}+TB

(
n
2

)
+TC

(
n
2

)
+

Θ (1), TB(n) = 2TB
(
n
2

)
+ Θ (1), and TC(n) = 2TC

(
n
2

)
+ Θ (1). Solving, TA(n) = O

(
nlog2 3

)
.
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3.3.4 All Pairs Shortest Path Problem

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each edge (vi, vj) is labeled

by an element l(vi, vj) of some closed semiring (S,⊕,�, 0, 1). For i, j ∈ [1, n] and k ∈ [0, n], let

d(k)[i, j] denote the cost of the smallest cost path from vi to vj with no intermediate vertex higher

than vk. Then d(n)[i, j] is the cost of the shortest path from vi to vj . The following recurrence

computes all d(k)[i, j] for k > 0 assuming d0[i, i] = 1 and d0[i, j] = l(vi, vj) for all i, j ∈ [1, n]:

d(k)[i, j] = d(k−1)[i, j]⊕
(
d(k−1)[i, k]� d(k−1)[k, j]

)
.

Floyd-Warshall’s all pairs shortest path (FW-APSP) algorithm [77, 188] performs computations

over a particular closed semiring (<,min,+,+∞, 0).

Figure 3.2 includes an iterative algorithm (Par-Loops-FW) that computes the entries in d[1 :

n, 1 : n] assuming that each d[i, j] is initialized with the weight of edge (vi, vj). The pseudocode

for the CORDAC algorithm for solving this problem can be found in [50]. Table 3.1 shows that

among the four recursive functions in the CORDAC algorithm, only DFW is flexible which is

also the dominating one.

3.4 Optimizations

In this section, we discuss optimization strategies that we have used to significantly speed up

implementations of the CORDAC algorithms described in Section 3.3.

3.4.1 Hybrid CORDAC

To retain the benefits of both iterative and recursive algorithms, in practice all cache-efficient

algorithms use a hybrid approach where recursive subdivision continues until the problem size

becomes small enough (often called the basecase size) to fit into one of the cache levels (often the

largest private cache), after which a loop-based code is used to perform the computation [195].

The basecase size also needs to be large enough so that the computation done inside the basecase

is able to subsume the overhead of recursion. These hybrid implementations expose optimization

opportunities offered by neither the pure iterative nor the pure recursive implementation. The

basecase kernels enjoy all benefits of loop-based DP (spatial locality, compiler assisted optimiza-

tions, such as, prefetching of required data, automatic vectorization, parallelization, processor

pipelining, ILP, and so on), in addition to the temporal locality achieved by recursive divide

and conquer. Moreover, for DP problems, this hybrid approach generates flexible instances of

recursive functions and basecase kernels, which brings the following additional benefits.

. Asymptotic Improvement in Parallelism: In our two-way divide-and-conquer approach (where,

each dimension of the subtask is half the dimension of its parent task) a flexible recursive func-

tion can update all four quadrants of its output submatrix in parallel as long as it avoids race

conditions by not updating the same quadrant simultaneously from two or more different re-

cursive function calls. Such a function achieves Θ (n) span (i.e., Θ
(
n2
)

parallelism) which is
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the same as that achieved by the cache-oblivious recursive matrix multiplication algorithm [81].

Table 3.1 shows that each of our CORDAC algorithms has, at least, one such flexible function

and such functions are asymptotically dominating in the sense that almost all computations in

the algorithm are performed inside the base cases of those functions. As a result, our CORDAC

algorithms often have asymptotically better parallelism than the original parallel looping code

(see Table 3.1) with or without tiling.

. Highly Optimizable Base Cases: Running loop-based code on small flexible basecases is often

more efficient than running the same code on the original larger input as the former has better

opportunities for vectorization, parallelization (comes from flexibility) and spatial locality (due

to flexible loop reordering and copy-optimization).

For example, although Apar−loop in Figure 3.5 has the same inflexible implementation as Par-

Loop-Parenthesis in Figure 3.2, Cloop is much more flexible and amenable to optimizations

than Aloop. While Bloop is not as optimizable as Cloop, it still can be better optimized than Aloop.

Thus, the recursive decomposition exposes many optimization opportunities over the traditional

looping code. Simply by converting the loop algorithm to a hybrid CORDAC algorithm, we got

around 4− 75× speedup without optimizing it further.

3.4.2 Optimizing Kernel Functions

In addition to compiler-assisted optimizations (e.g., vectorization) we use the following major

optimizations to speed up the iterative kernels of our CORDAC algorithms.

. Copy-optimization: We copy the data into local b × b (b = basecase size) static arrays inside

the kernel, and then read from those local arrays during actual computation. This improves

performance provided the cost of computation is asymptotically higher than the cost of copying.

Copy-optimization improves spatial locality as those copied arrays are allocated in thread-local

stacks, and can be accessed using a stride length of b instead of a stride length of n if originally

read in a column-major order.

Indeed, we only need to copy those matrices that are accessed in non-unit strides. The benefits

of the copy-optimization become even more significant if one of the input matrices is accessed

in column-major order (non-unit stride), and is converted to row-major while copying, so that

it can be accessed in row-major order during the actual computation. Transposing the column-

major accessed matrix during copy-optimization reduces cache-misses further as the converted

local array can be accessed in unit-stride after the conversion. Copy-optimization improves

data locality, vectorization efficiency and helps in reducing conflict misses significantly in set-

associative caching systems. We found that copy-optimization can improve running times over

2×.

. Loop Reordering: Inside flexible kernels it is possible to change the looping order without ham-

pering the correctness of the algorithm which often improves spatial locality and vectorization

efficiency. For example, it is well-known that for matrix multiplication (MM), i-k-j ordering

(cache complexity: Θ
(
n3/B + n2

)
, where B is the cache line size) is typically faster than the

i-j-k ordering (cache complexity: Θ(n3)).

41



Chapter 3. Dynamic Programming using Matrix-multiplication-like Flexible Kernel

We observed the same for MM-like kernels when copy-optimization is not used. However, if

copy-optimization is used inside the kernel to ensure unit stride data access, i-j-k looping order

becomes faster than i-k-j looping order, especially for large n. Hence, we used i-j-k ordering

with copy-optimization.

3.4.3 Data Layout

Laying out data in memory matching the order in which they are accessed during the program

execution can reduce cache misses by leveraging better spatial locality.

fX(X,m, n, ...) (X is a pointer to an m×n matrix stored

in ZM RM layout. In O (1) time we compute pointers

X11, X12, X21 and X22 pointing to the start of the 1st,

2nd, 3rd and 4th quadrants of X, respectively.)

1. c = largest power of 2 < max(m,n)

2. m′ = min(c,m), n′ = min(c, n), m′′ = max(0,m−
c), n′′ = max(0, n− c)

3. X11 = X, X12 = X11 +m′n′, X21 = X12 +m′n′′,

X22 = X21 +m′′n′

Figure 3.7: On-the-fly computations of Z-
Morton-row-major pointers.

For CORDAC algorithms, use of a hybrid Z-

Morton Row-Major (ZM RM) layout is benefi-

cial, because that improves both temporal and

spatial localities. In our experiments, we have

observed that for some values of n (e.g., powers

of 2), use of ZM RM layout instead of simple

row-major layout can speed up a CORDAC al-

gorithm by almost a factor of 2. Furthermore,

use of ZM RM layout reduces set-associativity

conflict misses and capacity misses, if an ap-

propriate basecase size is chosen.

In all algorithms presented in this chapter, we have used this ZM RM layout and found that

use of hybrid ZM RM layout along with copy-optimization can remove the conflict miss problem

almost entirely and gives a consistently better performance.

. Z-Morton for any n: One of the contributions of this work, which is, indeed, a by-product of

our optimization efforts, is the use of a hybrid ZM RM layout that works for any arbitrary m×n
matrix and uses exactly mn space to store mn elements. Although it is very straightforward to

lay out the data in ZM RM when m = n = 2t for some t > 0, we are not aware of any prior work

that uses hybrid ZM RM for any arbitrary m, n while using exactly mn space. Furthermore,

there is no closed form formula that can convert a row-major index to the corresponding ZM RM

index when the dimensions are arbitrary positive integers. There are ways of making Z-Morton

work for any n through padding (see [175]), but padding uses extra space. As shown in the

code snippet in Figure 3.7, to use ZM RM for any m×n, in a two-way CORDAC algorithm, we

first calculate a c such that max (m,n) > c ≥ max (m,n)/2. Next we compute dimensions for

four quadrants as shown in the pseudocode. Then we recursively put m′ × n′ items in the 1st

quadrant (X11), m′ × n′′ items in the 2nd quadrant (X12), m′′ × n′ in the 3rd quadrant (X21),

and remaining m′′ × n′′ items in the 4th quadrant (X22) in ZM RM order. Hence, we do not

need any extra space to hold the data for this kind of recursive ZM RM data layout. From the

size of each quadrant, we figure out the starting pointer of each quadrant (where to read/write

the data) recursively using a CORDAC algorithm. After laying out data in ZM RM layout in

this way, during the actual computation, we use ZM RM pointers and the original row-major

indices to compute desired locations on-the-fly inside the recursive functions, which incurs only

O (1) overhead per recursion level.
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3.4.4 Auto vs. Explicit Vectorization

Figure 3.8: Benefit of explicit vectoriza-
tion over autovectorization for FW-APSP

code.

Often explicit vectorization can lead to signif-

icant speedup over the compiler-assisted auto-

vectorization as compilers cannot always automati-

cally detect all possible vectorization opportunities,

especially for complicated code with pointers. By

explicitly vectorizing, we were able to achieve up

to 5× speedup over the auto-vectorized CORDAC

code (see Figure 3.8 and Table 3.4). Often vectoriz-

ing the basecase of the dominating kernel only (e.g.,

Cloop for the parenthesis problem) is enough to get

the major share of the speedup.

3.4.5 Opportunities for Automation

Our optimization approach for CORDAC algorithms as described above is highly systematic,

and we have observed that they work really well in practice. They are suitable for automation

and perhaps incorporation into a smart compiler specialized for CORDAC.

3.5 Experimental Results

In this section, we demonstrate performance benefits of parallel CORDAC approach compared to

parallel looping and parallel tiled approaches on multicores, manycores (Xeon Phi), and clusters

of multicores.

Table 3.2: System specifications. Intel16E is used for power and energy analyses.

All programs were implemented using C++ with Intel c© CilkTMPlus extension for shared memory

and MPI for distributed memory parallelization. For each DP problem, we implemented four

versions:

. LOOPDP: optimized parallel looping code with padding to mitigate set-associativity problem

at powers of 2.
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. CO: unoptimized parallel CORDAC.

. CO Opt: optimized CORDAC with copy-optimization.

. COZ: CO Opt with ZM RM layout for data storage.

For parenthesis and FW-APSP problems, we further optimized COZ versions with explicit vec-

torization for CPU and Xeon Phi architectures separately. However, unless otherwise stated, no

COZ version incorporates explicit vectorization. We also implemented a hybrid CPU + Xeon

Phi version where we dynamically offload subproblems to the coprocessor (Xeon Phi) if it is idle

and use the CORDAC approach to solve them on the coprocessor.

All versions incorporate compiler-assisted optimizations. We compiled all programs with -O3

-ip -parallel -AVX optimization parameters. We used a basecase size of 64 × 64 for paren-

thesis, gap and protein folding and 128 × 128 for FW-APSP. Machines from the Stampede

Supercomputing Cluster [5] were used to run the experiments and the system specifications can

be found in Table 3.2. We used PAPI-5.2 [4] to collect cache misses and LIKWID [184] for the

energy/power statistics. The energy/power measurements were end-to-end. Metrics shown in

Table 3.3 were used to compare the performance of different algorithms.

Metrics Meaning Expected

UPS Number of Updates Per Second Higher

Strong Scalability
(
T l1/Tp

)
Runtime of LOOPDP on 1 core / Runtime on p cores Higher

Cache-miss ratio Cache-miss of LOOPDP / Cache-miss of CORDAC Higher

Energy profile Energy consumption ratio of LOOPDP vs. CORDAC Higher

Table 3.3: Metrics for performance comparison of different implementations.

3.5.1 Performance on Shared-Memory Machines

Speedup and Scalability on CPU, Xeon Phi and Hybrid Platforms. We ran all programs

on the Intel16 and Xeon Phi Machines with n ≈ 100 to n ≈ 16000 where n× n is size of the DP

table. Table 3.4 summarizes the results. We observed that explicit vectorization contributed up

to 5× speedup over the auto-vectorized code. For parenthesis problem, the explicitly vectorized

COZ runs 278× and hybrid CPU + Xeon Phi version runs 395× faster; for FW-APSP explicitly

vectorized COZ is 24× and CPU + Xeon Phi is 35× faster than LOOPDP when n = 32768.

Overall, the hybrid CPU + Xeon Phi version runs 42−50% faster than the pure vectorized CPU

version when n ≈ 215.

Runtime, Cache Miss, Energy Performance and Scalability. Figures 3.9, 3.10, 3.11 and

3.12 show performance trends for all four problems on Intel16 in terms of UPS, strong scalability,

cache-miss and energy consumption ratios. Clearly, CORDAC algorithms (COZ, CO Opt, CO)

outperform LOOPDP under all these metrics. Overall, COZ algorithms are 1.2−2×, and CO Opt

algorithms are 1.1− 1.8× faster than the corresponding unoptimized CO algorithms.

For all four problems, the UPS curve of the unoptimized CO algorithm has occasional dips due to

set-associativity conflict misses. We were able to avoid those dips in CO Opt and COZ versions

using our optimizations. For the parenthesis and gap problems, we get better speedups w.r.t

LOOPDP than for FW-APSP and Protein Folding. Theoretical bounds listed in Table 3.1 also
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Figure 3.9: Parenthesis problem: (a) Giga updates per second achieved by all algo-
rithms, (b) ratios of total shared and private cache misses, (c) strong scalability with
#cores, p when n is fixed at 8192, and (d) ratios of total joule energy consumed by

Package (PKG), Power Plane 0 (PP0) and DRAM.
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Figure 3.10: Gap problem: (a) Giga updates per second achieved by all algorithms,
(b) ratios of total shared and private cache misses, (c) strong scalability with #cores,
p when n is fixed at 8192, and (d) ratios of total joule energy consumed by Package

(PKG), Power Plane 0 (PP0) and DRAM.
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Figure 3.11: Floyd-Warshall’s all pairs shortest path: (a) Giga updates per second
achieved by all algorithms, (b) ratios of total shared and private cache misses, (c) strong
scalability with #cores, p when n is fixed at 8192, and (d) ratios of total joule energy

consumed by Package (PKG), Power Plane 0 (PP0) and DRAM.

Figure 3.12: Protein Accordion Folding: (a) Giga updates per second achieved by all
algorithms, (b) ratios of total shared and private cache misses, (c) strong scalability
with #cores, p when n is fixed at 8192, and (d) ratios of total joule energy consumed

by Package (PKG), Power Plane 0 (PP0) and DRAM.

46



Chapter 3. Dynamic Programming using Matrix-multiplication-like Flexible Kernel

Table 3.4: A Summary of the experimental results.

support this result. Observe that the serial cache complexity of iterative algorithms of the first

group (parenthesis and gap) is Θ
(
n3
)

and the second group (FW-APSP and PAF) is Θ
(
n3/B

)
.

Similarly, the scalability of LOOPDP for the first group of problems is also better than the

second group.

Figure 3.13: Evidence of better bandwidth
utilization of CODRAC, wrt. the iterative
algorithm (LOOPDP) for the parenthesis/-

matrix chain multiplication problem.

Figures 3.9 (b), 3.10 (b), 3.11 (b) and 3.12 (b) show

that CORDAC algorithms always incur less cache

misses in all levels of caches for n ≥ 1000 which is

one of the main contributor in the reduction of run-

ning times and energy consumptions. Figures 3.9

(c), 3.10 (c), 3.11 (c) and 3.12 (c) show that COR-

DAC algorithms scale almost linearly with number

of cores, whereas the parallel iterative algorithms

sometimes do not. Figures 3.9 (d), 3.10 (d), 3.11

(d) and 3.12 (d) show that, in addition to be faster,

CORDAC algorithms consume 4−19× less energy

in joule for the entire Package (die), PP0 (cores

and their private caches) and DRAM. Fast running

time and cache-efficiency have clear contributions in the energy-efficiency of these CORDAC al-

gorithms.

Bandwidth utilization. Since the recursive divide-and-conquer algorithms presented in this
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Figure 3.14: Speedup w.r.t LOOPDP with
larger input sizes on Intel32 machine.

chapter are cache-efficient, whereas the corre-

sponding LOOPDP algorithms often aren’t, in the-

ory, a LOOPDP algorithm would need to move a

lot of data around for its computations compared

to the corresponding CORDAC algorithm. As a

result, the overall bandwidth utilization of a COR-

DAC algorithm is likely to be better than that of

the corresponding LOOPDP algorithm. Our ex-

perimental results show the same. Figure 3.13

shows that for parenthesis problem, LOOPDP’s

read bandwidth consumption is 32× more, over-

all (read+write) bandwidth utilization per second
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is 20× more and total data volume consumed is around 200× more than that of CORDAC. We

found similar results for other DP problems presented in this chapter as well.

Results on Larger Input Sizes. In Figure 3.14 we show that speedup of the CORDAC

algorithms w.r.t LOOPDP increases with the increase of the number of cores, p and input size,

n. This experiment was performed on Intel32. The speedup numbers on Intel32 are almost 2×
of what we achieved on Intel16 for n ≤ 16K. Seemingly, the LOOPDP algorithms are not able

to get the benefit of increased number of cores to the same extent as the CORDAC algorithms

are able to do. We stopped running Gap problem at n = 25K because the LOOPDP took over

48 hours to finish after that point.

Impact of optimization effort. Figure 3.15 shows impact of various optimizations (i.e., im-

provement w.r.t. LOOPDP) on running time, CPU and DRAM energy consumption for the

parenthesis problem when input size, (n) is 16384 and number of cores (p) is 16. We used

Intel16E for this experiment. In each of the plots, the numbers denote the ratio of perfor-

mance (left: runtime, middle: CPU/package energy, and right: DRAM energy) of an CORDAC

implementation with the given optimization/s vs. the performance of the LOOPDP/iterative

implementation.

Figure 3.15: Parenthesis Problem: Itemized breakdown of how much performance gain
each optimization provides. Here, CO denotes an unoptimized CORDAC algorithm.

Tradeoff Between Runtime and Power Consumption. Since Power = Energy
Time , as running

time increases, power consumption decreases if energy remains constant. However, in general,

Figure 3.16: Power and Runtime Tradeoff. CORDAC has the flexibility to use fewer
number of cores while still running faster but consuming less energy and power than

LOOPDP.
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energy consumption also increases with running time. Energy consumption per computation in-

creases as the number of cores, p decreases, but energy consumption per memory access increases

as p increases. Therefore, the relationship is not linear. To explore the power and runtime trade-

off, we ran the LOOPDP version on p = 16 cores on Intel16E and then varied p from 16 down

to 1 to get the power, runtime and energy values for the COZ version. Figure 3.16 shows the

result. As we decrease p, the power consumption of COZ algorithm decreases (ratio LOOPDP
COZ

increases), while the running time as well as energy consumption increases. On 16 cores, al-

though CORDAC algorithms consume less energy and run 5 − 40× faster than LOOPDP, the

power consumed is approximately the same (ratio is close to 1) for a given input size.

On the other hand, on 2 cores, although CORDAC algorithms consume less energy and power,

they still run faster than LOOPDP. Therefore, if power consumption is a concern, CORDAC

algorithms have the flexibility to run on fewer number of cores, while still running faster than

LOOPDP.

Comparison with Parallel Tiled Codes Generated by Polyhedral Compilers. We

compare our COZ and LOOPDP implementations with parallel tiled codes generated by state-

of-the-art polyhedral compilers, PLuTo [29], PoCC [148] and Polly [95]. Figure 3.17 and 3.18

show a comparison of our implementations with the best result obtained from these compilers.

Clearly, CORDAC algorithms run 3− 30× faster in the given input range. After analyzing the

codes generated by these compilers, we found that for each of these problems, the compilers were

able to parallelize only one of the 3 nested for loops.
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Figure 3.17: FW-APSP: Comparison
with parallel tiled code generated using poly-

hedral compiler PoCC [148].

Hence for FW-APSP, the parallelism and span of

the generated code were worse than our LOOPDP

implementation which had 2 parallel for loops. We

implemented a parallel tiled version for FW-APSP

with 2 nested for loops and the results are compa-

rable to that of LOOPDP. For parenthesis and gap

problems, both our LOOPDP and the polyhedral

compiler generated codes used 1 parallel for loop,

however, the two codes were parallelized differently

in each case. None of the generated tiled codes had

temporal locality. The tiled code generated for the

parenthesis problem does not produce correct re-

sult for all intermediate DP cell values, although

the final cell value was correct. However, removing weight function w(i, k, j) produces correct

values for all intermediate cells. The results reported here includes the weight functions.

3.5.2 Extension to Distributed-Memory Settings

In this section, we describe how to extend a CORDAC algorithm to the shared-distributed-

shared-memory setting which applies to all four of our CORDAC algorithms.

Prior Work. To implement divide-and-conquer algorithms under distributed-memory settings,

both static and dynamic load-balancing strategies have been used. In [169], a pure distributed-

memory algorithm has been implemented for the parenthesis problem, where the rows are evenly
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Figure 3.18: Parenthesis and Gap Problems: Comparison with parallel tiled code
generated using polyhedral compilers - PLuTo [29], PoCC [148] and Polly [95].

distributed among the processes each of which uses a CORDAC algorithm to solve the subprob-

lem assigned to it. Dynamic load-balancing approaches map the recursive division part to the

available MPI processes, and then use a shared-memory algorithm inside each process when no

more process is left to take the responsibility of a division. In [152] this approach has been used

for mergesort algorithm, and the authors concluded that in general, a shared-memory algorithm

provides better performance than distributed or distributed-shared-memory algorithms while

using the same number of cores.

Although this approach can be used for our CORDAC algorithms, it is likely to be more com-

plicated than mergesort due to the nested nature of multiple recursive functions, since we may

need to devise different algorithms for each of the A, B, C and D functions.

Our Approach In this research work, we propose a novel shared-distributed-shared-memory

(SDSM) framework for our CORDAC algorithms which performs dynamic load-balancing on a

cluster of multicores without any change in the basic CORDAC structure. We use hierarchi-

cal dynamic load-balancing and work-stealing to balance the load among the processes. The

pseudocode of this algorithm is shown in Figure 3.19. In this approach, the available processes

are arranged in a multi-level hierarchy of masters and workers with all non-master pure workers

placed as leaves. We describe a 3-level hierarchy below.

If we have K processes, we use one of them as a super-master, some M ′ of them as masters and

the rest as workers. The super-master, masters and workers run multithreaded codes on p cores.

The master processes work as workers for the super-master. In the super-master and master

processes, 1 out of p threads is used as a dispatcher which dispatches work dynamically to the

available free workers and also collects the results back from the workers.

Each super-master and master process maintains a shared job queue that can be accessed exclu-

sively by all threads in it. If a thread is about to run a function (e.g., C) on input size x, where

min offload threshold ≤ x ≤ max offload threshold, the thread tries to lock the job queue and

in case of a successful locking, it puts at most l − 1 out of its l parallelly executable recursive

sub-divisions in the job queue and works on the rest while waiting for the results of the offloaded

parts to come back. If a thread finishes before all its submitted jobs in the queue are processed,

it steals back its latest submitted jobs left in the job queue in the current recursion level (if

available) and works on the stolen part using the original SDSM algorithm as before. If a thread

is unable to submit a job (because another thread is holding the lock or the job queue is full),
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it will simply go ahead and divide the job even further and try again to access the job queue in

the next recursion level.

A worker process, on the other hand, waits for jobs from its master, and if it gets one, it solves

that using the shared-memory parallel CORDAC approach and returns the result back after it

is done. Figure 3.19 gives a pseudocode for this algorithm.

Figure 3.19: Shared-Distributed-Shared-Memory (SDSM) framework for recursive
divide-and-conquer algorithm with dynamic load-balancing on a cluster of multicores.

Distribution using Cannon’s/Fox’s Algorithms. One may argue that the dynamic distri-

bution is not scalable for distributed settings. We show that dynamic distribution works pretty

well for these algorithms since the overall communication complexity is asymptotically lower

than the computational complexity. Nevertheless, it is possible to adapt the popular Cannon’s

[34] or Fox’s [79] algorithms for matrix multiplication that have linear scalability and unit effi-

ciency for job distribution, if the flexible kernel looks MM-like (i.e., two input matrices and one

output matrix) which is indeed the case for most of our dominating flexible kernels.
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Figure 3.20: Parenthesis Problem: (a) Scalability of shared-distributed-shared-
memory algorithm (offloading functions C and B). (b) Performance comparison of dif-

ferent work distribution techniques (offloading C only).

To distribute using Cannon’s/Fox’s method, one thread of the master process first locks all

worker processes, and then uses the Cannon’s/Fox’s algorithm to distribute the work evenly

among the processes. Once that thread of the master process gets the results back, it frees the

lock and the workers become available for use by any thread.
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3.5.3 Shared-Distributed-Shared-Memory Results

We implemented our SDSM algorithm for the parenthesis problem. Figure 3.20(a) shows strong

scalability (T1/Tp, where Tp = running time on p cores and T1 = running time of CORDAC on 1

core) of our SDSM algorithm for the parenthesis problem where we allowed offloading of functions

B and C. Function A was executed entirely on the super-master. Offloading B in addition to

C improves performance by 20%. For this experiment, we fixed n at 41K and allowed offloading

of problems with a size in the range of 256 − 2048. We found that the scalability was almost

linear till p = 64 cores, and overall the algorithm scaled well till 1024 cores. As we increased the

number of cores, the average percentage of idle time as well as communication time increased

suggesting that there was not enough work to keep all cores busy all the time (at each recursion

level).

In Figure 3.20(b) we compare the performance of 3 different work-distribution strategies (SDSM,

Fox’s and Cannon’s) for distributing work in Cpar(X,U, V ). For this version of SDSM, we only

allowed distribution of function C since function B is not MM-like and cannot be distributed

using Cannons/Fox’s algorithms. We found that SDSM performs better than the other two

approaches even though it uses a hierarchical dynamic load-balancing strategy.

3.5.4 Communication Complexity

Computing precise communication complexity of our SDSM algorithm is quite involved because

of the dynamic load-balancing and interactions with Cilk’s randomized work-stealing scheduler.

However, deriving an upper bound is fairly straightforward. Table 3.1 shows that each prob-

lem generates O
(
(n/b)3

)
subproblems of size b × b each. If we only solve subproblems of size

(2s) × (2s) where q ≤ s ≤ r on worker processes, communication complexity will be upper-

bounded by O
(∑

q≤s≤r ((n/2s)3)× (2s)2
)

= O(n3/2q). For example, we used 2q = Ω(
√
n) in

our experiments which led to an O(n2.5) bound. Since the master process holds the entire DP

table, the same bound holds for our approach based on Cannon’s MM algorithm.

3.6 Conclusions

In this research, we show that there is a class of dynamic programming problems that reduces to

MM-like flexible recursive functions and highly optimizable flexible kernels when decomposed

using recursive divide and conquer. We present high-performance cache-oblivious recursive

divide-and-conquer parallel algorithms for four such problems with important applications in

bioinformatics. We show that optimizing the dominating flexible functions/kernels properly is

enough to get a significant performance boost for these problems. We also discuss some general

optimization strategies that work well for all our recursive dynamic programming algorithms

in practice. Our implementations following these optimization strategies achieve more than

5−150× speedup over the corresponding standard parallel and optimized loop-based algorithms

on modern multicores and manycores. We also show simple extensions of these algorithms to a

shared-distributed-shared setting which also demonstrates the versatility and portability of the

cache-oblivious recursive divide-and-conquer approach.
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Our recent work shows that it is also possible to automatically generate recursive divide-and-

conquer (i.e., CORDAC) algorithms for this class of DP problems. However, it is still an open

problem to generate CORDAC algorithms for more non-trivial problems. Building a special-

ized CORDAC compiler that can automatically optimize CORDAC algorithms is an interesting

research direction to pursue. The shared-distributed-shared-memory algorithm presented for

CORDAC algorithms is processor-aware. Designing a generic processor-oblivious distributed-

shared memory algorithm for this class of DP problems is interesting.
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Chapter 4

Cache-adaptivity, Bandwidth

Benefit and Robustness of

Recursive Divide and Conquer

4.1 Abstract

In Chapter 3 we have shown that cache-oblivious recursive divide-and-conquer (CORDAC) algo-

rithms for solving a class of dynamic programming (DP) problems are high-performing in terms

of running time, scalability, energy-efficiency and bandwidth performance on multicores, many-

cores, hybrid multicores+manycores and clusters of multicores. However, all those performance

analyses were conducted assuming an execution environment where only one program runs at a

time on the entire system, which is often the case for standard production runs. Nevertheless,

there are cases where we need to run programs in a multiprogramming environment such as

our laptops, smart phones, many web servers and clouds. An interesting question to ask is how

the performance of a program is affected by other concurrently running programs sharing the

same system resources? In this chapter, we show that our CORDAC algorithms are more robust

and adaptive to dynamic fluctuations in shared resources (e.g., cache-space, bandwidth, etc.)

in a shared-memory multiprogramming environment compared to their tiled-loop and standard

iterative counterparts.

Adaptivity with respect to a particular shared resource means, a program will run as fast as any

other program solving the same problem, given a particular resource profile (e.g., size). Robust-

ness means if a shared resource fluctuates, a program’s performance (time, cache-miss, energy

consumption) will be relatively more stable than other programs under the same fluctuation.

The performance stability is measured by computing the performance degradation due to fluc-

tuations in resource profile, considering performance with no fluctuation in the total resource

capacity as a baseline. Performance of an adaptive and robust algorithm is more predictable

making such algorithms more desirable in a multiprogramming or multi-user environment such
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as the standard operating system, database systems and compute platforms that support mul-

tiple VMs (e.g., cloud). To the best of our knowledge, we present the first empirical results on

cache-adaptivity.

4.2 Introduction

In a multiprogramming environment multiple programs run concurrently, sharing common re-

sources (e.g., bandwidth, L3 cache space). Typical examples of multiprogramming environments

include standard operating systems, OS of smart phones/tablets that allow multiple apps to run

concurrently, virtual machine platforms, cloud and database management systems that allow

multiple queries to be processed concurrently. In a multiprogramming environment, a program

running concurrently with other programs is likely to impact the performance of other programs

by kicking out cached data and/or by using a portion of overall system’s bandwidth. Therefore,

performance in such an execution environment is less predictable.

Having algorithm whose performance remains relatively stable in a multiprogramming environ-

ment is useful. We call such algorithms robust algorithms. Robustness means the ability of an

algorithm to continue operating despite abnormalities. An algorithm is cache-adaptive if the pro-

gram runs as fast as any other program solving the same problem, if some portion of the cache

space is taken away. In this research, we show that parallel cache-oblivious recursive divide-

and-conquer algorithms for solving a class of dynamic programming problems are more robust,

cache-adaptive, energy-efficient and have better bandwidth utilization than their corresponding

tiled-loop and iterative implementations.

Dynamic Programming (DP) algorithms are typically implemented using iterative loops. How-

ever, iterative implementations of DP algorithms are in general cache-inefficient, and also inflex-

ible in the sense that the loops often cannot be suitably reordered to improve spatial or temporal

cache locality and parallelism, while maintaining the correctness of the algorithm. Using tiled- or

blocked-loop approach, it is often possible to improve spatial and/or temporal cache locality and

parallelism which often leads to better performance compared to the straightforward iterative

implementations. However, a tiled-loop approach is cache-aware and the same blocking does

not work well on all machines. Blocking efficiently for different cache levels is also complicated

on modern multicores with hierarchical caches. The tiled-loop approach lacks portability due

to its cache-awareness. A more portable and efficient way to implement DP algorithms is to

use a cache-oblivious recursive divide-and-conquer (CORDAC) technique which often achieves

optimal cache-performance without sacrificing portability by being cache-oblivious.

Cache-oblivious recursive divide and conquer is an algorithmic technique that divides the problem

into manageable pieces recursively until it reaches a basecase size large enough to amortize the

cost of recursion. After that, it solves those small problems and then combines those solutions

to get the solution for the original problem. An algorithm is cache-oblivious if it does not use

knowledge of cache-parameters in the algorithm description. For example, standard iterative

and CORDAC algorithms for DP problems are cache-oblivious. An algorithm is cache-aware if

it uses knowledge of cache-parameters (e.g, block size of a cache) in the algorithm description.

In general, a tiled-loop algorithm is cache-aware since it uses the cache-block sizes to block the

loops.
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Figure 4.1 shows code snippets for iterative, tiled-loop and CORDAC algorithms for the Longest

Common Subsequence (LCS) problem. In this figure, the iterative code does not use any cache

Figure 4.1: Code snippet for Tiled, CORDAC and Iterative algorithms.

parameter. The tile size in the tiled-loop algorithm is chosen in such a way that all the input

and output sub-matrices to compute values for a tile fit into the desired level of cache. On the

other hand, the base parameter in the CORDAC algorithm is chosen in such a way that the cost

of computation inside the basecase becomes large enough to subsume the overhead of recursion.

Contributions. The relationships between i) cache-misses and energy-consumption; ii) cache-

obliviousness, cache-optimality, and cache-adaptivity; and iii) cache-efficiency and bandwidth-

utilization of different algorithmic options (iterative, tiled-loop and CORDAC) for solving DP

problems are not yet known. Understanding these relationships is very important in deciding

which algorithm to use in practice. It has been shown in theory for a few recursive divide-and-

conquer algorithms that they are cache-adaptive [21]. However, no empirical result has been

shown yet. To the best of our knowledge, we present the first empirical results to unravel some

of those relationships in a multiprogramming setting by demonstrating adaptivity and robustness

of recursive divide-and-conquer algorithms.

4.3 Adaptivity and Robustness

We consider an algorithm, A to be more robust than another algorithm, B for solving the same

problem if A’s performance (runtime, cache miss, energy, bandwidth, etc.) is less degraded

in a multiprogramming environment compared to B. We show that CORDAC algorithms for

solving dynamic programming problems are more robust compared to the corresponding tiled-

loop implementations auto-generated from the state-of-the-art polyhedral compilers Pluto [29],

Pocc [148], and Polly [95] in a shared-memory multiprogramming environment. In such an

environment when different independent processes fight for the shared cache-space, a CORDAC

implementation is more likely to adapt to less cache-space than a tiled implementation which is

tiled for a particular tile size and works iteratively inside a tile. As other programs start to kick

out cache blocks being used by a tiled implementation, it can not adapt to the loss of cached

data efficiently. As a result, its performance is likely to get hampered noticeably. On the other

hand, a CORDAC implementation works recursively and keeps working on the same recursive

portion until it is completely done with that portion before moving to other parts of the matrix.
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In recursion, the implementation only goes deeper into that portion and even if its least recently

used data is kicked out from the cache by the LRU cache replacement policy, it will still have the

required portion of the data that it has already brought into the cache. Since data is accessed in

a recursive fashion, even if a bigger block is kicked out from an upper level of cache, a recursive

smaller block of data will be available in a lower cache which it can still utilize fully during

computation. Therefore, performance will be less hampered. Although the iterative code is

cache-oblivious, it is cache-inefficient (no temporal locality). Because of that it incurs orders of

magnitude more cache misses than a cache-efficient implementation (e.g., CORDAC). Although

its cache miss does not increase that much with the reduction in cache space, an iterative

implementation saturates the bandwidth very quickly due to its cache-inefficiency, which slows

it down a lot.

4.4 Experimental Results

In this section we mainly focus on the CORDAC algorithms for the parenthesis, gap and Floyd-

Warshall’s all pairs shortest paths (APSP) problems from Chapter 3. For each of these problems,

we show performance degradation of CORDAC, tiled and iterative implementations when multi-

ple program instances run simultaneously compared to when they run alone (without any other

programs running in the system). Figure 4.2a shows that the cache-oblivious recursive-divide-

and-conquer algorithms for the parenthesis, gap, and Floyd-Warshall’s APSP problems signifi-

cantly outperform their iterative counterparts when run on a 16 core Intel Xeon machine with no

other program running except the program being timed. Figure 4.2b shows that CORDAC for

parenthesis problem outperforms tiled-loop version generated using state-of-the-art polyhedral

compilers PLuTo [29], PoCC [148] and Polly [95]. The tile size was optimized for 16 core run.

Please review Chapter 3 for more results.

(a) (b)

Figure 4.2: (A) Rates of updates performed by multithreaded iterative and recursive
(CORDAC) algorithms for the parenthesis problem, Floyd-Warshall’s APSP [50], and
the Gap problem [39] on 213 × 213 integer matrices, as the number of processing cores
varies. (B) Rates of updates performed by multithreaded iterative, recursive and tiled-
loop code generated by PLuTo [29] for the parenthesis problem as the matrix dimension
varies. The Optimized-Tiled-loop is a hand-optimized version of the tiled code auto-

generated by PLuTo.
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Next we show how the performance changes in a multiprogramming environment. We always use

a less optimized version of the CORDAC implementations (CO Opt without hand-optimizing

the basecases from Chapter 3) for the results presented in this section.

Experimental setup. We used a dual-socket machine with 8-cores per socket (2×8 = 16-cores

total) and 2 GHz Intel Sandy Bridge processors with 32 GB RAM to conduct all experiments

presented in this section. Each core was connected to a 32 KB private L1 and a 256 KB private

L2 cache. All cores in a socket shared a 20 MB 10-way L3 cache.

We used C++ with Intel R©Cilk
TM

Plus extension to implement all algorithms and compiled

with icc v13.0 compiler. All programs were compiled with -O3 -ip -parallel -AVX -xhost

optimization parameters. We used PAPI 5.2 [4] to count cache misses, and LIKWID [184] for

energy and bandwidth measurements. Energy and bandwidth measurements were end-to-end

capturing everything from the start to the end of the program.

4.4.1 Robustness

We performed the following experiment to show how the performance of a program (CORDAC,

iterative and tiled code) changes if multiple copies of the same program are run on the same

CPU. We ran up to 4 instances of the same program on an 8-core Sandy Bridge processor with 2

threads (i.e., cores) per program/instance/process. The block size of the tiled code was optimized

for best performance with 2 threads.

Parenthesis Problem. Figure 4.3 shows that with 4 concurrent processes iterative imple-

mentation slowed down by 82% and tiled code by 46%, but CORDAC implementation lost only

16% of its performance. The slowdown of tiled code resulted from its inability to adapt to the

loss in the shared cache space (L3 misses increased by > 5×), whereas L3 misses incurred by

CORDAC implementation increased by less than 2.5×. Since the iterative implementation does

not have any temporal locality, loss of cache space did not significantly change its L3 misses.

However, iterative implementation already incurred 90× more L3 misses than CORDAC imple-

mentation, and with 4 such concurrent processes the burden on the DRAM bandwidth increased

considerably (1126 GB total whereas for tiled-loop it was 190 GB and for CORDAC it was only

14 GB) causing significant slowdown of the program.

Figure 4.3 also demonstrates changes in energy consumption of each process as the number of

concurrent processes increases. Energy values were measured using likwid-perfctr (included

in LIKWID) which reads them from the MSR registers. Three types of energy were measured:

package energy (PKG), which is the energy consumed by the entire processor die, PP0 energy,

which is the energy consumed by all cores and their private caches, and DRAM energy, which is

the energy consumed by the directly-attached DRAM. We omitted PP0 energy plots because

they almost always follow the same pattern as the package energy. A single instance of tiled

code consumed 39% more package energy than a CORDAC program instance while iterative

implementation consumed 14× more energy. Average package and PP0 energy consumed by the

tiled code increased at a faster rate than that by the CORDAC implementation as the number of

processes increased. This happened because both its running time and L3 performance degraded

faster than the CORDAC implementation, both of which contributed to the faster increase in
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Figure 4.3: The plots show how the performances of standard iterative, tiled-loop and
recursive codes for solving the parenthesis problem (for n = 213) are affected when mul-
tiple instances of the same program are run on an 8-core Intel Sandy Bridge processor

with 20MB shared L3 cache.

energy consumption. However, since for iterative implementation L3 misses did not change

much with the increase in the number of processes, its package energy consumption increased at

a slower rate compared to that of tiled.

Floyd-Warshall’s APSP. Figure 4.4 shows the robustness of CORDAC compared to itera-

tive and tiled-loop implementations for Floyd-Warshall’s APSP. The auto-generated tiled-loop

code by PLuTo [29] had only one parallel loop with no temporal locality. Therefore, we wrote

our own tiled version that had two parallel loops for these experiments. However, this tiled

implementation also did not have any temporal locality. In fact, it is non-trivial to generate

efficient tiled code with temporal locality for FW-APSP.

For FW-APSP, with 4 concurrent processes both iterative and tiled implementations slowed

down by over 3×, but CORDAC implementation lost only 16% of its performance. L3 misses

incurred by CORDAC implementation increased by less than a factor of 3. However, since tiled-

loop and iterative implementations do not have any temporal locality, loss of cache space did
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not significantly change the number of L3 misses they incurred. The iterative implementation

incurred 780× and tiled-loop incurred 176× more L3 misses than CORDAC implementation, and

with 4 such concurrent processes the burden on the DRAM bandwidth increased considerably

causing significant slowdown of these two programs. Bandwidth consumed per second increased

by 36× for both iterative and tiled implementations, whereas for CORDAC implementation

the increase was 16× with 4 concurrent processes. Total data volume consumed by iterative

implementation was 182 GB, for tiled-loop it was 76 GB and for CORDAC, the required data

volume was only 14 GB.

Figure 4.4: The plots show how the performances of standard-iterative, tiled-loop and
recursive codes for solving the Floyd-Warshall APSP problem (for n = 212) are affected
as multiple instances of the same program are run on an 8-core Intel Sandy Bridge

processor with 20MB shared L3 cache.

Gap Problem. For the Gap problem (see Figure 4.5) with 4 concurrent processes, the it-

erative implementation slowed down by 1.4×, tiled code slowed down by 1.5×, and CORDAC

implementation lost 16% of its performance. L3 misses for tiled code increased by a factor of

140. On the other hand, L3 misses for CORDAC implementation increased by a factor of 2.

Since iterative implementation does not have any temporal locality, loss of cache space did not
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significantly change the number of L3 misses it incurred. The package energy for tiled code

increased by 1.67×, for iterative by 2.22×, and for CORDAC by 1.69×. DRAM energy of COR-

DAC increased by 7%, whereas for tiled it increased by 12%, although the actual DRAM energy

consumption of tiled-loop was already 2× more than the CORDAC implementation. DRAM

energy of iterative implementation increased by 42%. The memory bandwidth requirement per

second increased by 37× for the tiled-loop implementation, whereas for CORDAC and iterative,

they increased by 21×. Total data volume (for all 4 instances) transferred by iterative was 2000

GB with 4 concurrent processes, for tiled-loop it was 22 GB, whereas, for CORDAC, it was 15

GB.

Figure 4.5: The plots show how the performances of standard iterative, tiled-loop
and recursive codes for solving the Gap problem (for n = 213) are affected as multiple
instances of the same program are run on an 8-core Intel Sandy Bridge processor with

20MB shared L3 cache.

All these results show how robust and adaptive CORDAC algorithms are compared to the tiled
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and iterative algorithms. Therefore, we can conclude that overall degradation in performance in

response to dynamic fluctuations of resources is the least in CORDAC, making them the most

preferable choice in a multiprogramming environment.

4.4.2 Cache-adaptivity

We performed another set of experiments to measure cache-adaptivity of CORDAC and the

corresponding tiled implementations. For that we measured the effect on the running times and

L3 cache misses of serial CORDAC and tiled code1 when the available shared L3 cache space is

reduced. The Cache Pirate tool [1, 70] was used to steal cache space2.

Figure 4.6: The plots show how changes in the available shared L3 cache space affect
the serial running time and the number of L3 cache misses of tiled-loop and recursive
(CORDAC) algorithms for solving the parenthesis problem when n = 213. The code
under test was run on a single core of an 8-core Intel Sandy Bridge processor with 20MB
shared L3 cache. A multithreaded Cache Pirate [1, 70] was run on the remaining 7

cores to steal L3 cache space.

Figure 4.6 shows that when the available cache space was reduced to 50%, the number of L3

misses incurred by the tiled code increased by a factor of 22, but for CORDAC, the increase

was only 17%. As a result, the tiled code slowed down by almost 50% while for CORDAC the

slowdown was less than 3%. Thus CORDAC automatically adapts to cache sharing [21], but the

tiled code does not.

4.5 Conclusion

We show that the benefits of cache-oblivious recursive divide-and-conquer algorithms are two-

fold: they are high-performing, and their performances remain relatively stable (robustness

property) in a multiprogramming environment. Based on the adaptivity and robustness results

of CORDAC algorithms, we can hope that these recursive divide-and-conquer algorithms are

going to be the most preferable choice for implementing DP algorithms in near future instead of

the current trends of using tiled-loop or iterative algorithms, especially in a multiprogramming

environment, such as the standard and mobile OS, database, virtual machine systems and cloud

settings. Even in case of a single programming environment (where only one program runs

1with tile size optimized for best serial performance
2Cache Pirate allows only a single (serial) program to run, and does not reduce bandwidth.
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at a time), if the OS is allowed to dynamically change resources (such as turning on power

boost, turning off cores and caches to save energy, or migrate threads or even data), CORDAC

algorithms should be a better choice due to their robustness and adaptivity.

Questions that still need to be answered about adaptivity and performance tradeoff are: a) how

the cache-adaptivity changes based on overall parallelism, space usage and cache-complexity of a

program? b) what are the relationships among energy consumption, cache-miss, bandwidth and

running time? Can they be represented as simple equations? One way to answer these questions

is to conduct rigorous experiments, and then use the results to conduct statistical analyses to

find those relationships. However, results of such analyses are going to be biased toward the

machines and parallel platforms being used. Nevertheless, we want to have answers for these

questions in future.
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Chapter 5

Provably Efficient Scheduling of

Cache-Oblivious Recursive

Wavefront Algorithms

5.1 Abstract

In the previous chapters we have shown that cache-oblivious recursive divide-and-conquer (COR-

DAC) algorithms for solving dynamic programming (DP) problems are high-performing in a

single programming environment (i.e., an execution environment where only one program is run

at a time on the entire system), and their performance also remain relatively stable, robust and

adaptive in a multiprogramming environment (i.e., where multiple programs run concurrently

and share system’s resources). In this chapter, we show that it is possible to improve parallelism

of those CORDAC algorithms even further without loosing their cache-optimality, by trans-

forming them to cache-oblivious wavefront algorithms. Our results demonstrate that CORDAC

algorithms are not only high-performing on today’s state-of-the-art (multicore) architectures,

but also, can be made high-performing on future architectures with many more cores.

Iterative wavefront algorithms for evaluating dynamic programming recurrences exploit optimal

parallelism but show poor cache performance. Tiled-loop wavefront algorithms can achieve opti-

mal cache performance and high parallelism but are cache-aware and hence are not portable and

not cache-adaptive. On the other hand, standard CORDAC algorithms have optimal serial cache

complexity but often have low parallelism due to artificial dependencies among subtasks intro-

duced by the recursive structure of the algorithm. Very recently we introduced cache-oblivious

recursive wavefront (COW) algorithms that do not have any artificial dependencies, but are

too complicated to develop, analyze, implement and generalize. Good theoretical performance

guarantees of those COW algorithms often do not translate into good practical performance due

to high overhead in implementation.
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In this work1, we show how to systematically transform standard cache-oblivious recursive divide-

and-conquer algorithms into recursive wavefront algorithms (i.e., CORDAC to COW) to achieve

optimal parallel cache complexity and high parallelism with negligible implementation overhead.

We use closed-form formulas to compute at what time each divide-and-conquer function must be

launched in order to achieve high parallelism without losing cache performance. The resulting

implementations are arguably much simpler than implementations of known COW algorithms.

We present theoretical analyses and experimental performance and scalability results showing

the superiority of these new algorithms over the existing ones.

5.2 Introduction

Dynamic programming (DP) is a popular algorithm design technique to solve optimization prob-

lems that exhibit the overlapping subproblems and optimal substructure properties. The process

involves dividing a problem into smaller subproblems, solving them, storing their results in a DP

table to avoid recomputations, and combining those solutions. DP is used in many real-world

application areas, and extensively in computational biology [16, 67, 97, 189]. This motivates us

to develop a general framework for high-performance and scalable algorithms to solve many DP

problems.

For good performance on a modern multicore machine with a cache hierarchy, algorithms must

have ample parallelism and should be able to use the caches efficiently at the same time. Iterative

wavefront algorithms for solving DP problems have optimal parallelism but often suffer due to

bad cache performance. On the other hand, though standard cache-oblivious [81] recursive

divide-and-conquer (CORDAC) DP algorithms have optimal serial cache complexity, they often

have non-optimal parallelism. The tiled-loop wavefront algorithms achieve optimality in cache

complexity and can achieve high parallelism but are cache-aware, and hence are not portable and

do not adapt well when available cache space fluctuates during execution in a multiprogramming

environment (see Chapter 4)). Very recently, the cache-oblivious wavefront algorithms have

been proposed that have optimal parallelism and optimal serial cache complexity, but no bound

on parallel cache complexity has been proved [173]. Those algorithms are also very difficult

to implement and analyze since they require hacking into a parallel runtime system and use

atomic locks. Extensive use of atomic locks causes too much overhead for very large and higher

dimensional DPs.

In this chapter, we present a provably efficient method for scheduling cache-oblivious recursive

divide-and-conquer wavefront algorithms on a multicore machine which optimizes parallel cache

complexity and achieves high (near optimal) parallelism. Our algorithms are also arguably

simpler to implement and analyze.

Performance of a parallel program on multicores. We analyze the performance of a

parallel program run on a shared-memory multicore machine using the work-span model [56]. The

work of a multithreaded program, denoted by T1(n), where n is the input parameter, is the total

number of CPU operations performed when run on a single processor2. The span (a.k.a. critical-

path length or depth), denoted by T∞(n), is the maximum number of operations performed on

1Jesmin Jahan Tithi and Pramod Ganapathi are equal contributors in this work.
2unless specified otherwise, we will use “processor” and “processing core” synonymously
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any processor when the program is run on an infinite number of processors. The parallel running

time Tp(n) of a program when scheduled by a greedy scheduler [30] on p processors is given by

Tp(n) = O
(
T1(n)
p + T∞(n)

)
. The parallelism, computed by the ratio of T1(n) and T∞(n), is the

average amount of work done per step of the critical path.

Cache complexity is a performance metric that counts number of block transfers (or cache misses

or I/O transfers or page faults) triggered by a program between adjacent levels of caches in a

memory hierarchy. By Qp we denote the total number of cache misses on a p-processor machine.

So Q1 is the serial cache complexity. We say that an algorithm has spatial locality provided each

cache block it brings into a cache contains as much useful data as possible. We say that it has

temporal locality provided it performs as much useful work as possible on each cache block it

brings into a cache before the block gets evicted from the cache.

Iterative algorithms. Traditionally, DP algorithms are implemented using a series of (nested)

loops and they can be parallelized easily. These algorithms often have good spatial locality,

no temporal locality, and standard implementations may not have optimal parallelism as well.

For example, an iterative algorithm for the parenthesis problem (explained in Section 5.3) has

T∞(n) = Θ
(
n2
)

and Q1(n) = Θ
(
n3
)
.

Iterative algorithms are also implemented as tiled loops, in which case the entire DP table

is blocked or tiled and the tiles are executed iteratively. For example, for a tiled iterative

algorithm for the parenthesis problem with r × r tile size, where r ∈ [2, n], we have T∞(n) =

Θ
(
(n/r)2

)
·Θ
(
r2
)

= Θ
(
n2
)
, and Q1(n, r) = (n/r)3 · O

(
r2/B + r

)
= O

(
n3/(rB) + n3/r2

)
.

Fastest iterative DP implementations have the following wavefront-like property. Let a single

update on a cell x in the DP table needs to be done by reading from the cells 〈y1, y2, . . . , ys〉.
When the cells y1, y2, . . . , ys are completely updated, then the cell x can immediately get up-

dated, either partially or fully. For example, for the parenthesis problem, the fastest iterative

wavefront algorithm has a span T∞(n) = Θ (n log n), but the worst possible cache complexity

Q1(n) = O
(
n3
)
.

Recursive algorithms. Cache-oblivious recursive divide-and-conquer (CORDAC) parallel DP

algorithms can overcome many of the limitations of their iterative counterparts. While iterative

algorithms often have poor or no temporal locality, recursive algorithms have excellent and often

optimal temporal locality. One problem with recursive divide-and-conquer algorithms is that

they trade off parallelism for cache optimality, and thus may end up with suboptimal parallelism.

For example, a 2-way CORDAC algorithm (where, each dimension of the subtask will be half

the dimension of its parent task) for the parenthesis problem has T∞(n) = Θ
(
nlog2 3

)
and

Q1(n) = Θ
(
n3/(B

√
M)
)

, that is, it has optimal serial cache complexity but non-optimal span.

For n-way CORDAC algorithm, T∞(n) = Θ (n log n) and Q1(n) = O
(
n3
)
. This time, the al-

gorithm has optimal span but worse serial cache complexity. Ideally we want to have a balance

between cache complexity and span by choosing r-way CORDAC algorithm in which case both

the span and the parallel cache complexity will be non-optimal, however will have best practical
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performance.

Source of suboptimal parallelism in recursive algorithms. The suboptimal parallelism

in 2-way CORDAC algorithms results from artificial dependencies among subproblems that are

not implied by the underlying DP recurrence [173]. A 2-way CORDAC algorithm for the LCS

problem splits the DP table X into four equal quadrants: X11 (top-left), X12 (top-right), X21

(bottom-left), and X22 (bottom-right). It then recursively computes the quadrants in the fol-

lowing order: X11 first, then X12 and X21 in parallel, and finally X22. As per the recursive

structure, the top-left quadrant of X12 and X21 i.e., X12,11 and X21,11, respectively, can only

start executing when the execution of the bottom-right quadrant of X11 i.e., X11,22 completes.

This dependency between subproblems or subtasks is not defined by the underlying DP recur-

rence but defined by the recursive structure of the algorithm. Such dependencies in a recursive

algorithm are called artificial dependencies. There are artificial dependencies at several different

granularities. Most often, these artificial dependencies asymptotically increase the span thereby

reduce parallelism.

Recursive wavefront algorithms. By removing artificial dependencies from the recursive

(CORDAC) algorithms, it is possible to develop algorithms that simultaneously achieve parallel

cache-optimality, near-optimal parallelism, and cache-obliviousness. Such algorithms are called

recursive wavefront (or cache-oblivious wavefront) algorithms.

We introduced recursive wavefront algorithms in [173]. However, those algorithms (also called

COW algorithms) are too complicated to develop, analyze, implement, and generalize. Atomic

instructions were used extensively to identify and launch ready tasks, and implementations

required hacking into CilkTM’s runtime system. No bounds on parallel cache complexities of

those algorithms are known.

In this chapter, we present a generic method to schedule recursive wavefront algorithms based on

timing functions. These algorithms have a structure similar to the standard recursive divide-and-

conquer (CORDAC) algorithms, but each recursive function call is annotated with start-time

and end-time hints that are passed to the scheduler. The task scheduler will make sure that the

algorithms are executed in a wavefront fashion using the timing functions. Indeed, the transfor-

mation the scheduler is expected to do based on the timing functions is straightforward, and a

programmer may choose to do that herself and use a scheduler that do not accept hints (e.g.,

cilk’s work-stealing scheduler). The transformed code is still purely based on fork-join paral-

lelism, and the performance bounds (e.g., parallel running time and parallel cache complexity)

guaranteed by any scheduler supporting fork-join parallelism apply. The recursive wavefront

algorithm for the parenthesis problem has T∞(n) = Θ (n log n) and Q1(n) = O
(
n3/(B

√
M)
)

.

The bounds on Tp and Qp can be obtained from the scheduler guarantees.

Related work. The tiled-loop algorithms [60, 90, 142, 154, 157, 191] have been studied exten-

sively as tiling is the traditional way of implementing dynamic programming and other matrix

algorithms. There are several frameworks to automatically produce tiled codes such as PLuTo

[29], Polly [95], and PoCC [148]. However, these softwares are not designed to generate correct

parallel tiled code for non-trivial DP recurrences. The major concerns with tiled programs are
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that they are cache-aware and sometimes processor-aware that sacrifices portability across ma-

chines. Another disadvantage of being cache-aware is that the algorithms are not cache-adaptive

[21], i.e., the algorithms do not adapt to changes in available cache/memory space during exe-

cution and hence may run slower when multiple programs run concurrently in a shared-memory

environment [14] (Chapter4). Several existing systems such as Bellman’s GAP compiler [86],

semi-automatic synthesizer [149], EasyPDP [170], EasyHPS [63], pattern-based system [123],

and parallelizing plugins [153] can be used to generate iterative and tiled-loop programs. Par-

allel task graph execution systems such as Nabbit [10] and BDDT [185] execute the DP tasks

during runtime using unrolling. Due to this they might lose cache efficiency.

The classic 2-way recursive divide-and-conquer (CORDAC) algorithms with optimal serial cache

complexity and good (but, not always optimal) parallelism have been developed, analyzed, and

implemented in [47, 48], [182] (see Chapter 3). Hybrid r-way algorithms have considered in [47]

but they are either cache- or processor-aware, and complicated to program. Pochoir [171] is

used to generate cache-oblivious implementations for stencils. However, the recursive algorithms

often have low parallelism due to artificial dependencies among subtasks. Recently Aga et al.

in [8] proposed a speculation approach to alleviate the concurrency constraints imposed by the

artificial dependencies in standard parallel recursive divide-and-conquer programs, and reported

a speedup up to 1.6× on 30 cores over their baseline.

The recursive wavefront algorithms were introduced in [173] but they are too complicated to

develop, analyze, implement, and generalize. They make extensive use of atomic instructions,

and standard analysis model of fork-join parallelism does not apply. In this work we try to

address these issues.

Our contributions Our major contributions in this work are as follows:

(1) We show how to systematically transform recursive divide-and-conquer to cache-oblivious

wavefront. We present a generic method to develop and schedule recursive wavefront

algorithms based on timing functions.

(2) We present two approaches for scheduling a recursive wavefront algorithm: (i) the al-

gorithm passes timing functions and space usage info to a hint-accepting space-bounded

scheduler, (ii) the programmer appropriately transforms the algorithm to use the timing

functions, and uses a standard randomized work-stealing scheduler to run the program.

(3) We present performance and scalability results of the presented algorithms on state-of-the

art multicore machines and show a comparative analysis with standard 2-way CORDAC

and the original cache-oblivious wavefront (COW) algorithms from [173].

5.3 Deriving recursive wavefront algorithms

In this section, we describe how to transform a standard cache-oblivious recursive divide-and-

conquer (CORDAC) DP algorithm into a recursive wavefront algorithm. The method involves

augmenting all recursive function calls with timing functions to launch them as early as pos-

sible without violating any dependency constraints implied by the DP recurrence. The timing

functions are derived analytically, and do not employ locks or atomic instructions.
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A(X,X,X)

1. if X is a cell then Acell(X,X,X)

2. else

3. par A(X11, X11, X11), A(X22, X22, X22)

4. B(X12, X11, X22)

B(X,U, V )

1. if X is a cell then Bcell(X,U, V )

2. else

3. B(X21, U22, V11)

4. par C(X11, U12, V21), C(X22, X21, V12)

5. par B(X11, U11, V11), B(X22, X22, V22)

6. C(X12, U12, X22)

7. C(X12, X11, V12)

8. B(X12, U11, V22)

C(X,U, V )

1. if X is a cell then Ccell(X,U, V )

2. else

3. par C(X11, U11, V11), C(X12, U11, V12),

C(X21, U21, V11), C(X22, U21, V12)

4. par C(X11, U12, V21), C(X12, U12, V22),

C(X21, U22, V21), C(X22, U22, V22)

Programmer computes the timing functions

SA (X,X,X)

1. return C(xr, xc)

SB (X,U, V )

1. return C(xr + n− 1, xc)

SC (X,U, V )

//here, xr = ur, xc = vc, and uc = vr

1. m← (xr + n− 1 + xc)/2; û← uc + n− 1

2. if uc > m then

3. return max {C(ur + n− 1, uc),C(vr, vc)}+ 1

4. elif û < m then
return max {C(ur + n− 1, û),C(û, vc)}+ 1

5. else return
(max {C(ur + n− 1,m),C(m, vc)} + 1).[uc >
xr+xc

2 ]

EA (X,X,X)

1. return C(xr, xc+n−1)

EB (X,U, V )

1. return C(xr, xc + n− 1)

EC (X,U, V )

1. lval← max {C(ur, uc),C(vr, vc + n− 1)}

2. rval← max{C(ur, uc+n−1), C(vr+n−1, vc+n−1)}

3. return (max {lval, rval}+ 1) .[uc >
xr+xc

2 ]

C(i, j)

1. if (j−i) ≤ 1 then return (j−i) else return 2×(j−i)−1

Transformation by the scheduler/programmer

RecursiveWavefront-Parenthesis()

1. w ← 0

2. while w <∞ do w ← A(G,G,G,w)

A(X,X,X,w)

1. vi ←∞ for all i ∈ [1, 3] //number of function calls=3

2. if X is an n′ × n′ matrix then

3. if w = SA (X,X,X) then Anon−wave(X,X,X)

4. else

5. F1..3 ← {A,A,B}

6. arg1..3 ← {(X11, X11, X11), (X22, X22, X22),

(X12, X11, X22)}

7. par for i← 1 to 3 do

8. if w < SFi (argi) then vi ← SFi (argi)

9. elif w ≤ EFi (argi) then vi ← Fi(argi, w)

10. sync

11. return min vi for all i ∈ [1, 3]

B(X,U, V, w)

1. vi ←∞ for all i ∈ [1, 8] //number of function calls=8

2. if X is an n′ × n′ matrix then

3. if w = SB (X,U, V ) then Bnon−wave(X,U, V )

4. else

5. F1..8 ← {B, C, C,B,B, C, C,B}

6. arg1..8 ← {(X21, U22, V11), (X11, U12, V21),

(X22, X21, V12), (X11, U11, V11),

(X22, X22, V22), (X12, U12, X22),

(X12, X11, V12), (X12, U11, V22)}

7. par for i← 1 to 8 do

8. if w < SFi (argi) then vi ← SFi (argi)

9. elif w ≤ EFi (argi) then vi ← Fi(argi, w)

10. sync

11. return min vi for all i ∈ [1, 8]

C(X,U, V, w)

1. vi ←∞ for all i ∈ [1, 8] //number of function calls=8

2. if X is an n′ × n′ matrix then

3. if w = SC (X,U, V ) then Cnon−wave(X,U, V )

4. else

5. F1..8 ← {C, C, C, C, C, C, C, C}

6. arg1..8 ← {(X11, U11, V11), (X12, U11, V12),

(X21, U21, V11), (X22, U21, V12),

(X11, U12, V21), (X12, U12, V22),

(X21, U22, V21), (X22, U22, V22)}

7. par for i← 1 to 8 do

8. if w < SFi (argi) then vi ← SFi (argi)

9. elif w ≤ EFi (argi) then vi ← Fi(argi, w)

10. sync

11. return min vi for all i ∈ [1, 8]

Figure 5.1: Left: The programmer derives the timing functions from a given standard
2-way recursive divide-and-conquer DP algorithm for the parenthesis problem. A matrix
region Z has its top-left corner at (zr, zc) and is of size n × n. Right: A recursive
divide-and-conquer wavefront algorithm is generated for the parenthesis problem. The
programmer derives the algorithm if work-stealing scheduler is used, and the scheduler
derives the algorithm if modified hint-accepting space-bounded scheduler (Section 5.5)
is used. The algorithm makes use of the timing functions derived by the programmer.
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Our transformation allows the updates to the DP table proceed in an order close to iterative

wavefront, but from within the structure of a recursive divide-and-conquer algorithm. The goal

is to reach the higher parallelism of an iterative wavefront algorithm while retaining the better

cache performance (i.e., efficiency and adaptivity) and portability (i.e., cache- and processor-

obliviousness) of a recursive algorithm.

Let us first define the wavefront order of applying updates to a DP table. Each update writes to

one DP table cell by reading values from other cells. We say that a cell is fully updated provided

it is never updated in the future. An update becomes ready when all cells it reads from are fully

updated. We assume that only ready updates can be applied and each such update can only be

applied once. A wavefront order of updates proceeds in discrete timesteps. In each step all ready

updates to distinct cells are applied in parallel. However, if a cell has multiple ready updates

only one of them is applied, and the rest are retained for future to avoid race conditions. A

wavefront order does not have any artificial dependencies.

Transformation. It is completed in three major steps:

(1) [Construct completion-time function.] A closed-form formula is derived based on the

original DP recurrence that gives the timestep at which each DP cell is fully updated in

wavefront order.

(2) [Construct start- and end-time functions.] Cell completion times are used to derive

closed-form formulas that give the timesteps in wavefront order at which each recursive

function call should start and end execution.

(3) [Derive the recursive wavefront algorithm.] Each recursive function call in the stan-

dard CORDAC algorithm is augmented with its start- and end-time functions so that the

algorithm can be used to apply only the updates in any given timestep in wavefront order.

We then use a variant of iterative deepening on top of this recursive algorithm to execute

all timesteps efficiently in non-decreasing wavefront order.

We describe our transformation for arbitrary d-dimensional (d ≥ 1) DP in which each dimension

of the DP table is of the same length and is a power of 2.

Example of transformation. We explain our approach by applying it on a recursive algorithm

for the parenthesis problem [37], which is defined as follows. Let C[i, j] denote the minimum cost

of parenthesizing si · · · sj . Then the 2D DP table C[0 : n, 0 : n] is filled up using the following

recurrence:

C[i, j] =


∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min

i≤k≤j

{
C[i, k] + C[k, j] + w(i, k, j)

}
if 0 ≤ i < j − 1 < n;

(5.1)

where the vj ’s and function w(·, ·, ·) are given. The recurrence is evaluated by the recursive

algorithm [182] given at the top of Figure 5.1 which is same as the algorithm presented in

Chapter 3 Figure 3.5. In the rest of the section, we show how a recursive wavefront algorithm

(shown in Figure 5.1) can be derived from the given CORDAC algorithm.

Consider the standard 2-way CORDAC algorithm for the parenthesis problem given in the top-

left corner of Figure 5.1. It has three functions that update the DP table. Initially, function

A(C,C,C) is called, where C is the entire DP table. Then the computation progresses by

recursively breaking the table into quadrants, and calling functions A, B and C on these smaller
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A0B1 C3B4C5C6B7C14C15C17B18C14C15C19C20B21C22C23C24C25C27B28C22C23C24C25C29C30B31
− A0B2 C3B4 C14C15B16 C14C15C17B18 C22C23C24C25B26 C22C23C24C25C27B28
− − A0 B1 C9B10 C11C12B13 C14C15C17B18 C14C15C19C20B21
− − − A0 B8 C9B10 C14C15B16 C14C15C17B18
− − − − A0 B1 C3B4 C5C6B7
− − − − − A0 B2 C3B4
− − − − − − A0 B1
− − − − − − − A0

0 1 4 7 18212831
−0 2 416182628
−−0 1 10131821
−−−0 8 101618
−−−− 0 1 4 7
−−−−− 0 2 4
−−−−−− 0 1
−−−−−−− 0

A0B1 C2B3C4C5B6C4C7C8B9C7C8C10C11B12C7C10C11C13C14B15C10C11C13C14C16C17B18
− A0B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12 C7C10C11C13C14B15
− − A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12
− − − A0 B1 C2B3 C4C5B6 C4C7C8B9
− − − − A0 B1 C2B3 C4C5B6
− − − − − A0 B1 C2B3
− − − − − − A0 B1
− − − − − − − A0

0 1 3 6 9121518
−0 1 3 6 9 1215
−−0 1 3 6 9 12
−−−0 1 3 6 9
−−−−0 1 3 6
−−−−− 0 1 3
−−−−−− 0 1
−−−−−−− 0

Table 5.1: Timesteps at which each DP table cell is updated (Ft means function F
updates at timestep t) and the timestep at which each cell becomes fully updated (on the
right) for the parenthesis problem on a DP table of size 8×8 using (a) top: standard 2-
way recursive algorithm, and (b) bottom: recursive/iterative wavefront algorithm. Both
recursive algorithms use a 1 × 1 base case. We assume that the number of processors

is infinite.

regions of C. At the base case (i.e., a 1×1 region of C), each function updates a cell. When x is

a cell, function A(x, x, x) updates x by reading x itself which corresponds to the case i = k = j

in the recurrence. Similarly, function B(x, u, v) updates cell x by reading x itself and two other

cells u and v which correspond to cases i = k 6= j and i 6= k = j. Finally, function C(x, u, v)

updates the cell x by reading the two cells u and v which corresponds to i 6= k 6= j.

The top part of Table 5.1 shows how the standard 2-way CORDAC algorithm with 1 × 1 base

case updates C[1 : n, 1 : n] when n = 8. We use Ft in a cell to denote that function F updates

the cell at timestep t, where F ∈ {A,B, C}. Using an infinite number of processors, the standard

CORDAC algorithm updates the entire table in 31 timesteps. In contrast, the bottom part of

Table 5.1 shows that the fastest iterative wavefront algorithm will update C in only 18 timesteps.

With a 1×1 base case our recursive wavefront algorithm (shown on the right hand side of Figure

5.1) will perform the updates in exactly the same order as the iterative wavefront algorithm, and

terminate in 18 steps.

5.3.1 Constructing completion-time function

In this section, we define completion-time, and show how to compute it in O (1) time for any cell.

There are two different ways to define completion time of a cell. The completion time of a cell

is the time after which it will not be updated/written any more. In other words, if in a dynamic

programming problem, a cell x is updated/written k times, completion time of x is the latest

time when x would be written/updated. It is also possible to define completion time based on

the completion time of the input cells as well. In this case, if in a DP problem a cell x needs to be

updated based on values from k other cells y1, y2, ..., yk at different updates, completion time of

x can be computed by taking maximum completion time of all cells that x depends on (i.e., y1,

y2, ..., yk), plus 1. If for a DP problem, there are m input cells with the maximum completion

time, then we need to wait at least m time steps before we can start updating x. Furthermore,

if a cell also depends on its own value, we also need to add an extra 1 to the completion time to

consider the self update time.

A formal definition of completion time follows:
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Definition 5.1 (Completion-time). The completion-time for a particular cell x, denoted by

C(x), is the timestep in wavefront order at which x is fully updated. More formally,

C(x) = max t | for all Ft(x, . . .); (5.2)

where Ft(x, . . .) means that cell x is updated by function F at timestep t.

Completion-time of a cell computed from the given DP recurrence as follows.

C(x) =

initial values initial conditions,

rmax(x) +m+ su(x) otherwise;
(5.3)

where rmax(x) is the maximum completion time of the cells on which x directly depends, i.e.,

rmax(x) = maxF(x,...,y,...) C(y), m is the number of input cells (on which x directly depends on)

with that maximum completion time, and the term su(x) is 1 if there is a self-update function

that reads from itself; and 0, otherwise.

The bottom part of Table 5.1 shows completion-times for the parenthesis problem for all cells

of an 8 × 8 DP table. The completion-time for any cell (i, j) in the DP table can be found as

follows.

C(i, j) =


0 if i = j,

C(i, j − 1) + 1 + 1 if i = j − 1;

C(i, j − 1) + 2 + 1 if i < j − 1;

(5.4)

because rmax(i, j) = C(i, j − 1) = C(i + 1, j) (Note that m = 1 when i = j − 1 and m = 2

when i < j − 1), and su(i, j) = 1 as the self-update function B updates the cell (i, j) reading

from itself. Solving the recurrence (assuming that race will be avoided by fractional timing as

explained in the following section, and therefore considering m = 1 always), we get the following.

C(i, j) =

j − i if (j − i) = 0,

2(j − i)− 1 if (j − i) ≥ 1.
(5.5)

We also need to know start-time and end-time of each recursive function call in the wavefront

order so that we can execute them appropriately. Both start-time and end-time are defined for

each function and they depend on the function type and their input and output parameters. Ide-

ally the start-time of a function in a recursive wavefront algorithm can be computed recursively

by taking the smallest start-time of any sub-function called by the original function on any of

the quadrants (often its a quadrant that has earliest completion time in the wavefront order).

On the other hand, end-time can be computed by recursively taking the maximum end-time of

any sub-function on any quadrant (often its a quadrant that has latest completion time in the

wavefront order). We also need to take care of any possible race conditions into account which

may happen if two different function calls with the same write cell/region become ready at the

same time. In such case, both start-time and end-time need to be adjusted to avoid any potential

race.

Definition 5.2 (Start-time and end-time). The start-time (resp. end-time) of a recursive

function call in a recursive wavefront algorithm is the earliest (resp. latest) timestep in wavefront
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order at which one of the updates to be applied by that function call (either directly or through

a recursive function call) becomes ready.

Let F(X,Y1, . . . , Ys) be a function call that writes to a region X by reading from regions

Y1, . . . , Ys of the DP table. Its start- and end-times, denoted by SF (X,Y1, . . . , Ys) and EF (X,Y1, . . . , Ys),

respectively, are computed as follows.

SF (X,Y1, . . . , Ys)︸ ︷︷ ︸
X∈{Y1,...,Ys}

=

(C(X)).0 if X is a cell,

min SF ′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

SF (X,Y1, . . . , Ys)︸ ︷︷ ︸
X/∈{Y1,...,Ys}

=

(min1≤i≤s{C(Yi)}+ 1).ra(X) if X is a cell,

min SF ′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

EF (X,Y1, . . . , Ys)︸ ︷︷ ︸
X∈{Y1,...,Ys}

=

(C(X)).0 if X is a cell,

max EF ′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

EF (X,Y1, . . . , Ys)︸ ︷︷ ︸
X/∈{Y1,...,Ys}

=

(max1≤i≤s{C(Yi)}+ 1).ra(X) if X is a cell,

max EF ′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

where, in the non-cellular case minimization/maximization is taken over all functions F ′(X ′, Y ′1 , . . . , Y ′s )

recursively called by F(X,Y1, . . . , Ys). Here, ra(X) is the problem-specific race avoidance con-

dition used when two functions write to the same region. Though we use real-valued timesteps

for simplicity, the total number of distinct timesteps remains exactly the same as that in the

iterative wavefront algorithm.

For the parenthesis problem, the start-times for the three functions A,B, and C are computed

as below. Let (xr, xc), (ur, uc), and (vr, vc) denote the positions of the top-left cells of regions

X, U and V , respectively. Note that for parenthesis problem, xr = ur, xc = vc, and uc = vr.

Then,

SA (X,X,X) =

C(X).0 if X is a cell,

SA (X11, X11, X11) otherwise;

SB (X,U, V ) =

C(X).0 if X is a cell,

SB (X21, U22, V11) otherwise;

SC (X,U, V ) =


(

max
{
C(U),C(V )

}
+ 1
)
.[uc >

xr+xc
2 ] if X is a cell,

min

SC (X21, U21, V11) ,

SC (X21, U22, V21)

 otherwise;

where [ ] is the Iversion bracket which denotes 1 if the condition in the bracket is true and 0

otherwise. The quadrant X21 appears in the start time because, for those cases, the bottom-left

cell of the X12 quadrant is the cell which always gets updated first in the wavefront order.

Both A and B read from and write to X, and hence their start-times follow directly from the

first recurrence in Definition 5.2. In case of B, X is updated by reading from pair 〈U,X〉 and

also from 〈X,V 〉. Function C follows the second recurrence from the definition, since for C there

is no overlap between the read and write regions. As C writes to the same region twice, there is

a race and to avoid it we use the condition [uc > (xr + xc)/2] derived manually. An intuition

behind this condition is that, we delay the function calls for which wu − wx < wx − wv, where

wu is the wavefront where u lies on, and let the other functions to run so that no race happens.
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Similarly, the end-times are as follows.

EA (X,X,X) =

C(X).0 if X is a cell,

EB (X12, X11, X22) otherwise;

EB (X,U, V ) =

C(X).0 if X is a cell,

EB (X12, U11, V22) otherwise;

EC (X,U, V ) =


(

max
{
C(U),C(V )

}
+ 1
)
.[uc >

xr+xc
2 ] if X is a cell,

max

EC (X12, U11, V12) ,

EC (X12, U12, V22)

 otherwise.

The quadrant X12 appears in the end-time recurrence because, the top-right cell of the X12

quadrant is the cell which always gets updated the last in the wavefront order. Note that the

start time and end time of a cell are always the same, since we assume that it takes only a constant

amount of time to update a cell. Solving the recurrences for the start-times and end-times above,

we obtain the timing functions shown in Figure 5.1.

5.3.2 Deriving a recursive wavefront algorithm

In this section, we describe how to use timing functions to derive a recursive wavefront algorithm

from a given standard recursive divide-and-conquer (CORDAC) DP algorithm. We use the

parenthesis problem as an example.

A standard CORDAC algorithm for the parenthesis problem is shown in the top-left corner of

Figure 5.1. We modify it as follows, and the modified algorithm is shown on the right hand side

of the same figure.

First, we modify each function F to include a switching point n′ ≥ 1, and switch to the original

non-wavefront recursive algorithm by calling Fnon−wave when the size of each input submatrix

drops to n′ × n′ or below.

We augment each function to accept a timestep parameter w. We remove all serialization among

recursive function calls by making sure that all functions that are called are launched in parallel.

However, we do not launch a function unless w lies between its start-time and end-time which

means that a function is not invoked if we know that it does not have an update to apply at

timestep w in wavefront order. Observe that the function Fnon−wave at switching does not accept

a timestep parameter, but if we reach it we know that it has an update to apply at timestep w.

However, once we enter that function we do not stop until we apply all updates that function

can apply at all timesteps ≥ w.

Each function is also modified to return the smallest timestep above w for which it may have at

least one update that is yet to be applied. It finds that timestep by checking the start-time of

each function that was not launched because the start-time was larger than w, and the timestep

returned by each recursive function that was launched, and taking the smallest of all of them.

Finally, we add a loop (see RecursiveWavefront-Parenthesis in Figure 5.1) to execute all

timesteps of the wavefront in non-decreasing fashion using the modified functions. We start

with timestep w = 0, and invoke the main function A(C,C,C,w) which applies all updates at
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timestep w and depending on the value chosen for n′ possibly some updates above timestep w,

and returns the smallest timestep above w for which there may still be some updates that are

yet to be applied. We next call function A with that new timestep value, and keep iterating in

the same fashion until we are able to exhaust all timesteps.

5.4 Applications

In this section, we present the recursive wavefront algorithms for three other dynamic program-

ming problems: LCS, Floyd-Warshall’s APSP, and gap problem. All of these DP problems have

many applications in bioinformatics. LCS and gap problem have applications in sequence aligne-

ment and other types of biological sequence analyses, FW-APSP has application in phylogeny

analysis and parenthesis problem is used in RNA secondary structure predictions. In this section,

we will only give the timing functions and not the entire recursive wavefront algorithm. We give

references to the papers that present the standard (non-wavefront) CORDAC algorithms from

which recursive wavefront algorithms can easily be derived by plugging in the timing functions

as per Section 5.3.2.

Longest common subsequence (LCS). The LCS problem [46, 103] asks one to find the longest

of all common subsequences [56] between two strings. Here, we are interested in finding only

the length of the LCS. In LCS DP, a cell depends on its three adjacent cells and has the same

dependency structure as the standard edit distance problem (see Chapter 2).

We build on the recursive algorithm given in [46] which has only one function A (i.e., named

LCS-Output-Boundary in [46]). The timing functions are as follows.

C(i, j) = i+ j,

SA (X) = C(xr, xc),

EA (X) = C(xr + n− 1, xc + n− 1);

where, (xr, xc) is the top-left corner of X. There is no self dependency or race in the function

calls and therefore we omitted fractional timestamps. An intuition behind why these timesteps

are correct is that, for LCS any cell on diagonal/wavefront w gets fully updated at timestep w,

and a cell with index (xr, xc) lies on diagonal (xr+xc). A cell is updated only once. Furthermore,

for any quadrant/region with top-left corner at (xr, xc) and size n× n, the top-left cell, (xr, xc)

is the first cell to be computed and the bottom-right cell, (xr + n− 1, xc + n− 1) is the last cell

to be computed in the wavefront order, and the start and end times directly follow from this

observation.

Gap problem. Sequence alignment with general gap penalty [83, 84, 182, 189] is a generalization

of the edit distance problem. We build on the recursive algorithm given in [182] (see Chapter

3). The timing functions are as follows.

C(i, j) = 2(i+ j),

SF (X,Y ) = (C(yr, yc) + [X 6= Y ]).ra(X),

EF (X,Y ) = (C(yr + n− 1, yc + n− 1) + [X 6= Y ]).ra(X);
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where, when F is A (resp. B, C), then Y is X (resp. U, V ), (yr, yc) is the top-left corner of region

Y ; and ra(X) = [xc ≥ n′] for function C, and ra(X) = 0, otherwise. The [X 6= Y ] condition has

been added to take care of the self update time. The ra(X) condition is added to avoid race

condition, since in gap problem, function B and C can be applied in parallel for all cells (resp.

basecase/block) except the cells (resp. basecases/blocks) in the first row and the first column.

Floyd-Warshall’s all-pairs shortest path (FW-APSP). For Floyd-Warshall’s APSP [77, 188] we

build on the recursive algorithm given in [48]. However, that algorithm violates our assumption

that cells can only be updated using values from fully updated cells. That violation can be

removed by performing the computation in cubic space instead of quadratic space as explained

in [14, 56]. We find the timing functions in cubic space which remain valid for the DP using

quadratic space.

Completion-time is given by C(i, j, k) = 3k + [i 6= k] + [j 6= k], where, [ ] is the Iversion bracket.

Let (xr, xc, xh) be the cell with the smallest coordinates in X. Then for each F ∈ {A,B, C,D},

SF (X, . . .) = C(xr, xc, xh), and

EF (X, . . .) = max

C(xr, xc, xh + n− 1),C(xr, xc + n− 1, xh + n− 1),
C(xr + n− 1, xc, xh + n− 1),

C(xr + n− 1, xc + n− 1, xh + n− 1)

 .

Here, end time is basically computed by taking the maximum end time for four corner cells in

the DP table, since in case of FW-APSP, the wavefront moves both in forward and in backward

directions.

5.5 Scheduling recursive wavefront algorithms

In this section, we show how to schedule recursive wavefront algorithms to achieve provably good

bounds (optimal or near-optimal) for both parallelism and cache performance.

Recall that our recursive wavefront algorithm switches to the original non-wavefront CORDAC

algorithm when the input parameter n drops to a value ≤ n′. While both recursive (wavefront

and non-wavefront) algorithms have the same serial work T1, and same serial cache complexity

Q1 (as they reduce to the same serial algorithm), their spans are different. We use TR∞(n′) to

denote the span of the non-wavefront algorithm for a problem of size n′.

Scheduling using work-stealing (WS) scheduler. As explained before (see Figure 5.1), it is

possible to implement these recursive wavefront algorithms by annotating each function call with

their start and end time and then use a standard fork-join scheduler such as the randomized

work-stealing (WS) scheduler [27]. In that case, all the scheduler bounds will hold for the

program. For example if N∞(n/n′) denotes the number of distinct wavefronts in wavefront

order for a recursive wavefront algorithm on an infinite number of processors, the span of this

algorithm will be T∞(n)= O
(
N∞(n/n′)

(
log(n/n′) + TR∞(n′)

))
, since it takes O(log n/n′) time

to reach a sub-problem of size n′ recursively after starting from a size of n. For LCS the serial

work is T1(n) = Θ(n2), and for other problems described in this chapter T1(n) = Θ(n3). Then,

the running time on p cores, Tp(n) = O (T1(n)/p+ T∞(n)) (w.h.p. in n) and parallel cache
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complexity, Qp(n) = O (Q1(n) + p(M/B)T∞(n)) (w.h.p. in n). The later bounds directly follow

from the bound provided by cilk’s work-stealing scheduler. Here, we assume that T1(n′) =

Ω(log n). The extra space used, Sp(n) = O (p log n), since any path from the root to the leaf of

the recursion can be of at most of length Ω(log n) and there can be at most p active branches.

More detailed formal proofs for all other bounds can be found in [44].

Scheduling using a modified space-bounded (W-SB) scheduler. In this section, we

show how to modify a space-bounded scheduler [51] so that it can execute a recursive wavefront

algorithm cache-optimally with near-optimal parallelism.

For each recursive function call, our W-SB scheduler accepts three hints: start-time, end-time

and working set size (i.e., total size of all regions in the DP table accessed by the function call).

Given an implementation of a standard recursive/CORDAC algorithm with each function call

annotated with those three hints, the W-SB can automatically generate a recursive wavefront

implementation (similar to the one on the right hand side of Figure 5.1). From the given start-

times, the scheduler determines the lowest start-time and executes the tasks that can be executed

at that lowest start-time. Since the scheduler knows all the cache sizes, as soon as the working

set size of any function executing on a processor under a cache fits into that cache, the scheduler

anchors the function to that cache in the sense that all recursive function calls made by that

function and its descendants will only be executed by the processors under that anchored cache.

This approach of limiting migration of tasks ensures cache-optimality [26, 51]. All bounds for

runtime complexity shown for the work-stealing scheduler remain the same for space-bounded

scheduler. However, the parallel cache complexity changes to Qp(n) = O (Q1(n)) which happens

due to the restriction on task migration. Some formal proofs for these bounds can be found in

[44].

5.6 Experimental results

In this section we present experimental results showing performance of recursive wavefront al-

gorithms for the parenthesis, LCS and 2D FW-APSP problems.

Model E5-2680 E5-4650 E5-2680v3

Cluster Stampede [5] Stampede [5] Comet [2]

#Cores 2x8 4x8 2x12

Frequency 2.70GHz 2.70GHz 2.50GHz

L1 32K 32K 32K

L2 256K 256K 256K

L3 20480K 20480K 30720K

Cache-line size 64B 64B 64B

Memory 64GB 1TB 64GB

Compiler 15.0.2 15.0.2 15.2.164

OS CentOS 6.6 CentOS 6.6 CentOS 6.6

Table 5.2: System specifications.

We compare performance of those

algorithms with the corresponding

standard 2-way recursive divide-

and-conquer (CORDAC) and the

original cache-oblivious wavefront

(COW) algorithms [173]. We used

C++ with Intel R©Cilk
TM

Plus exten-

sion to implement all algorithms

presented in this section. Therefore,

all implementations basically used

the work-stealing scheduler provided

by Cilk
TM

runtime system. All pro-

grams were compiled with -O3 -ip -parallel -AVX -xhost optimization parameters. The

codes were not hand-optimized. To measure cache performance, we used PAPI-5.3 [4]. Table 5.2

lists the systems on which we ran our experiments.
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Figure 5.2: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the Parenthesis Problem. All pro-
grams were run on 16 core machines in Stampede. All implementations used Cilk Plus’s

work-stealing scheduler.

Figure 5.3: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the LCS Problem. All programs
were run on 16 core machines in Stampede. All implementations used Cilk Plus’s work-

stealing scheduler.
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Figure 5.4: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the 2D FW-APSP Problem. All
programs were run on 16 core machines in Stampede. All implementations used Cilk

Plus’s work-stealing scheduler.

Figure 5.2, 5.3, and 5.4 show performance of the following on a 16-core Sandy Bridge machine:

(i) recursive wavefront algorithm that does not switch to the 2-way non-wavefront recursive al-

gorithm and instead directly uses an iterative basecase (wave), (ii) recursive wavefront algorithm

that switches to the 2-way CORDAC at some point (wave-hybrid), (iii) standard 2-way COR-

DAC algorithm (CO 2Way), and (iv) our original cache-oblivious wavefront (COW) algorithms

with atomic locks from [173]. For wave-hybrid, we have used an n′ in the range of 128− 2048

ideally based on the best empirical running time. However a good guess of what this number will

be is n′ = max
{

256,power of 2 closest to n2/3
}
. In order to reduce overhead of recursion and

to take advantage of vectorization we switch to an iterative kernel when n becomes sufficiently

small (e.g., 64 for wave, wave-hybrid and CO 2Way). It is clear from the figures that wave and

wave-hybrid algorithms perform better than the CO 2Way and COW algorithms for all cases.

Almost always, the speedup numbers are better when input size n is small, since for those cases,

improvement in parallelism matters the most.

On the Stampede 16-core machines, for parenthesis problem (Figure 5.2), wave is 2.6×, and

wave-hybrid is 2× faster than CO 2Way. Similarly, number of cache misses of CO 2Way is slightly

higher than that of both wave and wave-hybrid. For LCS (Figure 5.3) wave is 1.5×, and

wave-hybrid is 1.7× faster than CO 2Way. We see similar trends for cache misses as well. For

Floyd-Warshall’s APSP (Figure 5.4), wave is 18%, and wave-hybrid is 10% faster than CO 2Way.

Therefore, even with 16 cores, the impact of improvements in parallelism and cache-misses

is visible on the running time. On the other hand, though COW algorithms have excellent

theoretical parallelism, their implementations use a separate scheduler that heavily uses atomic
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Figure 5.5: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the Parenthesis problem. All pro-
grams were run on 24 core machines in Comet. All implementations used Cilk Plus’s

work-stealing scheduler.

locks, which may have impacted their performance negatively for large n and for DP with

dimension d > 1.

Figures 5.5, 5.6, and 5.7 show performance results obtained on a 24-core Haswell machine. Value

of n′ and size of the iterative kernel were determined in the same way as we did on Stampede. For

FW-APSP (Figure 5.7), wave is 15% and wave-hybrid is 10% faster than CO 2Way. Although

we see improvements in L1 and L2 cache misses, number of L3 misses is worse probably due to

the increased parallelism. For parenthesis problem (Figure 5.5), wave is 16% and wave-hybrid

is 18% faster than CO 2Way, and we see only improvement in the L3 cache misses.

Algorithm LCS Parenthesis FW APSP

wave 509.9 1911.0 1404.2

wave-hybrid 152.3 821.8 276.7

CO-2way 17.8 22.5 147.7

Table 5.3: Projected scalability of the new re-
cursive wavefront algorithms computed by the
CilkviewTMScalability Analyzer. The numbers
denote till how many cores the implementation
should scale linearly. The input size for LCS was
262144 and for both Parenthesis and FW-APSP,

n was 16384.

On a 32-core Sandy Bridge machine, LCS

wave runs 2.28× faster and wave-hybrid runs

2.21× faster than CO 2Way. Similarly, in all

three levels of caches, wave algorithms incur

fewer cache misses.

For the parenthesis problem both wave and

wave-hybrid are 2.1× faster than CO 2Way.

On the other hand, wave for FW-APSP runs

73%, and wave-hybrid runs 69% faster than

CO 2Way. For FW-APSP the improvement is

less, because the measured parallelism of the CO 2Way is > 140 (see Table 5.3), which is more

than the number of cores we were using for these experiments.
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Figure 5.6: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the LCS Problem. All programs
were run on 24 core machines in Comet. All implementations used Cilk Plus’s work-

stealing scheduler.

Figure 5.7: Runtime and cache misses in three levels of caches for 2-way CO (COR-
DAC), COW and recursive wavefront algorithms for the 2D FW-APSP Problem. All
programs were run on 24 core machines in Comet. All implementations used Cilk Plus’s

work-stealing scheduler.
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Projected parallelism. We have used the Intel c© CilkviewTMscalability analyzer to compute

the ideal parallelism and burdened span of our implementations. Table 5.3 shows the scalability

results reported by Cilkview for all problems. These parallelism numbers show that recursive

wavefront algorithms scale much better than standard 2-way recursive divide-and-conquer algo-

rithms, making them a better choice for future multicores/manycores machines with thousands

of cores.

5.7 Future Research

The next step in this research is to find out a way to automatically generate the complete-

time, start and end timestamps. Then we can use them to develop an autowave system that

can automatically convert a standard 2-way CORDAC algorithm to a cache-oblivious wavefront

algorithm while guaranteeing cache-optimality with improved parallelism.
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Chapter 6

An Efficient Cache-oblivious

Viterbi Algorithm

6.1 Abstract

The dynamic programming (DP) algorithms that we have considered so far have very regular

dependency structures (i.e., a cell in the DP table depends on some other cells deterministi-

cally). However, there are dynamic programming algorithms with important applications in

bioinformatics for which the dependency structures are irregular (e.g., input data dependent).

In this chapter we consider one such algorithm, the Viterbi algorithm and present an efficient

cache-oblivious recursive divide-and-conquer technique to solve the underlying problem.

The Viterbi algorithm is used to find the most likely path through a hidden Markov model

(HMM) given an observed sequence of events. This algorithm has numerous applications in

bioinformatics including multiple sequence alignment, gene finding, CG island and conserved

elements detection, protein secondary structure prediction and nanopore ionic flow blockades

analysis. Due to its importance and computational complexity, several algorithmic strategies

have been engineered to parallelize this algorithm on different parallel architectures. However,

none of the existing algorithms for the Viterbi decoding problem is cache-efficient while be-

ing cache-oblivious (i.e., does not use cache-parameters in the algorithmic description). Being

oblivious of machine resources (e.g., cache and processors) while also being efficient promotes

portability and adaptivity. However, achieving better parallelism and cache-efficiency for the

Viterbi algorithm is challenging due to the its irregular dependency pattern and no opportunity

for data reuse.

In this chapter, we present an efficient cache- and processor-oblivious recursive divide-and-

conquer Viterbi algorithm that uses the rank convergence property of matrix operations to

achieve cache-efficiency 1. The algorithm builds upon the parallel Viterbi algorithm of Maleki et

al. (PPoPP 2014). We provide empirical analysis of our algorithm showing that our algorithm

outperforms the prior best performing algorithm in terms of cache-performance, running time

and energy efficiency.

1Jesmin Jahan Tithi and Pramod Ganapathi are major contributors in this work.

83



Chapter 6. An Efficient Cache-oblivious Viterbi Algorithm

6.2 Introduction

The Viterbi algorithm [78, 186, 187] proposed by Andrew J. Viterbi in 1967 is a dynamic pro-

gramming algorithm that finds the most probable sequence of hidden states, called “Viterbi

path” for a given sequence of observed events in the context of a hidden Markov model (HMM).

The hidden Marov model consists of three phases: the forward evaluation phase, the backward

decoding phase and the learning phase. The Viterbi algorithm is used in the decoding phase to

find the most probable path through a probabilistic HMM model and is also one of the most

compute intensive kernels among these three.

The Viterbi algorithm is an example of a dynamic programming problem where the cell depen-

dencies have irregular pattern and are data dependent. Furthermore, it requires to scan Θ(n2)

data per Θ(n2) computations, leaving no scope for data-reuse. Therefore, it is not clear how

to get temporal locality while solving Viterbi problem, since to get temporal locality we need a

data read/write to computation ratio of ω(1).

Motivation. The Viterbi algorithm has numerous real world applications. Although it was

originally used for speech recognition in CDMA technology [74, 87, 111, 151, 163], from the

year of 1990, it had been heavily used in computational biology and bioinformatics to find the

coding and non-coding regions of an unlabeled string of DNA nucleotides (i.e., gene finding) [32],

prediction of protein-coding regions in genome sequences modeling families of related DNA or

protein sequences and prediction of secondary structure elements in proteins [115], CpG island

[67], promoter [140] and conserved elements detection [160]. Using the Viterbi algorithm, we can

compute the most likely alignment of a sequence against a sequence family. Viterbi algorithm

can also be used to build multiple alignments to compute an optimal alignment among a group

of sequences [145].

For the sequence alignment application Satchmo [69], typically the last two phases of HMM

are needed and out of those two phases, Viterbi algorithm has been found to consume 80%

of the overall computational time [64]. Furthermore, biological sequences tend to be longer

(consider annotating all 250 million symbols of the human chromosome 1 with a gene finding

HMM which consists of hundred of states). Therefore, it is very important to develop fast and

efficient Viterbi algorithm that can handle large number of states and timesteps targeting modern

parallel architectures (e.g., multicores and manycores).

Problem Specifiction. A formal definition of the problem that the Viterbi algorithm solves is

as follows: we are given an observation spaceO = {o1, o2, . . . , om}, state space S = {s1, s2, . . . , sn},
observations Y = {y1, y2, . . . , yt}, transition matrix A of size n×n, where A[i, j] is the transition

probability of transiting from si to sj , emission matrix B of size n × m, where B[i, j] is the

probability of observing oj at state si, and initial probability vector (or initial solution vector)

I, where I[i] is the probability that the initial state, x1 is si. Let X = {x1, x2, . . . , xt} be a

sequence of hidden states that generates Y = {y1, y2, . . . , yt}. Then the matrices P and P ′ are

of size n × t, where P [i, j] is the probability of the most likely path of getting to state si at

observation yj , and P ′[i, j] stores the hidden state of the most likely path. Using the Viterbi

algorithm, we are interested in computing values for P and P ′. Form now on, we will call this

problem as the Viterbi problem.
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An example of the Viterbi problem can be this: a human wearing sunglass, taking umbrella

or wearing hand-gloves can be considered as observation states (O) and cloudy, raining, sunny

can be considered as hidden states (S). Then emission matrix B gives probability of “wearing

sunglass” or “taking umbrella” given the state is “raining”. Transition matrix A gives probability

of going to state “rainy” from state “cloudy”, “cloudy” to ”sunny”, etc. The initial probability

vector gives the probably of getting states “cloudy”, “rainy” or “sunny”. Now if the observation

Y is equal to “wearing hand-glove”, using Viterbi algorithm, we will find the most probable

sequence of states that led to this observation “wearing hand-glove” given the initial probability

of each state.

The P [i, j] and P ′[i, j] matrices can be computed using the following recurrences:

P [i, j] =

{
I[i] ·B[i, y1] if j = 1,
max
k∈[1,n]

(P [k, j-1] ·A[k, i] ·B[i, yj ]) if j > 1.

P ′[i, j] =

{
0 if j = 1,
arg max

k∈[1,n]
(P [k, j-1] ·A[k, i] ·B[i, yj ]) if j > 1.

Viterbi-Rank(P [0..t− 1], A,B)

1. p← #processors

// Forward phase

2. parallel for i← 1 to p do

3. li ← t(i− 1)/p; ri ← ti/p

4. if i > 1 then P [li]← random vector

5. for j ← li to ri − 1 do

6. P [j+ 1]← Viterbi(P [j], A,B[.., yj+1])

// Fixup phase

7. converged← false

8. while !converged do

9. parallel for i← 2 to p do

10. convi ← false; s← P [li]

11. for j ← li to ri − 1 do

12. s← Viterbi(s, A,B[.., yj+1])

13. if s is parallel to P [j + 1] then

14. convi ← true; break

15. P [j + 1]← s

16. converged← ∧i convi

Figure 6.1: Processor-aware parallel
Viterbi algorithm using rank convergence
as given in Maleki et al. paper [126].

This algorithm is not cache-efficient.

A simple iterative solution implementing this recur-

rences will take Θ(n2t) time and in general, will be

cache inefficient. In this chapter we show how to de-

sign an efficient cache-oblivious recursive divide-and-

conquer algorithm to solve this Viterbi problem. In

the following sections we discuss some prior work fol-

lowed by our algorithm to solve the Viterbi Problem.

6.3 Viterbi algorithm using rank

convergence

In this section we describe Maleki et al.’s algorithm

[126] for solving the Viterbi problem which uses rank-

convergence properties of matrices over a closed trop-

ical semiring where the multiply symbol (×) is re-

placed by a plus (+) symbol and the sum (
∑

) is re-

placed by a max in the standard matrix multiplica-

tion. Almost all research before Maleki et al.’s work

used a serial execution order across the timesteps due

to the presence of strict dependencies among them,

parallelizing only inside a time-step using different

methods. Therefore, the parallelization opportunity

was quite restricted in those cases. Maleki et al. [126]

used the rank convergence property of a sequence of

matrix operations over a closed tropical semiring to

extract parallelism across different time-steps in the Viterbi algorithm. They generalized this
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idea to a class of dynamic programming problems called LTDP (linear tropical dynamic pro-

gramming problems) which includes LCS, Smith-Waterman and Needleman-Wunsch as well.

Viterbi recurrence using log-likelihood. Almost all practical implementations of Viterbi

algorithm use log-probabilities (i.e., logarithm of all probability values) instead of the original

probability, and additions instead of the multiplications in the DP recurrence. This makes the

computations faster as well as more accurate as multiplication on probability values are lossy

due to fixed point precisions. In that case the Viterbi recurrence looks like the following:

P [i, j] =

{
I[i] +B[i, y1] if j = 1,
max
k∈[1,n]

(P [k, j-1] +A[k, i] +B[i, yj ]) if j > 1.

The above recurrence can be rewritten as a chain of matrix multiplications as follows:

P [t− 1] = P [0]�AB1 �AB2 � · · · �ABt−1

where P [j] is the jth solution vector (and the column vector P [.., j]) of matrix P , the n × n
matrix ABi is a suitable combination of A and B, and � is a matrix operation defined between

two matrices Rn×n and Sn×n as

(R� S)[i, j] = max
k∈[1,n]

(R[i, k] + S[k, j])

which is the same as the tropical semiring product operation as mentioned at the beginning of

this section.

Before describing the algorithm, we will provide a few important definitions from the Maleki et

al.’s paper which are needed to understand the algorithm. The rank of a matrix Am×n is r, if

r is the smallest number such that A can be written as a product of two matrices Cm×r and

Rr×n, i.e., Am×n = Cm×r � Rr×n. Two vectors v1 are v2 are parallel, if v1 and v2 differ by a

constant offset. For example, [1,2,3,4] and [5,6,7,8] are parallel vectors, because they differ by a

constant offset 4.

A property of the product operation under the tropical semiring is that, the rank of the product

of two matrices is always smaller or equal to the rank of the individual matrix (almost always

the rank reduces), i.e., rank(AB) ≤ rank(A)� rank(B). As a result, the rank of a sequence of

matrix operations is likely to become 1 eventually, which is called rank-convergence. In a rank

1 matrix, all the column vectors are parallel to each other. Similarly, all row vectors are also

parallel to each other. A nice property of a rank 1 matrix is that, all non-zero random vectors

multiplied (�) by a rank 1 matrix will produce parallel vectors (it is similar to mapping all

vectors to parallel lines).

6.3.1 Maleki et. al.’s algorithm using rank-convergence

Maleki’s algorithm (see Figure 6.1) consists of two phases: (i) parallel forward phase, and (ii)

parallel fixup phase. In the forward phase, the t stages (total timesteps) are divided into p

segments, where p is the number of processors, each segment having dt/pe stages (except possibly
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the last stage). The stages in the ith segment consists of columns li (exclusive) to ri (inclusive)

from matrix P . The initial vector of the first segment is the initial vector for the entire DP

problem, which is known. The initial solution vectors of all other segments are initialized to non-

zero random valid probability values. A sequential Viterbi algorithm is run in all the segments

in parallel. A timestep i is said to converge if the computed solution vector si is parallel to the

actual solution vector P [i]. A segment i is converged if rank of (ABli � ABli+1 � · · · � ABj)
is 1 for j ∈ [li, ri − 1]. After the forward pass, possibly only the first segment will have correct

log-probability values, since all other segments started with random initial values.

Viterbi-Rank-Improved(s[0..t-1], A, B)

1. n← 2k; t← 2k+k
′
; c← 28

// Forward phase

2. size← c; q ← t/size

3. parallel for i← 0 to q − 1 do

4. li ← i× size, ri ← li + size− 1

5. if i > 0 then s[li]← random vector

6. for j ← li to ri do

7. s[j + 1]← Viterbi(s[j], A,B[.., yj+1])

// Fixup phase

8. u[0..t− 1]← s[0..t− 1]; converged← false

9. for (j ← log c to (log t)− 1) and !converged do

10. size← 2j ; q ← t/(2× size)

11. parallel for i← 0 to q − 1 do

12. li ← (2i+1)×size−1; ri ← li+size; convi ←
false

13. for j ← li to ri do

14. u[j + 1]← Viterbi(u[j], A,B[.., yj+1])

15. if u[j + 1] is parallel to s[j + 1] then

16. convi ← true; break

17. s[j + 1]← u[j + 1]

18. for i← 0 to q − 1 do

19. converged← converged ∧ convi

20. if converged = true then break

Figure 6.2: Processor-oblivious parallel
cache-inefficient Viterbi algorithm using rank

convergence.

In the fixup phase, as in the forward phase a

sequential Viterbi algorithm is executed for all

segments simultaneously except the first seg-

ment, taking the solution vector from the prior

segment computed in the previous phase (for-

ward/fixup phase) in a temporary storage. Af-

ter that, the newly computed solution vectors

are compared with the solution vectors avail-

able in the original DP table. If they are par-

allel for all segments, the program terminates

as the solutions have converged. Otherwise, the

non-converged old values in the DP table are re-

placed with the newly computed values, and a

new fixup phase starts.

Though solution vectors computed in different

segments might be wrong, eventually they be-

come parallel to the actual solution vectors ei-

ther after the p−1 fixup phases or earlier if rank

convergence occurs at an earlier fixup phase.

Note that the (i+1)th segment always gets fixed

in the ith fixup phase. In the worst case, which

rarely happens in practice, the fixup phase ex-

ecutes p − 1 times. Please refer to Maleki et

al.’s paper [126] for a proof of why the method

works.

6.3.2 An improved processor-oblivious

algorithm

The algorithm described in Section 6.3.1 is

processor-aware and can be made processor-oblivious by setting p to some constant. We can

chose a suitable segment size c (say, 256) that is large enough, then use a parallel for loop to

solve those t/c segments simultaneously. Unlike Maleki et al.’s algorithm, we need to make

sure that the segments are non-overlapping at their boundaries and then adjust the fixup phase

accordingly as shown in Figure 6.2.

87



Chapter 6. An Efficient Cache-oblivious Viterbi Algorithm

Viterbi-MI(P1, P2, . . . , Pq, A,B, t) //Cache-oblivious Divide and Conquer Based Viterbi-Multi-Instance

1. for j ← 2 to t do

2. X ← [P1[.., j], P2[.., j], . . . , Pq [.., j]]

3. U ← [P1[.., j − 1], P2[.., j − 1], . . . , Pq [.., j − 1]]

4. V ← A

5. W ← [B[.., y1j ], B[.., y2j ], . . . , B[.., yqj ]]

6. Avit(X,U, V,W )
———————————————————————————————————————————————————–
Avit(Xn×q, Un×q, Vn×n,Wn×q)

1. if X and V are small matrices do

2. Aloop−vit(X,U, V,W )

3. else if q > n do

4. parallel Avit(XL, UL, V,WL), Avit(XR, UR, V,WR)

5. else if q < n do

6. parallel Avit(XT , UT , V11,WT ), Avit(XB , UT , V12,WB)

7. parallel Avit(XT , UB , V21,WT ), Avit(XB , UB , V22,WB)

8. else

9. parallel Avit(X11, U11, V11,W11), Avit(X12, U12, V11,W12), Avit(X21, U11, V12,W21), Avit(X22, U12, V12,W22)

10. parallel Avit(X11, U21, V21,W11), Avit(X12, U22, V21,W12), Avit(X21, U21, V22,W21), Avit(X22, U22, V22,W22)

Figure 6.3: Cache-efficient parallel recursive divide-and-conquer multi-instance
Viterbi algorithm.

Here is how the algorithm works. Let the initial segment size be c (i.e., c consecutive timesteps).

For convenience we chose c = 2i, where i ∈ [log c, log t]. We divide t timesteps into t/c indepen-

dent segments each of size c. Similar to Maleki et. al.’s algorithm, the first solution vectors of all

except the first segment are initialized to non-zero valid random probability values. Then in the

forward phase we run serial viterbi algorithm on all of the t/c segments of size c simultaneously.

At the end of the forward phase solution vectors till the cth column (i.e., all columns in the first

segment) will have correct log-likelihood values. Other segments will have values computed from

the random values chosen initially which may or may not be parallel to the expected values.

In the fixup phase, we start fixing from the second segment as the original Maleki’s algorithm.

However, in each fixup phase, we work on alternative segments always leaving the first segment

of the prior fixup phase. After each fixup phase, the size of each segment being considered is

doubled and therefore, the number of segments becomes half with respect to the previous phase.

At the end of each fixup phase, we check whether the computed solution vectors are parallel to

that of the prior phase (forward or fixup phase), and if the answer is yes for all segments under

consideration, the program terminates. Otherwise, the next fixup phase starts. In the worst

case, the fixup phase is executed for max(1, log(t/c)) times after which all results are guaranteed

to be correct since by that time the result from the original input has been propagated till the

end. Hence, in the worst case, the program is like a serial Viterbi algorithm with a log(t/c)

factor overhead.

6.4 Cache-efficient multi-instance Viterbi algorithm

In this section, we discuss a cache-efficient Viterbi algorithm that can compute the most probable

path for multiple instances of the problem at once. Since in Viterbi algorithm we need to scan

Θ(n2) data to compute Θ(n2t) times, the only way we can get temporal locality is from the time

dimension t. However, the time dimension has a strict sequential dependency. Another way to

get temporal locality is to solve multiple instances of the problem that have the same A and B
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matrices (but different observation vectors) at once, so that the Θ(n2) reads can be reused. For

example, if we solve n instances of the problem, by scanning the transition matrix A only once,

a particular column of matrix P can be computed for all n instances of the problem at once,

thus efficiently amortizing the cost of data loading.

Two problems that have the same transition matrix A and emission matrix B can be considered

as two instances of the same problem. An example of the multi-instance Viterbi problem is

the problem of multiple sequence alignment. Different biological sequences can be considered as

separate observations Y s of the same problem, with the same transition and emission matrices

A and B (in fact values in the B matrices for different instance can be different, provided the

states are the same). Species with similar biological properties can fit in this form. Another

possible usecase would be finding the most probable state sequence for many cancer genes taken

from the same human body.

Figure 6.3 gives a cache-efficient and cache- and processor-oblivious recursive divide-and-conquer

(CORDAC) Viterbi algorithm that can be used to solve q instances of the problem at once.

To exploit temporal cache locality, it solves q instances of the problem simultaneously, where

q = Ω(nx) and x > 0, which increases computational work to O(n2q) in the two innermost loops.

Total space required for this problem is O(n2 + qt+ qn).

In function Avit(X,U, V,W ) (see Figure 6.3), the matrix U is an n × q matrix obtained by

concatenating (j − 1)th columns of q matrices P1, P2, . . . , Pq, where Pi is the most likely path

probability matrix of problem instance i. The algorithm computes X, which is a concatenation

of jth columns of the q problem instances. Each problem instance i has a different observations

vector Yi = {yi1, yi2, . . . , yit}. The matrix W is a concatenation of ythj columns of matrix B

obtained from different observations i.e., B[y1j ], B[y2j ], . . . , B[yqj ]. We use XT , XB , XL, and XR

to represent the top half, bottom half, left half, and right half of the matrix X, respectively.

Executing the divide-and-conquer algorithm once computes the second column of all matrices P1

to Pq. Executing the algorithm again computes the third column of the q matrices. Executing

the algorithm t − 1 times will fill the last column of all problem instances with the final log-

likelihood values. Note that for each timestep, the matrix W should be constructed again and

again.

It is important to note that the structure of the function Avit is similar to the recursive divide-

and-conquer-based in-place matrix multiplication algorithm (MM-kernel). When q = n, both

algorithms have 8 recursive function calls in two parallel steps. Therefore, the complexity anal-

ysis of the multi-instance Viterbi algorithm will be similar to that of the matrix multiplication

algorithm, i.e., O
(

n2q

B
√
M

)
t. The

√
M factor in the denominator tells us that the algorithm

has temporal locality. Note that since the matrix multiplication kernel is flexible and highly

optimizable (see Chapter 3), the algorithm presented in Figure 6.3 also has similar properties.

In the next section we show how to use this cache-efficient multi-instance Viterbi algorithm

to solve the original single instance Viterbi problem cache-efficiently by leveraging the rank-

convergence property of a sequence of matrix operations.
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6.5 Cache-efficient Viterbi algorithm

In this section we present a cache-efficient cache- and processor-oblivious recursive divide-and-

conquer parallel Viterbi algorithm that uses the rank-convergence property of a sequence of

matrix operations to compute values for multiple timesteps in parallel. This algorithm uses the

cache-efficient multi-instance Viterbi algorithm as a sub routine which leads to cache-optimality.

Here is how we apply the multi-instance Viterbi algorithm to solve the standard (i.e., single

instance) Viterbi problem.

We divide t timesteps into t/c independent segments each of size c (i.e., c consecutive timesteps).

Let the initial segment size is c. For convenience we chose c = 2i, where i ∈ [log c, log t]. Similar

to the algorithm presented in Figure 6.2, the first solution vectors of all except the first segment

are initialized to non-zero random valid probability values. As each segment is independent,

we can assume that these segments are different instances of the same problem who also have

the same A and B matrices. Therefore, we can use the cache-efficient multi-instance Viterbi

algorithm, Viterbi-MI to solve all these t/c instances at once.

Viterbi-Cache-Efficient(s[0..t− 1], A,B)

1. n← 2k; t← 2k+k
′
; c← 28

// Forward phase

2. size← c; q ← t/size

3. parallel for i← 0 to q − 1 do

4. li ← i× size, ri ← li + size− 1

5. if i > 0 then s[li]← random vector

6. Viterbi-MI(s[l0..r0], s[l1..r1], .., s[lq-1..rq-1], A,B, c)

// Fixup phase

7. u[0..t− 1]← s[0..t− 1];

8. for (j ← log c to (log t)− 1) and !converged do

9. size← 2j , q ← t/(2× size)

10. parallel for i← 0 to q − 1 do

11. li ← (2i+ 1)× size− 1; ri ← li + size; convi ← false

12. Viterbi-MI(u[l0..r0], u[l1..r1], .., u[lq-1..rq-1], A,B, size+1)

13. parallel for i← 0 to q − 1 do

14. ri ← 2(i+ 1)× size− 1

15. if u[ri] is parallel to s[ri] then convi ← true

16. else s[ri]← u[ri]

17. for i← 0 to q − 1 do

18. converged← converged ∧ convi

19. if converged = true then break

Figure 6.4: An efficient cache- and processor-
oblivious parallel Viterbi algorithm using rank conver-
gence. Viterbi-MI refers to Viterbi-MI algorithm

presented in Section 6.4.

In the forward phase, a multi-instance

Viterbi algorithm (see Figure 6.2) is

run assuming each of the t/c segments

as an independent problem instance.

The jth columns of all segments are

considered as the input, and at the

end of this phase the solution vectors

((j+1)th columns) for each of those seg-

ments are produced as output, where

0 ≤ j < c. The fixup phase is

similar to the improved Maleki’s al-

gorithm shown in Figure 6.2, expect

that now we use cache-efficient multi-

instance Viterbi algorithm to compute

the next solution vectors of all segments

at once instead of using a serial itera-

tive Viterbi algorithm to compute the

entire segment independently. As be-

fore, we start fixing from the second

segment since the first segment is al-

ready fixed after the forward phase. In

each fixup phase, we work on alterna-

tive segments always leaving out the

first segment of the prior phase (already

fixed by this time). After each fixup

phase, the size of each segment being considered is doubled (i.e., from 2i it becomes 2i+1) and as

a result, the number of segments becomes half (i.e., from t/(2i) to t/(2i+1)) with respect to the

previous phase. For each step, we use cache-efficient multi-instance Viterbi algorithm (Viterbi-

MI) to compute the solution vectors for all segments at once. At the end of each fixup phase, we
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Figure 6.5: Running time and L3 miss of our cache-efficient multi-instance Viterbi
algorithm and the multi-instance iterative Viterbi algorithm.

check whether the computed solution vectors are parallel to those found in the prior phase, and

if the answer is “yes” for all segments under consideration, the program terminates. Otherwise,

the next fixup phase starts. In the worst case, the fixup phase is executed max(1, log(t/c)) times,

after which all results are guaranteed to be correct.

6.6 Experimental results

In this section, we briefly describe our implementation details and performance results. We im-

plemented all algorithms presented in this chapter in C++ with Intel R© CilkTMPlus [3] extension

and compiled them using Intel R© C++ Compiler v13.0. We used PAPI 5.2 [4] to count the cache

misses and LIKWID [184] to measure energy and power consumption of the program. We used

a hybrid recursive divide-and-conquer (CORDAC) algorithm where the recursive implementa-

tion switched to an iterative kernel when the problem size became smaller than a predefined

basecase size (e.g., 64 × 64) to amortize the overhead of recursion and allow vectorization. All

programs were compiled with -03 -parallel -AVX -ansi-alias -opt-subscript-in-range

optimization parameters and were auto vectorized by the compiler.

We used a dual socket 16-core (= 2 × 8-cores) 2.7 GHz Intel Sandy Bridge machine to run all

experiments presented in the paper. Each core of this machine was connected to a 32 KB private

L1 cache and a 256 KB private L2 cache. All the cores in a socket shared a 20 MB 10-way L3

cache, and the machine had 32 GB RAM shared by all cores.

The matrices A, B and I were initialized to random valid probabilities. We used log-probabilities

in all implementations and hence used addition instead of multiplication in the Viterbi recurrence.
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Figure 6.6: Running time and L3 miss of our cache-efficient Viterbi algorithm and
comparison with Maleki et. al.’s algorithm.

All matrices were stored in column-major order. We performed two sets of experiments to

compare our cache-efficient algorithms with the iterative and the fastest known [126] Viterbi

algorithms. We discuss the results in the following section.

6.6.1 Multi-instance Viterbi: Iterative vs. Recursive

We compared our cache-efficient multi-instance recursive Viterbi algorithm with the multi-

instance iterative Viterbi algorithm. Both algorithms were moderately optimized. To construct

matrix Wn×q, we used a list of pointers to the respective columns and avoided direct copying

which saved frequent copy overhead. Wherever possible, we used pointer swapping to interchange

previous solution vector (or matrix) with the current solution vector (or matrix).

The running time and the L3 cache misses for the two algorithms are plotted in Figure 6.5. The

number of states (n), number of timesteps (t) and number of instances (q) for those experiments

were the same (hence, the overall complexity is O(n4)), and varied from 32 to 4096. The variable

m was fixed to 32. Although in the cache-efficient multi-instance Viterbi algorithm, the number

of stages does not need to be the same as the number of instances, we used n = q for convenience.

Note that, for biological sequence matching problems, t can be in the order of billions, and n

can be in the order of thousands.

The cache-efficient recursive algorithm ran faster than the multi-instance iterative algorithm in

most of the cases and at data point n = q = t = 2048, our recursive algorithm ran around 3×
faster than the parallel iterative algorithm.
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6.6.2 Single-instance Viterbi: Efficient recursive vs. Maleki et. al.’s

We compared our cache-efficient parallel Viterbi algorithm with Maleki et al.’s parallel Viterbi

algorithm. Both implementations were optimized similarly and the reported statistics are average

of 4 independent runs. In all experiments, the number of processors p was set to 16. Figure 6.6

shows the running time and L3 cache misses for the two algorithms when n = 2048 and 4096.

When n = 2048, the number of timesteps t was varied from 211 to 219 and m was set to 32. Our

algorithm ran faster than Maleki et al.’s original rank convergence algorithm throughout, and

for t = 219 our algorithm ran approximately 57% faster. Our algorithm’s L3 cache misses were

also lower by a significant amount, and for t = 219, Maleki et al.’s algorithm incurred 6.7 times

more cache misses than ours.

Similarly, when n = 4096, the trends remained similar. The number of timesteps t was increased

from 212 to 218. At t = 218, our algorithm ran 33% faster, and incurred a factor of 6 fewer L3

misses than Maleki et al.’s rank convergence algorithm.

Energy consumption. We also ran experiments to analyze the energy consumption (taking

average over three runs) of our cache-efficient recursive and Maleki et. al.’s algorithm. We used

the LIKWID tool to measure CPU, Power Plane 0 (PP0), DRAM energy, and DRAM power

consumption during the execution of each program. The energy measurements were end-to-end,

i.e., included all costs during the entire program execution.

Figure 6.7: Energy / power con-
sumption of our and Maleki et al.’s al-

gorithms.

Note that the DRAM energy consumption is somewhat

related to the L3 cache miss of a program as each L3

cache miss results in a DRAM access. Similarly, since

Package/CPU energy gives the energy consumed by the

entire package (all cores, on chip caches, registers and

their interconnections), it is related to a program’s run-

ning time. PP0 is basically a subset of CPU energy since

it captures energy consumed by only the cores and their

private caches.

For n = 2048, the timesteps was increased from 2048 to

16384 keeping m = 32. Figure 6.7 gives the ratio of the

energy and power consumption of Maleki et al.’s algo-

rithm with that of ours for all three types of energy and

power. The DRAM energy as well as power consump-

tion of our algorithm were significantly less because of

the reduced L3 cache misses. When t = 16384, Maleki

et al.’s algorithm consumed 60% more DRAM energy and 30% more DRAM power than ours.

The reduction in package/CPU energy was 6%.

6.7 Conclusions and Future Research

Solving the Viterbi decoding problem efficiently is very important for bioinformatics. In this

chapter we proposed the first processor- and cache-oblivious efficient Viterbi algorithm. The
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algorithm combines the ideas of the cache-efficient multi-instance Viterbi algorithm with the

rank-convergence used by Maleki et al.’s parallel Viterbi algorithm. The significance of our al-

gorithm lies mainly in its improved cache complexity, and cache- and processor-obliviousness,

which translate to better runtime, energy and power metrics. It will be interesting to find out

the cache-adaptivity and bandwidth-performance of the presented algorithms. Extending this

algorithm to manycores and distributed-memory settings is also interesting. Another possible ex-

tension is to solve other irregular dynamic programming problems such as the knapsack problem

using a similar algorithmic technique that we have used here.
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Algorithms on Graphs
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Chapter 7

Optimistic Parallelization:

Avoiding Locks and atomic

instructions in Shared-memory

Parallel BFS

7.1 Abstract

Breadth-first search (BFS) has numerous applications in bioinformatics including analysis of

biological interaction networks, metabolic pathway search, finding minimum gene subsets, be-

tweenness centrality, searching in tries, and so on. In this research we show how to use optimistic

parallelization to avoid the use of locks and atomic instructions during dynamic load-balancing

in level-synchronous parallel breadth-first search algorithms.

Dynamic load-balancing in parallel algorithms typically requires locks and/or atomic instructions

for correctness. We show that sometimes an optimistic parallelization technique can be used to

avoid the use of locks and atomic instructions during dynamic load-balancing which results in

improvement in scalability and performance. In optimistic parallelization one allows potentially

conflicting operations to run in parallel with the hope that everything will run without conflict,

and if any occasional inconsistencies arise due to conflicts, one will be able to fix them without

hampering the overall correctness of the program. We use this approach to implement two new

types of high-performance lockfree parallel BFS algorithms and their variants based on centralized

job queues and distributed randomized work-stealing, respectively. All of these algorithms are

cache-oblivious and one of them uses recursive divide-and-conquer for dynamic load-balancing.

We derive theoretical performance bounds and prove correctness of our algorithms. We also

present experimental results showing scalability of our algorithms on state-of-the-art multicore

and manycore (Xeon Phi) machines, using several parallel programming platforms (cilk++, cilk

plus, OpenMP) and on various kinds of graphs. Our implementations generally run faster than

parallel BFS algorithms by Hong et. al. (PACT, 2011) and Leiserson and Schardl (SPAA, 2010)
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where the latter paper is also free of locks and atomic instructions but does not use optimistic

parallelization.

7.2 Introduction

Optimistic parallelization is an approach where we allow parallel execution of potentially con-

flicting code blocks provided we know how to handle conflicts if they actually arise [136]. In this

approach, threads modify shared data optimistically and try to detect conflicts, and if conflicts

arise they undo the modifications or take recovery steps. Such parallelization is specifically useful

for irregular problems where it is hard to exploit fine-grained parallelism [116].

Different variations of optimistic parallelization approaches have been used for solving different

problems including Delaunay mesh refinement, image segmentation using graphcuts, agglom-

erative clustering, and Delaunay triangulation [116], [136] and so on. However, all of them

typically use locks or atomic instructions while recovering from conflicts. We show that some-

times problem-specific properties can be used to avoid the use of locks and atomic instructions

even during the handling of inconsistencies in the data structure arising from the unprotected

concurrent updates. We demonstrate how to use optimistic parallelization technique to avoid

locks and atomic instructions during dynamic load-balancing on shared-memory multicores and

manycores. For this we use breadth-first search – a popular graph traversal problem known to

be hard to parallelize efficiently because of its irregularity. Our experimental results show that

optimistic parallelization often leads to better overall load-balancing.

Breadth-first Search (BFS) is one of the basic graph search algorithms in which we explore a

graph systematically level by level from a source vertex. Graphs are often used as the funda-

mental representational tool for solving problems in a wide range of application areas such as

analyzing social networks [133], consumer-product web analysis, computational biology [129],

intelligent analysis, robotics, network analysis, and even in image processing [167]. All these

applications require handling of massive data and traditionally demand longer processing time

and other computational resources. Therefore, efficient parallelization of graph processing algo-

rithms such as BFS is of utmost importance in many of these application areas. BFS is used as

a building block for several other important algorithms such as finding shortest paths and con-

nected components, graph clustering [19], community structure discovery, max-flow computation

and the betweeness centrality problem [80]. High performance BFS is also used in pathminer

[129], for pattern searching in DNA/RNA strings using Trie [76], and for the execution of range

queries of an MVP-index [127]. BFS is being used as a graph benchmark application for ranking

supercomputers ([15], [13]), too.

BFS belongs to the class of parallel algorithms where the memory accesses and work distribution

are both irregular and data-dependent [131]. In the standard serial BFS algorithm, a FIFO queue

is used to sequentially explore the vertices of a graph level by level from a source vertex, and

find the levels (or unweighted shortest distances) of other vertices from the source. In a parallel

BFS algorithm, typically all vertices of a given level and all neighbors of a given vertex can

be explored in parallel which gives the best theoretical bounds of O(m+n
p + D log p) where m

denotes the number of edges, n is the number of vertices, D is the diameter of the graph, and
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p denotes the number of cores used to run the BFS. Parallel BFS algorithms are typically level-

synchronous, i.e., a synchronization barrier is used after each level of the breadth-first search.

This also means that there is a synchronization overhead of O(log p) after each BFS level which

increases linearly with the diameter D of the graph. Furthermore, the amount of parallelism

achievable at each BFS level is constrained by the number of nodes/vertices at that particular

level making performance of a BFS algorithm highly dependent on the structure of the graph

itself.

Various techniques have been engineered so far to parallelize BFS algorithms, such as use of

distributed-memory parallelism [167, 194], shared-memory parallelism [9, 15, 18, 105, 119], cen-

tralized queues, distributed queues [11], and complicated concurrent data structures [119]. Sev-

eral GPU-based implementations of BFS have also been proposed [105, 131]. Each year a num-

ber of new approaches are proposed on efficient and scalable parallel BFS algorithms [31, 80],

[38, 158]. However, none of them is completely free of locks and atomic instructions and does

dynamic load-balancing while using simple data structures at the same time. Most of the earlier

algorithms either use locks (fine-grained or coarse-grained), or atomic instructions or compli-

cated data structures to parallelize BFS. Some earlier endeavor of lockfree graph algorithms can

be found in [54, 55], however, those algorithms use atomic instructions for correctness. Note

that although lock or atomic instructions based resource protection is very common, it has many

disadvantages including non-scalability and inefficiency. In [38], the authors proposed a lock

and atomic-instruction free VIS data structure (bit array) to keep track of visited vertices in

BFS. They used static load-balancing to divide the vertices, adjacency lists, and the VIS data

structure, and because of static load-balancing, no lock was required. On the contrary, here

we present shared-memory parallel BFS algorithms that use lock- and atomic instruction-free

simple data structure with optimistic parallelization while doing dynamic load-balancing among

threads at the same time.

Although different optimistic parallelization techniques have been used for efficient parallelization

of several irregular problems, most of them use locks and/or atomic instructions for resolving

conflicts. Cledat et al. [52] has proposed another type of optimistic parallelization in which one

traces the data dependency and readability to decide whether two operations can be executed in

parallel, and demonstrated its use on graph coloring problem. However, the type of optimistic

parallelization technique we use for BFS differs from all of these. In our approach, threads update

global shared data structures without any protection. However, they can detect inconsistencies

on the fly and use the perceived values to explore a segment of vertices from a queue only when

they find it to be safe. In case of inconsistencies, threads retry to get consistent values. We

exploit problem-specific properties to maintain correctness of the algorithm.

In this work, we use a lock- and atomic instruction-free optimistic parallelization approach to

implement two types of shared-memory parallel BFS algorithms based on centralized queue

and distributed randomized work-stealing for dynamic load-balancing, and show that these al-

gorithms outperform their lock-based counterparts. We present proof of correctness of these

algorithms, analyze theoretical complexity and demonstrate that the proved theoretical bounds

actually hold in practice using experimental results. We also demonstrate the performance and

scalability of these algorithms on different modern multicore architectures including Intel West-

mere, Sandy Bridge, AMD Magny-Cours as well as on Intel Xeon Phi Many-Integrated-Cores.
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To the best of our knowledge, there is only one other shared-memory parallel BFS implemen-

tation [119] that performs dynamic load-balancing without using locks and atomic instructions,

and our implementations outperform that one, too. However, implementation from [119] uses a

complicated data structure (called a bag) instead of optimistic parallelization to achieve the goal,

whereas we use simple array-based data structures with optimistic parallelization technique.

7.3 Prior Work

In this section, we summarize some of the prior work on shared-memory parallel BFS. Leiserson

et al. [119] have implemented a work-efficient parallel BFS algorithm using cilk++ which does

not use locks and atomic instructions. However, it uses a specialized data structure called a bag,

which is composed of reducers (a concurrent hyper-object provided by cilk++) [82] instead of

standard FIFO queues. In [18], authors have proposed a hybrid of top-down (parent to child)

and bottom-up (child to parent) exploration of edges during BFS, and used atomic instructions

to ensure mutually exclusive writes. In [80], a NUMA (Non-uniform Memory Architecture)

aware graph traversal technique has been proposed which uses a work-stealing approach and an

idle thread steals from other neighboring threads running on the same socket to improve cache

efficiency. This algorithm also uses atomic instructions for correctness. In [158], the authors have

proposed a block-accessed shared queue data structure to implement a layered (level-synchronous)

BFS and used atomic fetch and add to change the queue index pointer. Chhugani et al. [38]

have proposed a lock and atomic-instruction free update of VIS data structure that keeps track

of visited vertices during BFS. They have used static load-balancing to distribute the vertices,

adjacency lists, and VIS data structure among the threads, and static work division typically

does not require locks or atomic instructions. Lastly, in [105], the authors have proposed a hybrid

approach which chooses an appropriate version of BFS algorithm from a) a serial version, b) two

different multicore versions, and c) a GPU version, mainly based on the number of vertices in

the current and the next BFS level. They have presented two level-synchronous parallel BFS

algorithms for multicores which use a read-based method (random arrays instead of queues) and

a read+queue based approach with and without using a visited array bitmap, respectively. Their

work has adapted the queue based BFS algorithm from [9], which was claimed to be the best

performing state-of-the-art parallel BFS at its time of publication. They have also used atomic

instructions in their BFS for updating the visited vertices bitmap.

7.4 Our Contributions

None of the known parallel BFS algorithms based on dynamic load-balancing is free of locks (e.g.

[11] uses locks), atomic instructions (e.g. [105] uses atomic case and set) and complicated data

structures (e.g. [119] uses bags of reducers) at the same time as opposed to ours. Similarly,

none of them has considered lock- and atomic instructions-free work-stealing for dynamic load-

balancing which we use in our algorithms.

Our major contributions in this work are summarized below:
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. Novel algorithms using optimistic parallelization: We present two types of level-

synchronous parallel BFS algorithms for multicores along with their variants based on:

− Centralized queues: single and multiple queues

− Distributed queues using explicit randomized work-stealing : with/without special

considerations for scalefree graphs (i.e., power law graphs).

− Distributed queues using implicit randomized work-stealing provided by Cilk’s work-

stealing scheduler : uses a fork-join type recursive divide-and-conquer technique. This

algorithm is also free of locks and atomic instructions.

We show how to use optimistic parallelization to avoid the use of locks and atomic instruc-

tions during dynamic load-balancing. We allow concurrent threads to update shared vari-

ables (queue indices and distance values) without locks and atomic instructions. However,

we make sure that the results are still correct and the overhead of duplicate exploration (a

consequence of unprotected update of queue indices) is negligibly small.

. Theoretical analysis: We prove correctness of the lockfree algorithms, and theoretical

bounds of the corresponding lock-based algorithms.

. Experimental analysis: We implement these algorithms using Intel R© Cilk++TM [118],

CilkTMPlus [3] and OpenMP [59] and present performance and scalability results on different

architectures. Major conclusions that we have reached are as follows:

− Lockfree versions are generally faster than the corresponding lock-based versions.

− Work-stealing based algorithms are more scalable than centralized queue based al-

gorithms, and scale till 244 threads on the Intel Xeon Phi architecture even with

hyper-threading, where the actual number of cores in the machine is 61 with 4 hard-

ware threads running per core.

− For explicit work-stealing, the OpenMP implementation is slightly faster than its Cilk++

and Cilk Plus counterpart. However, OpenMP implementation is slower than the di-

vide and conquer based lock and atomic instructions free Cilk Plus BFS implemen-

tation that uses work-stealing provided by the Cilk’s runtime scheduler.

. Comparison with prior results: We compare the performance of our algorithms with

the following two publicly available level-synchronous parallel BFS algorithms.

− Baseline1 [119]: To the best of our knowledge this is the only known state-of-the-art

BFS algorithm that avoids the use of locks and atomic instructions during dynamic

load-balancing; however, unlike our algorithms, it uses a complicated reducer-based

recursive data structure (called a bag) provided by Cilk++. Furthermore, it does not

use optimistic parallelization.

− Baseline2 [105]: This algorithm uses atomic instructions and performs better than

the multicore algorithm presented in [9].

7.5 Our Parallel BFS Algorithms for Multicores

In this section, we present sketches of our parallel BFS algorithms. In all our algorithms we

use two arrays of queues (these queues are basically randomly accessible arrays) Qin[0..p − 1]
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and Qout[0..p− 1] to store vertices in the current level and the next level (assuming there are p

threads in the system) of BFS, respectively.

We start from a designated source vertex, s and put s in Qin[0], visit all neighbors, {v} of s and

put them in the next level queue Qout[i], where i is the id of the thread that discovered those

neighbor vertices. Then we swap Qin and Qout and the next level of exploration starts. We keep

exploring any unexplored vertices in Qin this way until there is any unexplored vertex remaining

in the queue. Vertices are explored in parallel by all threads and threads put newly discovered

vertices in their private output queues, Qout[thead id]. No queue is protected by locks or atomic

instructions. We use the term segment to denote a contiguous part of an input queue. Typically,

a thread explores a segment of vertices from an input queue. We always add a sentinel (0) at

the end of each queue which helps in ensuring correctness of the lockfree algorithms.

We use optimistic parallelization in our algorithms in the following way: we allow multiple

threads to fetch or steal a segment from the shared distributed/centralized queues without any

locks and atomic instructions, assuming that nothing will go wrong. However, because of the

absence of locks and atomic instructions during the update of shared queue indices, a thread can

pick either

. an invalid segment (i.e., at least one endpoint of the segment falls outside the actual queue

range), or

. an overlapping segment (i.e., segment is valid but overlaps with other thread’s current

segment) or

. a stale segment (i.e., segment is valid but already explored by other threads).

While invalid segments may produce wrong results, or even cause the program to crash, overlap-

ping or stale segments can only cause duplicate explorations. In our algorithms, threads check

for invalid segments while stealing or fetching a segment from the queues, and in a case of failure

(i.e., actually picked an invalid segment), they retry to get a valid segment. The fact that for

BFS duplicate exploration does not hamper correctness helps us to use optimistic parallelization.

Furthermore, several tricks can be used to eliminate duplicate explorations almost entirely. Note

that because of duplicate exploration, some extra overhead may be added to the system. On the

other hand, we are completely removing the overhead of locks1 and atomic instructions which

are known to cause serialization and create bottlenecks when the number of threads increases.

So, here the challenge is to reduce the cost of inconsistency/conflict detection and duplicate

exploration to such an extent that the total overhead does not negate the total savings resulting

from the avoidance of locks, atomic instructions, and complicated data structures. Similar tech-

niques can also be used for other types of algorithms where repeated work does not introduce

inaccuracy in results (e.g., DFS, IDA*, A*, and applications that pick minimum or maximum

from a bunch of values, etc).

To name our algorithms, we use the convention shown in Table 7.1. Table 7.2 shows the acronyms

of the presented algorithms. We have explained the lockfree algorithms in the following section.

Each algorithm has a corresponding lock-based version where threads use locks to change the

shared variables (queue indices, segment pointers) instead of using optimistic parallelization.

1On a typical PC, locks are known to be more than 20 times slower than standard CPU operations [139].
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Subscript Meaning

C Centralized

D Decentralized

L Lockfree

W Work-stealing

S Scalefree

Table 7.1: Naming
convention.

Acronym Full Name Acronym Full Name

BFSC Centralized
(with locks)

BFSWS Work-stealing + Scalefree
(with locks)

BFSCL Centralized +
Lockfree

BFSWSL Work-stealing + Scalefree
+ Lockfree

BFSDL Decentralized +
Lockfree

BFSWSLDQ Divide-and-conquer Based,
Implicit Work-stealing

BFSW Work-stealing
(with locks)

Baseline1 Implementations from
[119]

BFSWL Work-stealing +
Lockfree

Baseline2 Implementations from
[105]

Table 7.2: Program acronyms.

7.5.1 Based on Centralized Queues

BFSCL (Centralized + Lockfree). In this algorithm, we maintain a global queue pointer q

with the invariant that all vertices in the queues to the left of Qin[q] have already been explored.

Each queue, Qin[k], has a front pointer Qin[k].f initialized to 0, and we maintain the invariant

that all vertices to the left of Qin[k].f in that queue have already been visited. Whenever a

thread needs to fetch a segment, it first stores q in a local variable k. It then keeps incrementing

k (if needed and as long as necessary) to find the leftmost queue with f ′ < Qin[k].r where r

is Qin[k]’s rear pointer and f ′ is a local variable that holds the value of Qin[k].f . As soon as

it finds such a k, it updates q to k, and Qin[k].f to f ′ + s where s is the length of a segment.

Observe that in the case of two or more threads changing q at the same time, a thread may

end up updating q to a point to the left of where it should actually be, which can result in

a subsequent thread receiving a segment with vertices that are already visited. The Qin[q].f

pointer can also get updated backward in a similar way, which may cause two threads receiving

the same segment for exploration.

However, as mentioned before, this type of duplicate exploration does not hamper the correctness

of the algorithm. Nevertheless, to reduce the possibilities of duplicate exploration, we use the

following trick: whenever a thread reads a new vertex from the queue for exploration, it empties

that location by setting it to 0. Whenever a thread sees a 0 in the queue, it concludes that the

current segment has already been explored or is under exploration by some other thread, or it

has reached the end of the queue segment. So, it simply stops at that point and tries to get a

new segment from the queues. Note that there is no possibility of creating a gap in the queues

because a thread only stops when it sees a 0 (rather than stopping by checking a rear pointer) and

a 0 can only appear either at the end of the queue or if the element has already been explored.

While exploring the vertices, each thread puts the newly discovered vertices in their own private

output queue Qout[i] where i denotes the thread id, and after finishing the exploration of all

vertices from all queues in the current level, we swap Qin and Qout, and exploration starts again

for the next level.

BFSDL (Decentralized + Lockfree). This algorithm builds on BFSCL, however, rather

than having one centralized queue, we now have j centralized queues for some j ∈ [1, p], where

each centralized queue consists of either dp/je or bp/jc queues from Qin. Note that j = 1 means

it is a purely centralized approach like BFSCL, whereas j = p means purely distributed. At

the beginning of each BFS level, each thread picks a random centralized queue, and whenever

the thread becomes idle, it fetches the next available segment from that centralized queue and

explores vertices from that segment. However, if there is no more segment left in its chosen
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centralized queue, it randomly tries at most cj log j times (where c > 1 is a constant) to get a

new nonempty centralized queue, and if it succeeds in finding such a queue, it explores vertices

from that in the same way as before. It can be proved using the balls and bins model [135] that

w.h.p. it takes no more than cj log j tries to check each centralized queue at least once for work

provided c > 1. This process continues until all queues become empty and then, the next level

of BFS starts.

7.5.2 Based on Distributed Randomized Work-stealing

BFSWL (Work-stealing + Lockfree). In this algorithm, we assume that at the beginning

of a BFS level, Qin[q].r holds the rear pointer of Qin[q] for every q, and this variable remains

unchanged throughout that level. Every thread maintains three variables, namely q, f and r to

keep track of the queue id, front pointer, and rear pointer, respectively, of the segment of vertices

it is currently working on. Initially, thread t ∈ [0, p) gets the entire Qin[t] as a single segment. As

it explores the segment, it keeps updating its own f pointer accordingly. In order to reduce the

chances of duplicate exploration of the same vertex by other threads, a thread clears (i.e., sets

to 0) every location of the queue segment as soon as it reads the vertex stored in that location

for exploration. A thread aborts working on a segment as soon as it encounters a 0 value (i.e.,

a cleared value) in the segment. Whenever the thread runs out of work, it chooses a random

thread with enough work and tries to steal half of its work (i.e., the right half of its unexplored

segment of vertices). The thief first saves the queue id q, front pointer f and rear pointer r of

the victim’s segment to local variables q′, f ′ and r′, respectively. It then performs the following

sanity check: f ′ < r′ ≤ Qin[q′].r. If the check fails (means the victim has possibly moved to

another queue, and the retrieved segment is invalid), the thief aborts this steal and tries another

random victim. Otherwise it updates its own q, f and r pointers to q′, f ′ + 1
2 (r′ − f ′) and r′,

respectively, and the victim’s r pointer to f ′+ 1
2 (r′ − f ′). It does not change the victim’s q and

f pointers. Observe that as no thread checks its own rear pointer while exploring, any invalid

change to the rear pointer of the segment (which may happen due to not using locks and atomic

instructions) does not hamper correctness. If a thief changes a rear segment pointer of the victim

to any invalid location, no other thread will be able to steal from that particular victim for some

time until either the victim itself becomes a thief and changes its own rear pointer or exploration

of a new level starts. On the contrary, if a thief gets an invalid segment from a victim, using the

sanity checks as described above, it safely avoids that segment and retries for a valid segment.

BFSWSL (Work-stealing + Scalefree + Lockfree). The BFSWSL algorithm is optimized

for scalefree graphs (whose degree distribution follow power law) that appear in real-world very

frequently (e.g., many biological interaction networks, social networks, Wikipedia and so on).

This algorithm uses an approach similar to that used in BFSWL. However, the vertices of each

level are explored in two phases. In the first phase, the threads only explore the low-degree

vertices using explicit work-stealing as before and push the higher degree vertices into a separate

queue, Qs (the definition of high degree can be changed using a threshold variable). At the end

of this phase, we divide the adjacency list of each vertex from Qs into p chunks and for each

i ∈ [1, p], the ith thread explores the ith chunk of the adjacency list of that vertex (phase 2).

No work-stealing happens in this phase. We have also experimented with another variant of

BFSWSL which uses work stealing also in the second phase, and a thread is allowed to steal
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half of the remaining unexplored adjacency list of a vertex if there is only one vertex left in the

queue. However, this approach does not perform as well as the first approach.

BFSWSLDQ: BFSWSL using Cilk’s Work-Stealing Scheduler. We change our BFSWSL

algorithm to use parallel recursive divide and conquer so that we can use the benefit of Cilk’s

work-stealing scheduler and avoid doing work stealing explicitly. Again, we do not use locks,

atomic instructions, and complicated data structures. Each thread starts with its own queue as

before. But before going for actual exploration, it recursively divides the work into two halves

and spawns two threads to work on those two parts. Each thread keeps doing this until it reaches

a basecase size. After reaching the pre-specified basecase size, it explores the vertices in two

phases as done in BFSWSL. Note that this algorithm is similar to the algorithm presented in

[119] except that we use simple arrays instead of the bags (a reducer hyper-object). It is possible

to avoid the use of bags because each thread can use its thread id returned by Cilk’s runtime

system to identify its own output queue to write to 2, and thus avoiding any potential race on the

output queue. Each thread separates the high degree vertices and explores them in the second

phase by dividing their adjacency lists evenly among the threads. Note that by using divide and

conquer and spawning on disjoint subproblems, threads put big chunks of work in the Cilk’s

double-ended-queues (deque). Cilk’s runtime work-stealing scheduler allows idle threads to

steal those work from the deque automatically. So in this case, the programmer does not need

to implement work stealing; the work-stealing scheduler of Cilk will handle the stealing instead.

7.6 Extension to NUMA

It is not difficult to optimize our algorithms for NUMA (Non-Uniform-Memory-Architecture)

machines. For example, for the decentralized algorithm (BFSDL), we can make sure that all

threads that are initially assigned to the same centralized queue are launched on the cores of

the same socket.3 When a group of threads finishes exploring the vertices from their centralized

queue pool, each of them can migrate to another random queue allocated on the same socket or

in a case of no such queue available on the same socket, they explore from queues allocated on

other sockets. This can also be done by assigning higher priorities to centralized queues allocated

on the same socket and lower priorities to others. For the work-stealing based algorithms, we can

use the following approach: while stealing, a thread randomly chooses a thread running on the

same socket with higher priority. A NUMA-aware work-stealing approach for the betweenness

centrality problem has been used in [80] which can also be adopted.

7.7 Discussion: Further Improvements

In parallel BFS algorithms, if one does not maintain any visited bitmap to keep track of visited

vertices, it is possible to explore the same vertex multiple times by multiple threads. However,

as explained before, this does not hamper correctness of the algorithm. Note that none of our

algorithms has used any technique to remove duplicate vertices from the queues. One can use

locks, try locks or atomic instructions and/or bitmaps of visited vertices as used in [105] to

2The use of thread id makes this algorithm processor-aware, whereas [119] is processor-oblivious
3Cilk++ does not allow setting thread affinities, and so, we can use OpenMP instead.
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remove duplicate vertices (or to prevent duplicate exploration by different threads) from queues.

It is also possible to depend on arbitrary concurrent write property to record only one parent

of a vertex (since a vertex can have multiple parents) as used in [23]. However, we plan to use

the following method to reduce duplicate exploration of vertices even further. Each thread will

store the queue id (or parent id) of a vertex in a global array during discovery (using arbitrary

concurrent write), and it will also check the queue id (or parent id) before exploring a vertex;

if that matches with the previously stored value (which means that this thread discovered the

vertex in the previous level), it explores the vertex, otherwise it skips that vertex. Note that this

approach does not require any locking or atomic instructions. Avoiding duplicate explorations

can be beneficial for dense and low diameter graphs where the number of duplicate vertices can be

huge. Lock and atomic-instruction free approach for tracking visited vertices have already been

proposed in [38] which can also be followed. It is also not difficult to incorporate the direction-

optimized-BFS [18] in our algorithm to get an additional performance boost as reported by

others.

7.8 Correctness

In this section, we argue the correctness of BFSWL. The correctness proofs of other lockfree

variants (BFSCL, BFSDL, and BFSWSL) are based on similar arguments, and hence have been

omitted. We argue that in each BFS level:

1. The vertex in each non-empty location of the input queues is explored by at least one

thread (safety property), and

2. At any time step, if there are unexplored queue locations in the system, at least one thread

is exploring a queue location it has not explored before (progress property).

Recall that in BFSWL whenever a thread picks a vertex from a queue for exploration, it sets

that queue position to 0 (zero). We call each of these zeros a wall. Each queue starts with a

sentinel zero, that is, initially, there is a wall at the end of each queue. Then new walls start to

appear at various locations of the queues as vertices are picked for exploration by threads. In

each of our lockfree algorithms once a thread starts exploring a queue from any location (and

always moving to the right), it does not stop until it hits a wall. Once a thread hits a wall, it

tries to steal a new queue segment from a random busy thread (if any).

We say that an unexplored queue location j of any given queue q (i.e., q[j] 6= 0) is visible to a

given thread τ provided τ is exploring (or about to start exploring) the same queue q, the next

location of q to be accessed by τ is q[i] for some i ≤ j, and no wall exists between q[i] and q[j],

i.e., q[k] 6= 0 for i ≤ k ≤ j.

It is not difficult to see that in every BFS level BFSWL maintains the following invariant.

Invariant 7.8.1. At any given time, every unexplored input queue location is visible to at least

one thread.

Since at the start of a given level each thread points to the first (leftmost) location of its own

input queue, and each queue terminates at a wall, the invariant holds initially. It is also easy

to see that every steal maintains the invariant. Since once a thread starts exploring a queue
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segment it does not stop until it hits a wall, and attempt to steal only if it runs out of visible

vertices, the invariant implies that each queue entry will be explored by at least one thread.

Invariant 7.8.1 also implies that at any given time if there are unexplored queue locations in

the system, at least one thread is doing useful work, i.e., exploring a queue location it did not

explore before. This property ensures that progress is always made by the algorithm.

Note that our correctness proof works under the sequential consistency model 4. However, we

believe that modifying our algorithms and/or proofs for some of the weaker models should not

be too difficult. For example, our algorithms work under a relaxed model in which a core can

read the value of its own previous write before the write is made visible to other cores. As all the

races are benign, the correctness of our BFS algorithm should hold on any weaker consistency

models as well.

7.9 Complexity Analyses

In this section, we analyze the parallel running times of the locked versions of our algorithms on

p processing cores assuming that the input graph G has n vertices, m edges, maximum degree ∆

and diameter D. We show the analysis of lock-based version instead of lockfree versions, because

it is difficult to guarantee any bound on the lockfree algorithms. However, we experimentally

show that the lockfree algorithms follow the bounds proved for the lock-based algorithms.

Each algorithm starts by setting the BFS level of each vertex to +∞ except that of the source

vertex whose distance is set to 0. For ease of analysis (as in [119]) we assume that when a thread

is exploring the adjacency list of a vertex u, for every v ∈ adj[u] it tries to lock v using a waitfree

try lock(v), and if it succeeds in doing so, it inserts v into its output queue provided the BFS

level of v is still +∞. The thread then updates v’s BFS level to the correct value and releases

the lock on v. This try lock() approach ensures that no vertex appears more than once in the

input queues (of next level) without incurring the contention overhead of a standard lock. In our

actual implementations we do not lock v before checking it for insertion into the queue, and as

in [119], we found that even without locks, duplicate insertions happen very rarely in practice.

7.9.1 BFSC (Centralize + Lock)

At any given BFS level l, each thread either explores vertices or waits on a lock to acquire

the next segment from the centralized queue. A thread waits O(p) time for each access to the

queue. Let us assume that at level l, there are ql vertices in the input queues, and q′l vertices are

inserted into the output queues. Therefore, q′l = q(l+1). We divide the ql vertices into segments

of size s, then the function to get the next segment from the centralized queue will be called(
ql
s + p

)
times in total since each thread tries one additional time to be sure that the queue is

empty. Therefore, the total wait time and cost of getting the next segment will be O
((
ql
s + p

)
p
)
.

Also, observe that a level cannot end until each thread has completed exploring the vertices in

its last segment even if there is no more work left in the centralized queue. Overall, the total

4The result of any execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this sequence in the order specified
by its program.
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amount of work for a given level l can be computed by summing the work for exploration,

for acquiring the next segment including the waiting for lock and for termination as follows:

O
(
(ql + q′l) +

(
ql
s + p

)
p+ ps∆

)
.

Let wl be the amount of work done by any thread at level l, and therefore, total work by all p

threads at level l is wlp. Hence, we get wlp = Θ
(
(ql + q′l) +

(
ql
s + p+ s∆

)
p
)

⇒ wl=Θ
(

1
pql + 1

pq
′
l + ql

s + p+ s∆
)

. Therefore, total work by all p threads across all BFS levels

isW=p
∑D
l=0 wl, and the parallel running time, Tp=W/p=Θ

(∑D
l=0

(
1
pql + 1

pq
′
l + ql

s + p+ s∆
))

.

Note that
∑D
l=0 (ql + q′l)=O(n+m). We consider three different cases based on the relative sizes

of ql, p and ∆, and choose the value of s accordingly. For each case i ∈ [1, 3], we compute the

parallel running time Tp
(i) of the algorithm assuming that only case i arises in each BFS level.

Then Tp
(1) + Tp

(2) + Tp
(3) will be an upper bound on the overall parallel running time Tp of the

algorithm.

Case 1 (1 ≤ ql < ∆p): We set s = 1, and obtain Tp
(1)=O

(
m+n
p +D (ql + p+ ∆)

)
=O

(
m+n
p +D∆p

)
.

Case 2
(
∆p ≤ ql < ∆p2

)
: We set s=

⌈
ql
∆p

⌉
, and get Tp

(2)=O
(
m+n
p +D (∆p+ p) +

∑D
l=0

ql
p

)
=

O
(
m+n
p +D∆p

)
.

Case 3
(
ql ≥ ∆p2

)
: We choose s =

⌈√
ql
∆

⌉
, leading to Tp

(3)=O
(
m+n
p +

∑D
l=0

(√
ql∆ + p

))
=

O
(
m+n
p +

∑D
l=0

(
ql
p + p

))
= O

(
m+n
p +Dp

)
.

Therefore, Tp ≤ Tp
(1) + Tp

(2) + Tp
(3) = O

(
m+n
p +D∆p

)
. Observe that the algorithm is work-

efficient, i.e., pTp = O(m+ n) provided (m+ n) = Ω(D∆p2).

Theorem 7.1. For a graph of diameter D with n vertices, m edges and maximum degree ∆,

BFSC takes O
(
m+n
p +D∆p

)
time when run on p cores, and it is work-efficient provided (m+

n) = Ω(D∆p2).

7.9.2 BFSW (Work-stealing + Lock)

Let Min-Steal-Size denote the number of vertices in a queue required to allow a steal, and

Max-Steal-Attempts denote the maximum number of steal attempts made by a thread before

exiting a level. Let us consider a specific BFS level l. Suppose there are ql vertices in the input

queues, and let ql
′ be the number of vertices to be inserted into the output queues. Therefore,

q′l = q(l+1). We use the following result from probability theory: for any α > 1, if αp log p balls

are thrown uniformly at random into p bins, then with probability at least 1 − 1
pα−1 each bin

will contain at least one ball. We model the processors as bins, and the steal attempts as balls.

We will first assume that ql and Min-Steal-Size are independent of p. Therefore, we can treat

them as constants w.r.t. p. We will remove this assumption later.

We consider the steal attempts in the entire system sorted in nondecreasing order of time, and

group them into rounds with each round containing αp log p consecutive steal attempts in the

sorted order. Hence, after each round of steal attempts each thread will be the victim of at least

one steal attempt with probability at least 1− 1
pα−1 . Since each successful steal attempt splits the

work of the victim thread into two halves, after the first round of steals, no thread will contain
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more than ql
2 entries in it’s input queue with probability at least 1− 1

pα−1 . In general, after k =

log
(

ql
Min-Steal-Size

)
rounds of steal attempts all input queues will have ≤ ql/2k =Min-Steal-Size

entries with probability at least 1 − k
pα−1 . Since we assumed k to be a constant w.r.t. p, this

means that w.h.p. in p, after k(αp log p) = Θ
(
p log p log

(
ql

Min-Steal-Size

))
steal attempts in the

entire system, no steal attempt will succeed.

Now if we do not assume ql and Min-Steal-Size to be constants (w.r.t. p), we must choose α

carefully, so that 1− k
pα−1 remains a high probability in p. For example, we may choose to keep

1− k
pα−1 ≥ 1− 1

p which leads to α ≥ 2 + log k
log p = 2 +

log log ( ql
Min-Steal-Size )
log p . In that case, w.h.p. in p,

after k(αp log p) = Θ
(
p
(
log p+ log log

(
ql

Min-Steal-Size

))
log
(

ql
Min-Steal-Size

))
steal attempts in the

entire system, all steal attempts will fail.

Observe that we can compute the total time Wl spent by all threads in a given level by summing

up the followings: a) the total time spent by all threads waiting to be launched, b) total time

spent doing real work (i.e., exploring vertices), c) total time spent trying to steal, and d) total

wait time at a sync point. For our implementation, the total time spent waiting to be launched

by all threads is O (
∑p
i=1 i) = O

(
p2
)
. Assuming that no duplicate exploration happened, total

time spent doing useful work is clearly O (ql + q′l).

Recall that we divided the steal attempts into rounds of αp log p steal attempts each, where α > 1

is a parameter to be determined later to ensure that the final parallel running time holds w.h.p.

in p. After log ql rounds of steal attempts w.h.p. in p no thread will have any work worth stealing

(assuming Min-Steal-Size = 1). Let’s also assume for simplicity that Max-Steal-Attempts

= 3αp log p. Thus the total number of steal attempts in level l will be 3 (log ql + p)αp log p

w.h.p. in p. The total time spent at the sync point can be determined by observing that in

addition to the O (log p) idle time introduced by the sync implementation itself, w.h.p. in p a

thread needs to wait for O ((Min-Steal-Size)∆) time so that other working threads (if any)

can complete exploring their last segments of size Min-Steal-Size. Hence, Wl = O(p2 +(ql+q
′
l)

+ 3 (log ql + p)αp log p + (log p+ ∆)p) w.h.p. in p. Thus parallel time spent in this level is Wl

p

= O
(
ql+q

′
l

p + 3 (log ql + p)α log p+ ∆
)

= O
(
ql+q

′
l

p + (log n+ p)α log p+ ∆
)

w.h.p. in p, where

we use the observation that ql ≤ n.

Therefore, Tp =
∑D
i=1

Wl

p = O
(∑D

i=1

(
ql+q

′
l

p

)
+D(log n+ p)α log p+D∆

)
. Observing that∑D

i=1 (ql + q′l) = O (m+ n), we have, Tp = O
(
m+n
p +D(log n+ p)α log p+D∆

)
.

Now we are in a position to determine the value of α. Let us first assume that m, n, D,

∆ and the ql’s and q′l’s in all levels are independent of p (which is indeed the case), and

thus they are constants w.r.t. p. Then we can simply set α = 2, and the resulting Tp =

O
(
m+n
p +D(log n+ p) log p+D∆

)
will still hold w.h.p. in p. The algorithm is work-efficient

provided pTp = O (m+ n)⇒ m+ n = Ω (D∆′p), where, ∆′ = ∆ + (p+ log n) log p.

If we drop the independence assumption from the last paragraph, a constant value of α will

no longer guarantee that Tp holds w.h.p. in p. We find a value of α below that provides

such a guarantee. A round of αp log p steal attempts is successful (i.e., hits each thread at

least once) with probability at least 1 − 1
pα−1 , and if there are k such rounds, all of them are

successful with probability ≥ 1 − k
pα−1 . The total number of such stealing rounds across all

levels is
∑D
i=1 (log ql + p) ≤ D(p + log n) ≤ Dp log n. In order to make sure that the bound on

Tp holds w.h.p. in p, we enforce 1 − Dp logn
pα−1 ≥ 1 − 1

p ⇒ α ≥ 3 + logD+log logn
log p . Now putting
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α = 3 + logD+log logn
log p in Tp, we obtain Tp = O(m+n

p + D(p+ log n)(log p+ logD + log log n) +

D∆) w.h.p. in p. Note that both log p and logD is bounded by log n. Therefore, our Tp boils

down to O
(
m+n
p +D(p+ log n)(log n) +D∆

)
. The algorithm is work-efficient provided pTp =

O (m+ n)⇒ m+ n = Ω (D∆′′p), where, ∆′′ = ∆ + (p+ log n)(log n).

Theorem 7.2. For a graph of diameter D with n vertices, m edges and maximum degree ∆,

BFSW takes Tp = O
(
m+n
p +D(p+ log n)(log n) +D∆

)
time (w.h.p.) when run on p cores, and

it is work-efficient provided, pTp = O (m+ n)⇒ m+n = Ω (D∆′′p), where, ∆′′ = ∆+(p+ log n)

(log n).

7.9.3 BFSWS(Work-stealing + Scalefree + Lock)

We consider the degree of a vertex high provided its degree is at least p log p. All high degree

vertices generated in each BFS level are processed separately one by one by dividing the adjacency

list of each such vertex evenly among all threads. Thus the D∆ term in the parallel time

complexity of BFSW (see Theorem 7.2) is replaced with Dp log p (i.e., ∆ effectively drops to

p log p), and a new term m
p is added which arises from the parallel processing of the adjacency

lists of high degree vertices. Thus we have Tp = O
(
m+n
p +D(p+ log n)(log n) +Dp log p

)
=

O
(
m+n
p +D(p+ log n)(log n)

)
since Dp log p is bounded by Dp log n.

Theorem 7.3. For a graph of diameter D with n vertices, m edges and maximum degree ∆,

BFSWS takes O
(
m+n
p +D(p+ log n)(log n)

)
time (w.h.p.) when run on p cores, and it is

work-efficient provided pTp = O (m+ n)⇒ m+ n = Ω (D∆′′), where, ∆′′ = (p+ log n) (log n).

7.10 Experimental Results

In this section, we analyze the performance of our BFS implementations and match the results

with our proved theoretical performance bounds. We compare performance of our algorithms

with Baseline1 and Baseline2 and demonstrate the scalability of our work-stealing BFS algo-

rithms on different machine architectures including the new Xeon Phi architecture.

7.10.1 Simulation Environment and Input Graphs

Attribute Lonestar Stampede Trestles

Processors Two 3.33 GHz-Hexa-Core
64-bit Intel-Westmere

Two 2.7 GHz E5-2680 Intel Xeon
(Sandy Bridge), one Intel Xeon Phi Co-
processor

Four 8-core 2.4 GHz AMD
Magny-Cours processor

Cores/node 12 (2× 6) 16 (2× 8) 32 (4× 8)

RAM 24 GB, 177GB/s 32 GB 64 GB, 171GB/s

OS Linux Centos 5.5 Linux Centos Linux Centos 5.5

Cache 12MB shared L3, 256KB pri-
vate L2, 64KB private L1

20MB shared L3, 256KB private L2,
64KB private L1

12MB shared L3, 512KB pri-
vate L2, 128KB private L1

Table 7.3: Simulation environment.

To conduct our experiments, we have used machines from the Lonestar 4 and Stampede [5]

supercomputing clusters located at the Texas Advanced Computing Center (TACC) [6], and
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the Trestles cluster at San Diego Supercomputer Center (SDSC). We have tested our parallel

BFS algorithms on real-world graphs such as cage 15, cage 14, kkt-power, freescale, Wikipedia-

2007 and inline 1 collected from the Florida Sparse Matrix Collection [61]. We have also used

synthetic random RMAT graphs generated using the Graph-500 RMAT generator5 with millions

of vertices and up to a billion of edges. All graphs were directed. Properties of the simulation

environment and the input graphs are summarized in Tables 7.3 and 7.4, respectively.

Graph Description n m Diameter

Cage15 DNA electrophoresis, 15 monomers in polymer 5.2M 99.2M 53

Cage14 DNA electrophoresis, 14 monomers in polymer 15.1M 27.1M 42

Freescale Large circuit, Freescale Semiconductor 3.4M 18.9M 141

Wikipedia Gleich/Wikipedia-20070206 3.6M 45M 14

kkt-power Optimal power flow, nonlinear optimization (KKT) 2M 8.1M 11

inline 1 Stiffness Matrix 3.5M 45M 222

RMAT100M RMAT Graph generated using Graph-500 RMAT generator 10M 100M 12

RMAT1B RMAT Graph generated using Graph-500 RMAT generator 10M 1B 5

Table 7.4: Graphs and their properties. In this table, n and m denote the number of
vertices and the number of edges of the graph, respectively. The diameters in the table
show the maximum diameters explored by the BFS rather than the actual diameters of

these graphs.

7.10.2 Performance Analysis

In this section we show the performance comparison of all BFS implementations. We compare all

 Read
 Read + 

bitmap

Local queue 

+read + bitmap
BFSC BFSCL BFSDL BFSWS BFSWSL

Kkt-power 0.3 7.6 9.5 6.0 0.3 0.3 0.3 0.4 0.4 1.8

Freescale 37.6 189.6 221.6 105.0 38.4 36.9 33.9 44.0 42.6 241.8

Cage14 32.2 62.6 92.9 83.3 31.4 30.7 30.5 37.5 37.0 227.1

Wikipedia 83.8 180.2 321.5 259.8 77.9 73.0 76.5 78.0 73.4 518.5

Cage15 131.0 189.5 285.4 263.2 123.3 119.6 121.9 141.2 141.0 911.1

Graph-10M-100M 329.7 324.2 391.2 320.4 312.6 306.3 310.0 354.0 344.8 2576.0

Graph-10M-1B 1900.3 1755.4 1365.1 1143.2 1843.5 1844.6 1849.8 1975.0 1983.6 12278.6

Baseline2 

Baseline1Graph
Serial 

BFS

Centralized Work-stealing

(a) Running times (ms) on Lonestar (Intel Xeon with 12 cores).

 Read
 Read + 

bitmap

Local queue 

+read + bitmap
BFSC BFSCL BFSDL BFSWS BFSWSL

Kkt-power 0.8 7.5 11.8 8.6 0.6 1.0 1.0 1.2 0.8 5.3

Freescale 81.2 219.2 226.5 198.9 185.1 144.2 133.7 79.0 66.8 648.8

Cage14 64.0 78.3 88.0 91.5 107.2 93.2 58.9 55.0 53.9 633.5

Wikipedia 167.2 242.8 336.6 279.5 162.3 156.4 146.2 108.3 106.4 1843.2

Cage15 208.2 221.7 243.7 242.2 301.9 263.8 206.9 179.0 173.9 2432.0

Graph-10M-100M 410.6 366.4 385.2 314.9 394.7 401.0 358.0 370.5 359.1 7951.5

Graph-10M-1B 2313.5 1996.6 1158.3 1029.3 1869.3 1864.1 1752.6 1854.3 1832.6 32443.6

Serial 

BFS

Work-stealingBaseline2 

Graph Baseline1

Centralized

(b) Running times (ms) on Trestles (AMD Magny with 32 cores).

Table 7.5: Running times of different algorithms (all times are shown in milliseconds).
All programs were implemented using Cilk++. The minimum running time in each row
is highlighted by color. If our algorithms do not achieve the minimum running time,
we have highlighted the minimum time for our algorithms in addition to the absolute

minimum time in a row.

variants of our parallel BFS algorithms6 mentioned in Section 7.5 with the BFS implementations

of Baseline1 [119] and Baseline2 [105]. The algorithm presented in [105] has both CPU and

5parameters used: a=.45, b=.15 and c=.15.
6The decentralized algorithm was ran with 1 centralized queue.
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GPU implementations, but we compare only with the CPU implementations. Moreover, the

CPU implementation has several variants, and we compare with all of them. In [105] and [119],

the authors have used pthreads and Cilk++ concurrency platforms for parallelism, respectively.

All programs (including codes from [119] and [105]) are compiled using the -O3 optimization

parameter. We run all programs with 1000 random non-zero degree source vertices and compute

the average running time per source for each. The results show that our work-stealing algorithms

optimized for scalefree graphs almost always perform better than the corresponding unoptimized

variant even on general graphs. Hence, we do not report the results for those unoptimized work-

stealing variants.

Running Time. Tables 7.5(a) and 7.5(b) show the running times of different algorithms run

on a single compute node of Lonestar (Intel Westmere) and Trestles (AMD Magny-Cours),

respectively. The shaded cells mark the smallest running times in each row. If our algorithms

do not achieve the minimum running time, we have highlighted the minimum time for our

algorithms in addition to the absolute minimum time in a row. Observe that the lockfree versions

generally run faster than the corresponding lock-based versions. Also observe that on Lonestar

(12-cores), BFSCL generally outperforms both Baseline1 and Baseline2, while on Trestles (32-

cores) BFSWSL does. We explain why that should be the case in the following paragraphs.

Centralized vs. Distributed: Performance Benefits of Work-stealing. Table 7.5

shows that the centralized queue based BFS implementations perform better than the work-

stealing based approaches on Lonestar (12-cores/node), whereas on Trestles (32-cores/node)

work-stealing BFS algorithms show better performance. This change in the best-performing

Figure 7.1: Scalability of lockfree parallel BFS algorithms running on (a) Lonestar
and (b) Trestles. All algorithms were run on the Wikipedia graph. All programs were

implemented using Intel R© Cilk++TM.

approach with the increase of the number of cores has been also demonstrated in Figures 7.1(a)

and 7.1(b) by the strong scalability of different variants of our BFS algorithms on the scale-

free Wikipedia graph when run on Lonestar and Trestles, respectively. It is apparent that the

centralized queue based versions are not scalable beyond 20 cores while the work-stealing ver-

sion remains scalable till the end (i.e., up to 32 cores). This observation matches with what

the theory predicts (see Theorems 7.1, 7.2 and 7.3 in Section 7.9). In the work-stealing imple-

mentation, steal attempts are more or less equally distributed among all queues, and thus the

maximum number of simultaneous accesses to each queue in that implementation is fewer than

that to the single shared queue pool in the centralized queue based implementation. In our

centralized queue based algorithms we tried to reduce the number of accesses to the centralized

queue by controlling (i.e., increasing) the segment size s. However as s increases, the amount
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of time threads must wait idly until the last working thread completes execution in any BFS

level also increases (please see the proof of Theorem 7.1). This gives rise to the D∆p term in

the parallel time complexity of BFSC while the largest p term for BFSW and BFSWS is only

Dp(log p+ logD + log log n) (please see the proof of Theorem 7.2). Hence, with the increase of

p, the performance of the centralized versions degrades faster than the distributed work-stealing

versions. In addition to that, the fact that the work-stealing BFSWS version is optimized for

scalefree graphs may have also contributed to its scalability. Observe that unlike BFSC and

BFSW , no ∆ term appears in the complexity of BFSWS .

As mentioned before, in lockfree versions, although we are removing the overhead related to locks

and atomic instructions, it causes more frequent accesses to the shared queues and this frequency

increases with the number of threads. As the number of threads in the system increases, there

will be more simultaneous accesses to the same centralized queue causing more threads to grab

duplicate segments, which in turn will result in more duplicate work, and thus, incur more

overhead. In the work-stealing algorithms, different threads access different queues for input

and steal from random victims. This distributes the simultaneous accesses to the shared queues

somewhat evenly among all queues and causes fewer duplicate/overlapping segments and less

associated overhead compared to the centralized queue versions.

Comparison with Baseline1 and Baseline2. Figure 7.2 shows performance comparison of

our algorithms with that of Baseline1 and Baseline2. For all real-world graphs in our experiments,

Figure 7.2: Performance in terms of Traversed Edges Per Second (TEPS) when
traversing real-word graphs on machines from (a) Lonestar (12 cores) and (b) Trestles

(32 cores). All programs were implemented using Intel R© Cilk++TM.

our best-performing BFS implementation is better than both the implementations from [119] and

[105]. Our algorithms perform the best for scalefree graphs and sparse graphs. However, for large

synthetic RMAT graphs (graph-10M-100M and graph-10M-1B) Baseline2 performs slightly better

that both Baseline1 and ours. One possible reason for this is that it uses a bitmap to track visited

vertices (using atomic case & set instruction), and thus avoids duplicate exploration. Note that

in our algorithms although the same vertex can appear only once in a particular thread’s output

queue, it can appear in the output queue of multiple threads, if it had been discovered by those

threads exactly at the same time. With 10M vertices and 1B edges, the graph-10M-1B being very

dense resulted in a lot of duplicate explorations during the execution of our algorithms. On the

contrary, Baseline2 runs faster by avoiding the bulk overhead of these unnecessary explorations.
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7.10.3 Why Lockfree Does Better Load-balancing than Lock-based

Our experimental results show that the lockfree work-stealing ends up doing better load-balancing

than the lock-based work-stealing algorithm for BFS. Here we explain why that happens based

on some statistical data. Table 7.6 shows some statistics on the steal attempts made by threads

in BFSWS and BFSWSL. Both implementations were run 5 times with 100 sources of the

Wikipedia Graph on Intel R© Westmere (12 cores), and the average values were computed for

the number of successful steal attempts and for different types of failed steal attempts. Table

7.6 shows that, though the total number of steal attempts is slightly more in BFSWSL than in

BFSWS , the percentage of successful steal attempts is also higher in BFSWSL. Similarly, the

number of failed steal attempts as a result of a victim being idle is lower in BFSWSL. Recall that

a thread becomes idle when it runs out of work and gives up searching for work after a certain

(say, Max-Steal-Attempts) number of failed steal attempts. Thus BFSWSL achieves better

load-balancing than BFSWS which translates into better running time for BFSWSL. Since

BFSWSL does not use locks, there is no failed steal attempt as a result of choosing a victim that

is already locked. Instead, in BFSWSL more steal attempts failed because the segment obtained

by the thief is either too small (e.g., could happen if the victim does not have any work and so is

also trying to steal), or stale (e.g., could happen if two thieves are stealing from the same victim),

or invalid (e.g., could happen if more than one thief are trying to steal from the same victim

and thus mess up the queue indices). In both implementations most of the steal attempts failed

because of the large value used for Max-Steal-Attempts. A large Max-Steal-Attempts

results in a large number of failed steal attempts at the end of each level which is reflected in

the large number of steal attempts that failed because of idle victims.

Program
Time

(sec)

Total Steal

Attempts

Failed Steal Attempts Due To

Successful

Steal Attempts

Victim

Locked

Victim

Idle

Segment

Too Small

Stale

Segment

Invalid

Segment
Total

BFSWS 7.72
732,535

( 100.00% )

265,198

( 36.20% )

271,731

( 37.09% )

137,675

( 18.79% )

49,387

( 6.74% )
N/A

723,991

( 98.83% )

8,544

( 1.17% )

BFSWSL 7.53
734,535

( 100.00% )
N/A

268,710

( 36.58% )

399,840

( 54.43% )

56,849

( 7.74% )

221

( 0.03% )

725,620

( 98.79% )

8,915

( 1.21% )

Table 7.6: Statistics of successful and failed steal attempts on the Wikipedia graph
when run from 100 sources. For each program we report the average of 5 independent

runs. Implementations are in Cilk++.

7.10.4 Explicit vs. Implicit Work-stealing

Explicit Work-stealing: Performance difference of OpenMP and Cilk++. Theoret-

Figure 7.3: Performance in terms of TEPS for Wikipedia Graph on (a) Lonestar (12
cores) and (b) Trestles (32 cores). All implementations are in Cilk++.
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ical and experimental results show that BFSWSL is the most scalable version among all our

proposed BFS algorithms. Hence, we’ve re-implemented it in OpenMP and found that the OpenMP

implementation runs slightly faster than the original Cilk implementation. Figure 3 compares

the performance of the two implementations on Lonestar and Trestles as the number of threads

is varied. Conversion from Cilk to OpenMP is easy as our explicit work-stealing implementa-

tions are not tied to Cilk’s features, e.g., Cilk’s work-stealing scheduler, nested parallelism,

hyperobject library, etc.

Explicit vs. Implicit Work-stealing. To show the performance difference between explicit

and implicit work-stealing for load-balancing, we’ve implemented BFSWSL (uses explicit work-

stealing) and BFSWSLDQ (uses recursive divide and conquer and hence implicit work-stealing

provided by Cilk’s runtime scheduler) algorithms in Cilk Plus and run them on a single com-

pute node (16-core Intel Sandy Bridge Xeon) of Stampede. Table 7.7 shows that the BFSWSLDQ

implementation performs better than both the OpenMP and Cilk Plus implementations of

BFSWSL. Since our work-stealing implementation is not as optimized as the Intel Cilk Plus’s

internal work-stealing, the result was not unexpected.

Machine

Cores 12 12 12 16 16 16

Parallel Platform Clik++ OpenMP Clik++ Cilk Plus OpenMP Clik Plus

Graph
Using Explicit Work-

stealing

Using Explicit Work-

stealing

Using Implicit cilk++ 

Work-stealing

Using Explicit Work-

stealing

Using Explicit 

Work-stealing

Using Implicit Cilk Plus 

Work-stealing

Kkt-power 0.4 0.4 0.3 0.3 0.132 0.2

Cage14 42.6 32.2 32.9 24.6 22.381001 21.1

Freescale 37.0 40.0 35.7 28.8 23.599001 25.9

Wikipedia 73.4 69.4 72.1 58.6 58.196999 51.7

Cage15 141.0 120.0 125.7 90.6 85.067001 77.4

Graph-10M-100M 344.8 315.0 323.6 244.3 234.138 212.1

Lonestar Stampede

Table 7.7: Running time (milliseconds) on Lonestar and Stampede for cilk++, Cilk
Plus and OpenMP implementations (performance difference between explicit and im-

plicit work-stealing (recursive divide and conquer)).

7.10.5 Performance of Work-stealing on Intel Xeon Phi

Xeon PhiTM(also called Many Integrated Cores or MIC) is a comparatively newer release of

Intel R© family featuring many smaller cores, many more hardware hyper threads, and wider vec-

tor units targeting highly parallel applications. Since BFS algorithm in general has very irregular

accesses to memory, BFS can actually benefit from hyper-threading and better bandwidth that

Xeon Phi offers. Hyper-threading can somewhat hide the delay of irregular memory accesses.

That is why it is interesting to analyze performance of BFS algorithms on Xeon Phi architecture.

Each Stampede compute node is connected to a 61-core Intel Xeon Phi (Knights Corner) co-

processor via a PCIe bus. The Xeon Phi has a DDR5 8GB memory, private L1 and L2 Caches.

These 61 physical cores are connected by a bidirectional ring. Moreover, each core can run

4 hardware threads resulting in a total of 244 threads, and can reach a peak performance of

1TFLOPS. With hyper-threading, Xeon Phi schedules hardware threads running on the same

core in a round-robin fashion, i.e., the same thread is not scheduled on the same core in back to

back cycles. Therefore, to keep all cores busy at least 90% of the time, we should use at least 2

threads per core. Xeon Phi can run programs in two different modes: Native and Offload. In
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Native mode Xeon Phi works as a general CPU, and in Offload mode it works as a coprocessor

and the Xeon CPU offloads portions of its computations to the Xeon Phi. For all the experiments

presented in this section, we used Xeon Phi in its native mode.

Scalability on Xeon Phi. In this section we show the scalability of BFSWSL and BFSWSLDQ

on Xeon Phi.

Figure 7.4: Scalability of implicit and ex-
plicit work-stealing algorithms (Cilk Plus im-

plementations) on Xeon Phi/MIC.

For these scalability experiments, we’ve used

the Cilk Plus versions of the programs only,

as those were faster than their cilk++ counter-

parts. We’ve also converted the code for Base-

line1 to Cilk Plus for fair comparison. Fig-

ure 7.4 shows running times of BFSWSLDQ

for all graphs (expect the 1B graph which re-

quired more than 8GB of memory) on Xeon Phi.

The Figure shows that running time decreases

with number of threads for large graphs (espe-

cially more nicely for the scalefree Wikipedia

and RMAT graphs). As expected, hyper-threading turned out to be favorable for memory-

intensive BFS algorithm.

Figure 7.5: Scalability of implicit and ex-
plicit work-stealing algorithms (Cilk Plus im-
plementations) on Many Integrated Cores: on

inline 1 Graph.

Figure 7.5 shows speedup (T1/Tp) obtained

by BFSWSLDQ and Baseline1 on inline 1

stiffness matrix graph. The diameter of the

inline 1 graph is quite large, and the number

of vertices at each level is comparatively lower

considering a large number of available threads.

Clearly, for a graph with a large diameter and

fewer vertices at each level, it is not beneficial to

use many cores for level-synchronous BFS, be-

cause synchronization overhead increases with

the diameter of the graph and the number of

threads. In fact, the amount of work at each

level becomes comparatively less than the over-

head of scheduling and dynamic load-balancing

for a large number of threads. For inline 1, the

scalability curves of Baseline1, BFSWSLDQ and BFSWSL−OMP followed trends similar to that

reported by authors of [158] for their algorithm and baseline; however, our speedup decreased

slowly compared to their implementations. To see the overhead of work-stealing we experimented

with both MAX-STEAL-ATTEMPTS = p and MAX-STEAL = p log p. We found that BFSWSL−OMP

is faster (actually fastest) for inline 1 if we use MAX-STEAL-ATTEMPTS = p.

Figure 7.6 shows speedup obtained by BFSWSLDQ and Baseline1 on the scalefree Wikipedia

and RMAT graphs. Note that although BFSWSLDQ, BFSWSL−OMP and Baseline1 did not

perform that well on inline 1, for both the Wikipedia and RMAT graphs BFSWSLDQ and

BFSWSL−OMP scaled till 243 threads. The reason behind this change in performance becomes

clear when we analyze the nature of the graphs. Table 7.8 shows the number of vertices explored
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Graph Wikipedia inline 1 RMAT

Depth from Source n : 3566907,m : 45030389 n : 503712,m : 36312630 n : 10000000,m : 100000000

0 1 1 1

1 1 53 14

2 36 369 175

3 2582 729 3574

4 391296 1011 104083

5 1592339 1719 2302103

6 637166 2190 5359300

7 47556 2403 534230

8 4033 2076 9721

9 679 2271 136

10 201 2547 4

11 51 2829 -

12 16 3642 -

13 1 3690 -

14 3 3255 -

15-65 - 189273 -

66-115 - 178497 -

115-165 - 85203 -

>165 - 23268 -

Table 7.8: Number of vertices explored at a given BFS level. Here n denotes the
number of vertices and m denotes the number of edges.

Figure 7.6: Strong scalability on Intel R© XeonTMPhi (a) Wikipedia, (b) RMAT-1M-
100M.

at each BFS level from a source for each of those graphs. Note that both Wikipedia and RMAT

graphs are dense and scalefree, most of the work is done at middle levels where all threads have

enough work to do. We see the opposite for the inline 1 which explains why all algorithms

did not scale well on inline 1. Also note that the RMAT graph is even denser than Wikipedia

and has a smaller diameter which also tells why scalability is nicer for RMAT than Wikipedia.

We observed that on the Wikipedia graph with MAX-STEAL-ATTEMPTS = p, the OpenMP-based

work-stealing implementation scaled still 243 threads on Xeon Phi which was slightly better

than BFSWSLDQ. However, for the RMAT graph, BFSWSLDQ outperformed others. For

RMAT graph (dense, low-diameter and scalefree), the difference between MAX-STEAL-ATTEMPTS

= p and MAX-STEAL-ATTEMPTS = p log p is negligible. The Cilk Plus BFSWSLDQ and BFSWSL

implementations scaled nicely till 130 and 243 threads for Wikipedia and RMAT, respectively.
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7.11 Conclusion and Future Research

We have presented two types of lockfree parallel BFS algorithms along with their variants based

on centralized job queues and distributed randomized work-stealing and analyzed their theoret-

ical and experimental performance on different architectures (Intel’s 12-core Westmere, 16-core

Xeon, 61-core Xeon Phi, and 32-core AMD Magny Cours). We have used a novel optimistic par-

allelization technique to avoid the use of locks and atomic instructions. Although work-stealing

is fairly popular technique for dynamic load-balancing, lockfree work-stealing is novel for BFS.

Experimental results show that these algorithms are highly scalable and perform very well on

massive, scalefree and sparse graphs, and achieve better performance compared to two other

state-of-the-art algorithms on multi-cores and many-integrated-cores.

It would be interesting to see if optimistic parallelization technique can be used to improve

the performance of other nontrivial parallel applications that require dynamic load-balancing.

Lockfree optimistic parallelization for approximation algorithms where some error in the result

is acceptable is also an interesting research direction to pursue.
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Chapter 8

Theoretically Optimal

Level-synchronous Parallel

Work-aware BFS

8.1 Abstract

We present a work-aware work-efficient parallel level-synchronous Breadth-first Search (BFS)

algorithm for shared-memory architectures which achieves the theoretical lower bound on parallel

running time. The optimality holds regardless of the shape of the graph. We also demonstrate

the implication of this optimality on the energy consumption of the program empirically. The

key idea is to never use more processing cores than necessary to complete the work in any

computation step efficiently. We keep rest of the cores idle to save energy and to reduce other

resource contentions (e.g., bandwidth, shared caches, etc.). Our BFS algorithm does not use

locks and atomic instructions and is easily extendible to shared-memory coprocessors.

8.2 Introduction

Given a graph G = (V,E), with vertex set V (|V | = n), edge set E (|E| = m) and diameter D,

a level-synchronous Breadth-first Search (BFS) traverses the graph from a given source vertex,

s level by level, exploring the first level neighbors of s first, then the second level neighbors and

so on until all vertices reachable from the s are explored. A straightforward way to implement a

parallel level-synchronous BFS is to explore all vertices at a given level as well as all neighbors of a

given vertex in parallel which takes O (D log(m+ n)) time using Θ(n+m) cores, since launching

and synchronizing m+n threads require Θ (log(m+ n)) time. In practice, the number of available

processors P � m + n. The amount of parallelism achievable at each BFS level is constrained

by the number of nodes and edges to be explored in that particular level, making performance

of a BFS algorithm highly dependent on the structure of the graph itself.
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In this chapter, we first analyze the theoretical lower bound for a level-synchronous BFS on

shared-memory architectures assuming that k threads can be launched and synchronized in

O (log k) time, and then we present our work-aware BFS algorithm that is able to archive that

optimal lower bound.

Let Ts be the running time of the most efficient serial level-synchronous BFS algorithm, and TP

be the running time of the most efficient parallel level-synchronous BFS algorithm on P ≥ 1

processing cores.

Lower Bound for Parallel BFS. Since Ts = Θ (m+ n), clearly, TP = Ω
(
m+n
P

)
. If Wl

is the amount of work at level l of a level-synchronous BFS, an optimal algorithm will incur

Θ (log min (P,Wl)) synchronization overhead in that level.

Hence, TP = Ω
(
m+n
P +

∑D
l=1 log min (P,Wl)

)
.

Apart from theoretical optimality, it has been observed that (see Table 7.8 in Chapter 7) for

many practical (especially scalefree) graphs, the number of vertices explored at the beginning

and at the end of a BFS exploration is significantly smaller than in the middle levels [105].

Therefore, using the same amount of computational resources (i.e., the number of cores/threads,

even caches) at all levels of the BFS is neither economical nor efficient. Indeed, with the increase

of the number of active threads synchronization overheads, false sharing, conflict misses and

DRAM and CPU energy/power also increase, and without enough work, these overheads may

dominate the running time. In our work-aware BFS algorithm, we fix the number of cores based

on the amount of work at each computation step instead of using all cores across the entire

BFS. We demonstrate the impact of this choice on theoretical optimality as well as on energy

performance on modern multicores.

8.3 Algorithm

Ideally, to achieve optimal time complexity bound for BFS we should be able to explore all

vertices and all edges in parallel without incurring any asymptotically dominating overhead for

work distribution. With that in mind, we first designed a BFS algorithm that uses optimal

prefix sum, splitting, binary search and scanning at each level for work-distribution and vertex

exploration. Prefix sum is used to compute actual amount of work that needs to be done at

any step which then equally gets split among the required number of workers. Each worker

then independently searches for the work item (e.g., vertex and edge id) from which it needs

to start working on. However, since each thread uses binary search to find the work item, this

algorithm does not achieve the theoretical optimality due to the O(Dpmax(log n, logm)) cost

for the overall binary search.

Therefore, to achieve optimal time-complexity, we need to replace binary search with another

algorithm whose cost does not asymptotically increase the time-complexity of vertex exploration.

In the following part, we describe our work-aware BFS algorithm that achieves that goal.

Theoretically optimal BFS Our work-aware BFS algorithm uses parallel prefix-Sum, Splitting,

and Scanning to achieve work-optimality for arbitrarily shaped graphs. Figure 8.1 shows the

pseudocode of the algorithm. We use the CurLevelVertices array to store vertices that are
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going to be explored in a level. The parallel for loops are implemented using recursive divide

and conquer where the recursion stops and switches to an iterative loop when a division size

becomes ≤ grainsize and then each thread executes one of those divisions iteratively in parallel

with other threads.

All major computations in this BFS algorithm are performed using parallel fors. The main loop

in lines 9−31 executes until CurLevelVertices becomes empty. The degrees of the vertices in

CurLevelVertices are collected in EdgeSum and then Parallel-Prefix-Sum [24] is used

to count the number of edges to be explored in the current level. Then each thread in parallel

determines its start location (start vertex and start edge of that vertex) in CurLevelVertices

assuming an (almost) equal division of work. Each active thread explores its assigned segment

of edges and stores the newly discovered vertices in a private queue. A thread also marks itself

as an owner of a vertex that it stores in its queue for the next level. If multiple threads claim

ownership of a vertex, only one of them becomes the owner (benign race). After the exploration,

each thread deduplicates its own output queue by keeping only the vertices for which it is the final

owner. Next, each thread copies the unique vertices left in its queue to the CurLevelVertices,

and the next level of BFS starts.

The Find-StartExpPoint1 module demands separate explanation since it replaces the original

binary search. In this function StartExpPoint[t] stores an index from the CurLevelVertices

array denoting where thread t should start exploring, and StartExpPoint[t+ 1] stores where

thread t should stop and thread t + 1 should start exploring. Lines 2 − 3 are used to find an

optimal number of threads necessary to execute this function. We divide the work of edge-

exploration evenly among the threads. The StartThreadId variable is used to store a thread

id that can potentially start at the ith edge, and EndThreadId is used to store a thread id that

can potentially end at the ith edge in the EdgeSum array. In Lines 5− 12, for each entry in the

EdgeSum array in parallel we determine the StartThreadId (i.e., a thread that should start

exploring an edge connected to that node) and EndThreadId (i.e., a thread that could possibly

end at that node). This range will be empty for all except ≤ Pli of them, where Pli = min(Pl, ql).

Here, ql denotes the number of vertices to be explored at BFS level l, and Pl = P denotes the

number of threads that is passed as a parameter to this function. For each nonempty range, we

write this node’s position as the corresponding thread’s start location. In other words, if there is

any such thread, we store this vertex position i at the corresponding thread’s StartExpPoint

location. If there are k ≥ 1 threads who should start from that vertex, we use exactly k threads

to write the vertex position on those threads’ StartExpPoint locations. Observe that, the

total work done by this function is only O(ql + Pli).

For all other modules including prefix sum, we modified the algorithm to make sure that we

never use more cores than needed.

8.4 Analysis

Our work-aware BFS algorithm achieves the lower bound proved before as follows. The entire

BFS algorithm can be divided into D levels where each level l consists of a constant (say, c)

1This function was worked out by Yoni Fogel.
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Parallel-BFS( s, P ) s is the source vertex from which distance is calculated. P is the maximum number of processors
to use. Returns d[0 : n− 1] which represents the distance from s to each vertex.

1. Pl ← Min( P, n )

2. par for u← 0 to n− 1 do //for grainsize = n/Pl.

3. d[u]←∞, Owner[u]← P //initialize distance & owner.

4. d[s]← 0, Owner[s]← 0 //initialize source values.

5. CurLevelVertices← Arr[0 : n− 1] //current level nodes.

6. EdgeSum← Arr[0 : n− 1]//holds prefixsum of degrees.

7. CurLevelVertices[0]← s //insert source vertex.

8. l← 0, Pl ← 1 //initial level and number of threads.

9. while nl ← |CurLevelVertices| > 0 do //any vertex left.

10. l← l + 1 //nl = #vertices at level l.

11. Pl ← min(P, nl)//Pl chosen based on max work.

12. par for u← 0 to nl − 1 do //for grainsize = nl/Pl.

13. EdgeSum[u]← Degree[CurLevelVertices[u]]

14. Parallel-Prefix-Sum( EdgeSum, nl, Pl ) //degree sum.

15. el ← EdgeSum[nl − 1] //total edges going to be explored.

16. Pl ← Min( P, el )//Pl chosen based on max work.

17. StartExpPoint ← Find-StartExpPoint( EdgeSum, el, Pl ) //Find starting exploration point for each
thread.

//main Exploration with optimal number of threads.

18. Q ← EXPLORE-VERTEX (CurLevelVertices,EdgeSum, StartExpPoint, d, Neighbor, Degree, el, Pl, l)

//deduplication (keep single copy of a vertex).

19. Sizes← Arr[0 : Pl − 1] //stores output Q sizes.

20. par for i← 0 to Pl − 1 do //for grainsize = 1.

21. Q-New← queue //temporary local queue.

22. for v ∈ Q[i] do if Owner[v] = i then Q-New.Enqueue( v ) //keeps only the owned vertices.

23. Q[i]← Q-New, Sizes[i]← |Q[i]| //recollect the size of the deduplicated queues.

24. Parallel-Prefix-Sum( Sizes, Pl, P ) //compute the total size of the next level queue.

//linearization (copy from distributed Q to a linear Q). By this time each thread exactly knows how much to
copy and from where to where.

25. CurLevelVertices← Arr[0 : Sizes[Pl − 1]]

26. par for i← 0 to Pl − 1 do

27. if i = 0 then Offset← 0 else Offset← Sizes[i− 1]

28. for j ← Offset to Offset + |Q[i]| do

29. CurLevelVertices[j]← Q[i].Dequeue( )

Figure 8.1: Theoretically optimal work-aware level-synchronous parallel breadth-first
search.

number of steps. All of these steps {i} are implemented using parallel for loops. For each

such step i with work Wl,i, we choose Pl,i = min(P,Wl,i). We distribute the work among Pl,i

threads in Θ (logPl,i) parallel time. After that each thread performs
Wl,i

Pl,i
work serially. Hence,

the parallel running time of that step is O
(
Wl,i

Pl,i
+ logPl,i

)
which reduces to O

(
Wl,i

P + logP
)

when Pl,i = P , and to O (logWl,i + 1) when Pl,i = Wl,i. Hence, O
(
Wl,i

P + log min(P,Wl,i) + 1
)

is the parallel running time covering both cases.

Therefore, TP =
∑D
l=1

∑c
i=1 O

(
Wl,i

P + log min(P,Wl,i) + 1
)

= O
(∑D

l=1

∑c
i=1Wl,i

P +
∑D
l=1

∑c
i+1 log min(P,Wl,i) + cD

)
= O

(
m+n
P +

∑D
l=1 log min(P,Wl)

)
,

where Wl =
∑c
i=1 (Wl,i).
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Find-StartExpPoint( EdgeSum, W, P ) EdgeSum is an array that stores prefix sum of number of edges of each vertex
in the CurLevelVertices array. W is the total number of edges thats going to be explored in this BFS level. This
function returns StartExpPoint array of sixe P which stores from where in the CurLevelVertices array each thread
should explore to have a balanced work load. This function replaces binary search and helps us to achieve optimality.

1. StartExpPoint← Arr[0 : P − 1]

2. N ← |EdgeSum|

3. Pn ← Min( P, N )

4. #pragma grainsize N/Pn

//Here for each edgesum from the EdgeSum Arr, in parallel we try to figure out what is the thread id that could
possibly start/end from/to that location.

5. par for i← 0 to N − 1 do

6. if i = 0 then

7. StartThreadId← 0

8. else

9. StartThreadId←
⌈
P ·EdgeSum[i−1]

W

⌉
//Possible thread id that could start here

10. EndThreadId←
⌈
P ·EdgeSum[i]

W

⌉
− 1 //Possible thread id that could end here

11. par for t← StartThreadId to EndThreadId do //Use cores StartThreadId to EndThreadId

12. StartExpPoint[t]← i

13. return StartExpPoint

Figure 8.2: An efficient way to find starting point in a list of vertices/edges from
where a thread should start working on to get even partitioning of work.

8.5 Experimental Results

We implemented our work-aware BFS algorithm using Intel R©Cilk Plus. In this section, we

show some experimental results to demonstrate the performance of our BFS algorithm on many

real-world and synthetic (RMAT) graphs. We compiled our program using ‘‘-O3 -ansi-alias

-opt-subscript-in-range’’ parameters and turned off the deduplication option for the ex-

periments. Deduplication, indeed, improved performance for the dense synthetic RMAT graphs,

whereas, for most of the others, performance degraded. A description of the input graphs used

in these experiments can be found in Table 8.1. We need to keep in mind that, the practical

benefit of this work-aware BFS should be more visible when the number of cores in the machine

is more than the amount of work we have in each computation step. Therefore, our algorithm

should run more efficiently on machines with a very large number of cores. When the number

of cores is small, the overhead of extra work can degrade performance.

Graph N M MaxD Graph N M MaxD

kkt-power 2.1E+06 8.1E+06 13 as-skitter 1.7E+06 1.1E+07 33

ca-AstroPh 1.9E+04 4.0E+05 12 freescale 3.4E+06 1.9E+07 148

com-amazon 3.3E+05 9.3E+05 13 cage14 1.5E+06 2.7E+07 38

com-dblp 3.2E+05 1.0E+06 25 com-lj 4.0E+06 3.5E+07 52

RoadNet-PA 1.1E+06 1.5E+06 146 wiki 3.6E+06 4.5E+07 16

RoadNet-TX 1.4E+06 1.9E+06 33 cage15 5.2E+06 9.9E+07 49

RoadNet-CA 2.0E+06 2.8E+06 37 RMAT100M 1.0E+07 1.0E+08 12

com-orkut 3.1E+06 3.1E+06 33 RMAT1B 1.0E+07 1.0E+09 6

- - - - com-friendster 6.6E+07 1.8E+09 47

Table 8.1: Input graphs and their properties. Here N = #vertices, M = #edges, and
MaxD = maximum diameter explored.
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Property Intel32 Intel16 Xeon Phi Intel16E

System Intel Xeon
E5 4650

Intel Xeon
E5 2680

Knights Cor-
ner

XeonCPU
E5-2650

Clock 2.70 GHz 2.70 GHz - 2.00 GHz

# cores 4x8 (32) 2x8 (16) 61 2x8 (16)

L1 data cache 32 KB 32 KB 32 KB 32 KB

Last-level cache 20 MB 20 MB 512 KB 20 MB

Memory 1 TB 32 GB 8 GB 32 GB

OS CentOS 6.3 CentOS 6.3 CentOS 6.3 Debian

Compiler icc v13.0 icc v13.0 icc v13.0 icc v13.0

Table 8.2: System specifications. Intel16E is used for Power and Energy analyses.

We used machines from the Stampede Supercomputing Cluster [6] to run the experiments and

the system specifications can be found in Table 8.2. We used LIKWID[184] and MSR modules

to measure the energy/power consumed by the program. We measure performance in terms of

Traversed Edges Per Second (TEPS), Seconds, Joules and Watts. Only for the com-friendster

graph, we used the Intel32 machine that had 1TB of memory. All other programs were run

on the Intel16 machine. Energy and power statistics were collected using our inhouse Intel16E

machine.

Performance on Xeon multicores. Figure 8.3 shows the runtime performance in terms of

TEPS on the input graphs shown in Table 8.1. We used 100 - 1000 random sources and took

the average during the TEPS computation. As the Figure shows, work-aware BFS achieves up

to 3.5 Billion TEPS for large graphs and 50 Billion TEPS for small graphs.

Figure 8.3: Performance on Xeon (multicores).

Performance on Xeon Phi manycores. Figure 8.4 shows the performance of our work-aware

BFS algorithm on Intel R©XeonTMPhi in its native mode (where Xeon Phi works as a general

CPU instead of a coprocessor). It shows that work-aware BFS achieves around 0.8 billion TEPS

on large graphs and 10 Billion TEPS on small graphs.

Scalability on Xeon and Xeon Phi. Figure 8.5 shows scalability of work-aware BFS on a

16-core Xeon and 61-core Intel Xeon Phi architecture in its native mode on different real-world

and synthetic graphs. It shows that work-aware BFS scales almost linearly till 120 threads (61

physical cores) on Xeon Phi for large enough graphs and keeps scaling till 244 threads. Although

work-aware BFS is quite scalable on Xeon, as explained earlier, for very small number of cores,
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Figure 8.4: Performance on Xeon Phi (manycores).

the extra work done to achieve theoretical optimality really does not pay off and sometimes

degrades performance.

Figure 8.5: Strong scalability on Xeon and Xeon Phi.

Figure 8.6: This figure shows energy con-
sumption by different components of the
machine (Package = Socket (CPUs), PP0
= Power Plane0) for the first 3 BFS levels.
Here 1 denotes energy consumed at BFS
level 1, 1 + 2 denotes energy consumed at
levels 1 and 2, and 1 + 2 + 3 denotes en-

ergy consumed by level 1, 2 and 3.

Energy and Power Benefit. To show the en-

ergy benefits of choosing an optimal number of

cores at each computation step, we profiled work-

aware BFS while running on the Wikipedia graph

with 1000 random sources. We repeated each run

30 times with each source, and the entire exper-

iment 4 times, and took the average. We ran a

work-unaware version of the work-aware BFS in

which the maximum number of cores were used

for the entire computation. We did not explicitly

turn off the cores or caches, nor made the threads

sleep. Neither we used DVFS (dynamic voltage

frequency scaling) to reduce the frequency of the

unused cores. Instead, we spawned the optimal

number of threads before each operation. The ex-

pectation is that; the other threads will not use

DRAM or other shared resources.
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Figure 8.6 shows a performance comparison of these two versions. In this figure a ratio > 1 means

that the work-aware BFS is doing better, otherwise, the work-unaware version is doing better.

Since the first two BFS levels of the Wikipedia graph typically have very few vertices and edges

(see Table 7.8 in Chapter 7), the work-aware version should win, which is, indeed, the case in

Figure 8.6. Since in level 3 the amount of work at each step is more than the maximum number

of cores in our multicore machine (16-core Xeon Sandybridge), the ratios drop slightly bellow

1. Even then interestingly the ratios for DRAM energy and power consumption are still > 1.

This shows potential energy benefits of work-aware BFS especially while running on thousands

of cores.

Figure 8.7: Energy and power efficiency on many real-world graphs.

Next we ran these work-aware and work-unaware BFS implementations on Intel16E for five

graphs from our input set and collected the CPU, DRAM, and Power Plane 0 (uncore) energy

and power. Figure 8.7 shows the ratio of CPU energy and power, ratio of Power Plane 0

(uncore including Last Level Cache) energy and power and ratio of DRAM energy and power

consumption. In all these cases, a value > 1 is better. For almost all cases, the work-aware

implementation consumes less energy as well as power and runs faster than the work-unaware

version.

8.6 Conclusion and Future Research

We present a theoretically optimal level-synchronous work-aware parallel BFS algorithm which

achieves optimality and reduces energy consumption by actively controlling the number of cores

used in each computation step. We empirically show that for levels where the amount of work is

significantly less than the available cores, this approach reduces energy and power considerably.

This algorithm can bring more energy benefits while running BFS on thousands of processing

cores and can be optimized with all known optimizations (e.g., direction optimizations, NUMA

awareness). We believe similar techniques can be used for distributed and hybrid-coprocessor

settings, which probably can bring even more energy savings.

Extending this idea to develop energy-efficient breadth-first search algorithm targeting dis-

tributed and distributed-shared memory platforms is interesting future research direction to

pursue.
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Chapter 9

Hybrid Algorithm using Octrees:

Polarization Energy on Clusters

of Multicores

9.1 Abstract

Computing polarization energy between a ligand (i.e., a small molecule such as a drug molecule)

and a receptor (e.g., a virus molecule) is of utmost importance in drug design. We have de-

signed and implemented cache-oblivious recursive divide-and-conquer distributed-memory and

distributed-shared-memory parallel algorithms for approximating Generalized Born (GB) polar-

ization energy (e.g., polar part of free energy of hydration) of protein molecules. This is an

octree-based hierarchical algorithm, built on Greengard-Rokhlin type near-far decomposition of

data points (i.e., atoms and points sampled from the molecular surface) for calculating the po-

larization energy of protein molecules using the surface based r6-approximation of Generalized

Born radii of atoms. We have shown that our implementations outperform state-of-the-art GB-

polarization energy implementations, such as Amber 12, GBr6, Gromacs 4.5.3, NAMD 2.9 and

Tinker 6.0. Using numerical and algorithmic approximations, cache-efficient data structures,

efficient load-balancing and parallelization schemes, we achieve over 400× speedup w.r.t Amber

with less than 1% error w.r.t. the näıve exact algorithm using as few as 144 cores (i.e., 12

compute nodes with 12 cores each) for molecules with as many as half a million of atoms.

9.2 Introduction

Whenever a molecule comes under the influence of an electric field, its charge distribution is

relaxed in response to that field. The energy associated with this relaxation is known as the

polarization energy (Epol). It is typically negative in quantity, as a relaxation leads to decrease in

energy [134]. Electronic polarization plays a crucial role in drug design, discovery and design of

128



Chapter 9. Polarization Energy on Clusters of Multicores

new proteins, antivirus and antibiotics, protein-protein docking, molecular dynamics simulations

for determining the molecular conformation with minimal total free energy, and so on.

The Poisson-Boltzmann [17, 88, 104, 124] model can be used to approximate Epol. However, due

to its high computational costs Poisson-Boltzmann method is rarely used for large molecules such

as proteins. Instead Epol is approximated using the Generalized Born (GB) model [100, 141, 166]

– a popular approximation model which considers solvent as a statistical continuum. However,

computing Epol näıvely even based on the GB model takes time quadratic in the number of

atoms in the molecule, and thus it remains computationally expensive for large molecules. Hence,

another level of approximation over the original GB-approximation is required in order to reduce

its complexity below quadratic, and preferably to linear.

An additional level of performance boost can be gained in GB-approximation by introducing

parallelism in the computation [108]. Before multicores became widely available, distributed-

memory parallel algorithms were typically used in high-performance parallel computing, and

these algorithms were designed to use explicit distribution and communication of data among

the compute nodes. Even though multicore computers allow implicit communication among

the cores through the memory hierarchy and the shared memory space, when run on clusters

of multicores, pure distributed-memory algorithms typically require separate memory space for

each core of the same compute node, and explicit communication among the cores. One natural

way of reducing excessive data replication and explicit communication among the cores of a

compute node is to use hybrid algorithms – algorithms that use shared-memory parallelism

inside each multicore node and distributed-memory parallelism across the nodes of the cluster.

The goal is to reduce space usage (due to data replication) and communication time (due to

explicit communication among threads) whenever possible.

The main contribution of this work is a hybrid distributed-shared-memory parallel algorithm for

approximating GB polarization energy on a cluster of multicores. We use a fast approximation

scheme based on a hierarchical spatial decomposition of the molecule1 [40, 41], and apply a

Greengard-Rokhlin type near-far approximation scheme [93] on the decomposition. We also

present detailed performance results of our approach. We show that it runs faster than other

state-of-the-art implementations of GB polarization energy namely, Amber 12 [57], GBr6 [183],

Gromacs 4.5.3 [102], NAMD 2.9 [147, 174] and Tinker 6.0 [72], and can handle molecules larger

than most of them can process. We have also compared our hybrid algorithm with our own

purely distributed-memory implementation of the same algorithm. We found that though for

small molecules the hybrid algorithm runs slower, it outperforms the distributed-memory version

as the size of the molecule increases.

The distributed-shared-memory and distributed-memory algorithms are based on the prior shared-

memory cache-oblivious recursive divide-and-conquer algorithm [40, 41] which somewhat shows

portability of a cache-oblivious recursive divide-and-conquer (CORDAC) approach to different

platforms. Our distributed-shared-memory algorithm has the following properties:

• Hybrid parallelism . We use shared-memory parallelism inside each compute node and

distributed-memory parallelism across the compute nodes.

1consisting of atoms and points sampled from the surface of the molecule
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• Cache- and space-efficient data structure . We use octrees [107] for finding nonbonded

atoms, which, unlike traditional nonbonded lists [146], always use space linear in the number

of atoms in the molecule independent of any distance cutoff used. Octrees are recursive

data structures and also known to be cache-friendly.

• Space-independent speed-accuracy tradeoff . The algorithm uses user-defined ap-

proximation parameters, and by tuning these parameters one can get a more accurate

approximation of Epol at the cost of increasing the running time and vice versa. Unlike

traditional distance cutoff based methods, the space usage is independent of the values of

the approximation parameters.

• Load-balancing . Inside each compute node, we use dynamic load-balancing based on

efficient randomized work-stealing [27], and across nodes, we use static load-balancing in

order to reduce the communication overhead.

The rest of this chapter is organized as follows. In Section 9.3 we provide necessary background

on polarization energy as well as on the data structures and algorithms we use. In Section

9.4 we describe related work on the estimation of polarization energy. Section 9.5 presents our

algorithms along with their theoretical complexity analysis. In Section 9.6 we present simulation

results and a detailed comparison with other existing approaches namely, Amber 12, GBr6,

Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0. Finally, Section 9.7 concludes this chapter with

some future research directions.

9.3 Background

In this section, we first explain the mathematical expressions for estimating Epol. Then we

provide some background on the cache-efficient octree data structure, and the near-far approxi-

mation scheme from [40, 41] which we extend to the distributed-shared-memory setting.

Polarization Energy: The polarization energy of a molecule depends on the difference of

potential of that molecule in solvent and gas-phase, and its charge density:

Epol =
1

2

∫
Øreaction(r).ρ(r), (9.1)

where Øreaction=Øsolvant − Øgass−phase, and Ø(r) and ρ(r) are the electrostatic potential and

charge density of the molecule, respectively.

In the GB-model, the polarization energy of a molecule is given by the following equation:

Epol =
1

2

(
1− 1

εsolv

)∑
i,j

qi.qj

fij
GB

, (9.2)

where fij
GB =

[
rij

2 +RiRj exp
−rij

2

4RiRj

] 1
2

, and εsolv = solvent di-electric, rij = distance between

atoms i and j, Rk and qk (k ε{i, j}) denote the Born radius and charge value of atom k,

respectively.
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The effective Born radius reflects how deep a charge is buried inside the molecule. The Born

radius of an atom i, Ri shows the extent of interaction of the atom with a solvent when it is

dissolved in that solvent. If the atom is close to the molecular surface, Ri is small. An atom

with large Ri has a weaker interaction with the solvent.

To approximate Born radii and polarization energy, we have used Gaussian quadrature points

sampled from the molecular surface. Gaussian quadrature attempts to obtain the best numerical

estimate of an integral (e.g., molecular surface function) by picking optimal abscissas xi to

evaluate the function. Gaussian quadrature is considered to be optimal as it fits all polynomials

exactly up to a certain degree [190]. The triangulation of Gaussian quadrature function of the

molecular surface yields an estimation of molecular surface normal at triangulation vertices, and

at Gauss quadrature numerical integrations points in each triangle’s interior. A constant number

of quadrature points per triangle are needed for high accuracy of the Born radii calculation.

The evaluation of Born radii is essentially based on the Coulomb field approximation [96], which

assumes that the electric displacement is in the Columbic form. Using this approximation, Born

radii can be calculated as follows, where xi represents the center of atom i.

1

Ri
=

1

4π

∫
1

|r − xi|4
d3r (9.3)

We can obtain a discrete approximation of Born radii by applying Gaussian quadrature as shown

in Equation 9.4 (known as r4-approximation) [66]:

1

Ri
≈ 1

4π

N∑
k=1

wk
(rk − xi).−→nk
|rk − xi|4

, (9.4)

where rks denote N Gaussian quadrature points on the molecular surface, −→nk is the unit outward

surface normal at rk, and wk is a weight assigned to the quadrature point in order to achieve

higher order of accuracy for small N . However, the following approximation of Born radius

(known as r6-approximation) shows better accuracy for spherical solutes, e.g., proteins [96]:

1

Ri
3 =

3

4π

∫
ex

dr

|rk − xi|6
≈ 1

4π

N∑
k=1

wk
(rk − xi).−→nk
|rk − xi|6

. (9.5)

Octrees vs. Nblists: An octree is a tree data structure that recursively and adaptively sub-

divides a 3D space into 8 octants, and is often used as a container for rectilinear scalar field data.

Octrees are very cache friendly because of their recursive nature. We use octrees to store the

atoms in a molecule and the surface quadrature points. Once an octree is built, it can be used

for any approximation parameter (approximation parameter is sort of similar to distance cutoff

used in other molecular dynamics (MD) packages). Some existing MD packages, e.g., Amber,

NAMD and Gromacs use nblists (nonbonded list) to represent interacting atom pairs. The

size of the nblist of any given atom grows linearly with the number of atoms in the system,

and cubically with the distance cutoff that truncates the non-bonded interactions. On the other

hand, an octree uses space linear in the number of data points it holds, and its size does not

change with the approximation parameter. Updating the nblist after the initial construction

is costly and also not scalable with the distance cutoff. Often MD implementations that use
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Figure 9.1: In the Born radius approximation algorithm two octrees are constructed:
one for the atoms in the molecule, and the other for the quadrature points. Born radii
of all atoms are approximated by recursively traversing both octrees simultaneously. For
simplicity, the octrees are drawn as quadtrees. This figure has been reused from [45]

with permission.

nblists run out of memory for molecules with millions of atoms. For large cutoffs, an octree is

more space-efficient, update-efficient and cache-efficient compared to nblists [42].

Approximating Born Radii and GB Energy: This section gives a quick overview of the

approximation algorithms for Born radii and polarization energy calculation described in [40].

We use the same basic ideas of near-far approximation in our distributed and distributed-shared-

memory algorithms, although we change the algorithms as well as the approximation schemes for

efficient work-division. Let A be the set of atoms in a molecule, and Q be the set of quadrature

points (denoted q-points) sampled from the molecular surface. First, two octrees TA and TQ

for A and Q, respectively, are built, and then Born radii are approximated by traversing them

simultaneously starting at their root nodes.

Approximate integrals (using Equation 9.5) are collected at appropriate internal nodes of TA

and atoms of A. Suppose at some point during this traversal we are at node A ∈ TA and node

Q ∈ TQ. Let rA (resp. rQ) be the radius of A (resp. Q). If A and Q are far enough, i.e., the

distance between their centers, rAQ is larger than (rA + rQ)
(

(1+ε)1/6+1
(1+ε)1/6−1

)
for some user-defined

approximation parameter ε > 0, then the contribution of all q-points in Q to the Born radius

integral of each atom in A can be approximated by treating A (resp. Q) as a single pseudo-atom

(resp. pseudo q-point) centered at the geometric center of the atoms (resp. q-points) under it.

These approximated contributions are collected in A. If A and Q are not far enough but at least

one of them is a non-leaf, we recurse using the children of the non-leaf/non-leaves. If both are

leaves, then we compute the contributions exactly using the atoms under A and the q-points

under Q, and collect them in the respective atoms. Next, we traverse TA top-down, and collect

and add partial integrals from all ancestors of an atom to it. Finally, we compute the Born radii

values from these accumulated values [40]. Epol is approximated using a similar technique. The

pseudo-code for the Born radii and Epol calculation can be found in [40]. Note that the accuracy

and speedup of these algorithms can be tuned by changing the approximation parameters, ε;

increasing ε gives better speedup while sacrificing accuracy in results more and vice-versa.
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9.4 Related Work

Octree-based hierarchical treecode algorithms have already been used for energetics computa-

tions. These algorithms are typically based on Barnes-Hut clustering [109] or the Fast Multipole

Method (FMM)[28], and have been implemented for both serial and distributed-memory parallel

machines to compute Coulomb, London, Lennard-Jones, H-bonds potentials [65, 161], polarized

Coulomb interactions [122], Yukawa potential [193], etc.

Popular Parallel Epol Implementations The well-known Amber 12 [57] package has an

MPI-based distributed-memory implementation for GB-energy calculation. Amber also has a

shared-memory parallel implementation of GB-energy which uses vectorization [164]. Gromacs

[102] has OpenMP based shared-memory and MPI based distributed-memory implementations

of Epol. On the other hand, NAMD [147, 174] uses Charm++ [110] and MPI for its shared

and distributed-memory implementations, respectively. Tinker-6.0 [72] is also a well-known MD

package which supports OpenMP based shared-memory parallelism. On the other hand, GBr6

has a serial approximation algorithm that uses volume-based r6-approximation of Born radii as

opposed to our surface-based r6-approximation. We present the first efficient distributed-shared-

memory implementation of GB energy computation. Although, most of these MD packages

support multiple GB-models such as HCT [100], STILL [166], OBC [141] etc, we used STILL’s

[166] model of equations.

After we published this work, several improvements have been made in most of these MD pack-

ages. Amber, Gromacs, and NAMD have their GPU versions now. Gromacs GPU version still

does not support implicit solvent GB energy computation. We show some comparison results

with Amber-12 and 14 GPU versions at the end.

9.5 Our Contributions

Our main contributions in this work are as follows:

. We present efficient and scalable distributed-memory and hybrid distributed-shared mem-

ory parallel algorithms for approximating Born radii and polarization energy. A number

of different load-balancing/work-distribution schemes have been explored.

. We show the theoretical time complexity analyses and detailed experimental performance

analyses of the algorithms.

. We present performance comparison results of our distributed- and distributed-shared-

memory parallel algorithms with five other state-of-the-art implementations of Epol, namely,

Amber 12, Amber 14 GBr6, Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0, which show that

our implementations outperform all of them.

The major difference of our approach from algorithms presented in [40] is that we only traverse

one octree instead of two, and hence the approximation scheme is also different. Figures 9.2 and

9.3 show our modified algorithms.
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Approx-Integrals( A, Q ) (Here A denotes a node from atoms octree, and Q denotes a leaf node from quadrature points
octree. For each atom a under the subtree rooted at the given node A in the atoms octree, this function approximates∑
q∈Q wq

(pq−pa)·nq
|pq−pa|6

. By pa = 〈xa, ya, za〉 we denote the center of an atom a, while by pq = 〈xq, yq, zq〉, wq and

nq = 〈nxq, nyq, nzq〉 we denote the location of a quadrature point q, weight assigned to q, and the unit outward normal
on the molecular surface at q, respectively. By rA (resp. rQ) we denote the radius of the smallest ball that encloses
all atom centers (resp. integration points) under A (resp. Q). The distance between the geometric centers of A and
Q is given by rA,Q. We assume ñxQ =

∑
q∈Q wqnxq . Similarly, for ñyQ and ñzQ. Each atom a has a field sa, and

each node A in the atoms octree has a field sA, all of which are initialized to zero. The approximated sum is added to
sA provided A and Q are far enough in space so that the sum can be approximated reasonably well (controlled by an
approximation parameter ε > 0). Otherwise, the sums are computed recursively and added to the s field of appropriate
descendants of A. By child(A) we denote the set of non-empty octree nodes obtained by subdividing node A.)

1. if rA,Q − (rA + rQ) > 0 ∧
rA,Q+

(
rA+rQ

)
rA,Q−

(
rA+rQ

) > (1 + ε)
1
6 then

sA = sA +
ñxQ·(xQ−xA)+ñyQ·(yQ−yA)+ñzQ·(zQ−zA)

(rA,Q)6
//far enough to approximate

2. elif leaf(A) then //too close to approximate; compute exact value

for each atom a ∈ A do

for each quadrature point q ∈ Q do

sa = sa +
wq(nxq·(xq−xa)+nyq·(yq−ya)+nzq·(zq−za))

(ra,q)6

3. else ∀A′ ∈ child(A) : Approx-Integrals( A′, Q )

Push-Integrals-to-Atoms( A, s , sid, eid) (A is a node in the atoms octree, and s =
∑
A′∈ancestors(A) sA′ . This function

pushes s+ sA to each descendant of A. If A is a leaf it computes the Born radius of each atom a ∈ A using s+ sA + sa.
Here, sid and eid denote the start id and end id of the atoms assigned to a process.)

1. if leaf(A) then ∀a ∈ A that falls in [sid, eid]:

Ra = max

{
ra,

(
sa+s+sA

4π

)− 1
3

}
//compute Born radii of A’s atoms

2. else ∀A′ ∈ child(A) : par Push-Integrals-to-Atoms(A′, s+ sA, sid, eid)//push integrals to A’s descendants

Figure 9.2: Octree-based algorithm for r6-approximation of Born radii.

Approx-Epol( U, V ) (For two given nodes U and V in the atoms octree TA where, V is a leaf, approximate the
part of Epol resulting from the interaction between the set of atoms under U and V . By rU we denote the radius
of the smallest sphere that encloses all atom centers under U . For any atom u ∈ U , its center, radius, charge and
Born radius are given by (xu, yu, zu), ru, qu and Ru, respectively. For 0 ≤ k < Mε = log1+ε (Rmax/Rmin), qU [k] =∑

(u∈U) ∧ (Ru∈[Rmin(1+ε)k,Rmin(1+ε)k+1))
qu, where Rmin and Rmax are the minimum and the maximum Born radius

among all atoms in A. By child(A) we denote the set of non-empty octree nodes obtained by subdividing node A.)

1. if leaf(U) then return − τ2
∑

(u∈U) ∧ (v∈V ) quqv
/√

r2uv + RuRve
−r2uv/4RuRv//exact value

2. elif rU,V > (rU + rV )
(
1 + 2

ε

)
then

return − τ2
∑

0≤i,j<Mε qU [i] · qV [j]
/√

r2UV + R2
min(1 + ε)i+je−r

2
UV

/4R2
min

(1+ε)i+j //approximate

3. else return
∑

U ′ ∈ child(U) Approx-Epol( U
′, V ′ ) //recurse on U (parallel)

Figure 9.3: Octree-based algorithm for approximating Epol from Born radii.

9.5.1 Load Balancing

There are basically two possible ways of load-balancing in our distributed-shared- and distributed-

memory algorithms:

. distribute only the work/computation (each process will have all the data),

. distribute both the data and work evenly among the processes (each process gets only a

fraction of the data).

Here we only report the implementations in which we divide the work (each process has a

complete set of data).
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We use MPI [92] and cilk++[118] to implement our distributed and distributed-shared-memory

algorithms. We choose cilk++because our algorithms are mainly based on nested fork-join

parallelism, and such recursive parallel algorithms can be implemented very easily in cilk++.

Cilk++’s randomized work-stealing scheduler allows efficient parallel execution of these recursive

divide-and-conquer algorithms. In the rest of this chapter, we will refer to our hybrid distributed-

shared implementation as OCTMPI+CILK and the pure distributed implementation as OCTMPI

.

Load-balancing on octree data structures has been discussed in [33]. We have used both static

and dynamic load-balancing schemes in our algorithms. We use static load-balancing among

the processes because static load-balancing is more efficient and less costly than dynamic load-

balancing in this case. Our load-balancing scheme works in the following way:

. Explicit static load-balancing: Work is divided evenly among the processes. The

ith process computes the Born radii and Epol for the ith segment of atoms and leaf nodes,

respectively, from the atoms octree.

. Implicit Dynamic load-balancing: Since the algorithm uses recursive divide-and-

conquer technique and implemented using cilk++, the provably efficient work-stealing

scheduler [27] of cilk++ does dynamic load-balancing among the threads inside each

process.

Different Work Distribution Approaches: In the distributed/distributed-shared-memory

algorithms, one can distribute the work of calculating Born radii and polarization energy among

the computing processes (a process consists of one or more cores), either by dividing the leaf nodes

(Node-based-work-division2) or by dividing the atoms (Atom-based-work-division3).

Work Distribution for Born Radii calculation: For Born radii calculation work can be

divided by dividing the atoms or nodes from any of the two octrees (atoms octree or quadrature

points octree) evenly among the processes, assigning the job of computation on a particular

segment of nodes or atoms to a particular process. To compute Born Radii, we distribute the

work in two phases. Firstly, we evenly divide the leaf nodes from the quadrature points octree to

the MPI processes. We assign the work of computing approximated integrals for the ith segment

of leaf nodes to the ith MPI process. In the second phase (in Push-Integrals-to-Atoms), we

divide the atoms evenly among the processes, and the ith MPI process computes the final Born

Radii for the ith segment of the atoms. Note that each MPI process only traverses the atoms

octree, and for each leaf node of the quadrature points octree that has been assigned to it, it

computes the approximated integrals. In another implementation, we divide the atoms in both

of these phases, and each process traverses both octrees (TA and TQ), but computes only for

those nodes and atoms that fall within its range.

Work Distribution for Epol calculation: For Epol calculation, we first divide the leaf

nodes of the atoms octree into P equal segments, where P is the number of MPI processes. Then

we assign the work of computing the interaction of the ith segment of leaf nodes with the entire

atoms octree to the ith MPI process. In this case, each process computes the interaction energy

2Each compute node computes only for the leaves assigned to it.
3Each compute node computes only for the atoms assigned to it.
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due to all leaf nodes assigned to it, either by considering them in parallel (in OCTMPI+CILK)

or by taking them one at a time (in OCTMPI) while it traverses the other atoms octree. We

refer to the work division that divides leaf nodes for Born radii and energy computation as the

node–node work division.

Other combinations of work divisions (e.g., atom–node, atom–atom, qpoint–node, node–atom,

etc.) are also possible, but the node–node type work division scheme performed better than other

alternatives in the experiments we conducted. We have observed that atom–node work division

takes slightly more time than the purely node based (node–node) work division. Moreover,

in node–node work division, only leaf nodes (of one octree) are considered during interaction

computation (with another octree) which leads to less approximation compared to approximating

at internal nodes. For this reason, the node–node work division performs better than others with

respect to the percentage of error in the energy value. The error of atom based work division

keeps changing with the number of processes even when the approximation parameters are kept

fixed, because different division boundaries can split the same treenode differently in atom-based

work division. On the contrary, for node-based work division, the error is constant for constant

parameters, because each compute node always gets a full treenode, and hence the approximation

does not change with the change of division boundaries. We have also observed the same trend

of errors in Gromacs that also uses atom based work division techniques.

Dynamic load-balancing among threads: In our distributed-shared-memory algorithm,

inside each compute node multiple threads (or cores) are used to accomplish the work assigned

to a process. The cilk++ runtime system provides dynamic load-balancing among threads using

a randomized work-stealing scheduler [27]. In cilk++ work-stealing scheduler, each thread

maintains a double ended queue (deque) to store its outstanding work/tasks and adds the newly

generated work to the bottom of the queue. On the other hand, when a thread runs out of work,

it chooses a random victim thread and steals work from the top of the victim’s queue (top task

is ideally the biggest task) which helps to reduce inter-thread communication and guarantees

progress [118].

9.5.2 Algorithm

Figure 1.4 shows a sketch of our hybrid distributed-shared-memory parallel octree based GB-radii

and Epol computation algorithms, where p denotes the number of threads running concurrently

in shared-memory and is upper bounded by the number of cores in a single compute node. If the

distributed-shared-memory algorithm runs with P processes, each running p threads internally,

the corresponding distributed-memory algorithm should run P × p MPI processes to achieve the

same level of parallelism (using the same number of cores).

It is important to design hybrid (distributed-shared) algorithms and explore their performance

for the following reasons.

. Most modern supercomputers are networks of multicores, and hence, the future computa-

tion model is likely to be of a distributed-shared-memory type.
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Distributed/Distributed-Shared-memory Octree Based GB-Polarization Energy Computation Al-
gorithm ( Suppose, we have P processes, each of which is running p threads internally. Therefore, if p = 1, it’s a
purely distributed approach and if p > 1, it’s a distributed-shared approach. We first divide the work among the
processes as evenly as possible. Inside each process (or node), work is further distributed among multiple threads
dynamically by the cilk++ framework.)

1. Each compute node builds atoms-octree, TA and quadrature-points-octree, TQ independently.

2. For 1 ≤ i ≤ P [in parallel], the ith process calculates the approximated integrals due to the ith segment
of leaf nodes from the quadrature points octree by traversing TA using the approx-integrals algorithm.
//Node based work division.

3. Each process gathers the partial approximated integrals due to other segments of leaf nodes computed by
other processes using MPI Allreduce.

4. For 1 ≤ i ≤ P [in parallel], the ith process calls the push-integrals-to-Atoms function and computes
final Born radii for the ith segment of atoms. //Atom based work division.

5. Each process gathers the Born radii of other segments of atoms from other processes.

6. Each process traverses TA, and for 1 ≤ i ≤ P [in parallel], the ith process calculates partial energy by
computing the one-to-one interactions of the ith segment of leaf nodes from TA on other nodes of TA.
//Node based work division.

7. The master process accumulates partial energy values from step 6 and generates the final Epol.

Figure 9.4: Octree-based distributed- and distributed-shared-memory algorithm.

. A pure distributed-memory approach typically requires more memory than its distributed-

shared-memory counterpart.4

. Running a single multi-threaded process with two threads on the same compute node

(multicore machine) incurs less communication overhead than running two single-threaded

processes on two different compute nodes.

. No distributed-shared-memory implementation of GB-energy is available yet (at the time

of publication).

Suppose, in a shared-memory algorithm k threads share the same data of size s. Now if we launch

these k threads as k different processes as in a distributed-memory setting, each process will re-

quire a separate copy of the same data occupying ks space in total. As long as this ks data fits

in the shared-cache/main memory, the speedups from both distributed and distributed-shared

memory approaches should be comparable. However, as k independent processes (distributed)

use k times more memory than used by one process with k threads (shared), at some point,

the distributed-shared-memory algorithm should outperform the distributed-memory algorithm.

This happens when the input becomes so large that the ks data does not fit into the shared-

cache/main memory and incurs severe memory overhead (page fault/cache misses and excessive

pressure on bandwidth) causing a slowdown of the program. Moreover, the typical cost of com-

munication among k threads in shared-memory < the cost of communication among k processes

on a single compute node/socket < the cost of communication among k processes on different

sockets < the cost of communication among computing nodes across the cluster. This also implies

that as we increase the number of processes, the overhead of purely distributed algorithm will

be more than the distributed-shared-memory algorithm. We have also observed similar trends

in our experiments.

4Distributed memory implementations are typically designed to replicate data instead of sharing.
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9.5.3 Analysis of Time Complexity

In this section, we analyze the theoretical complexity of our distributed/distributed-shared-

memory octree-based algorithms. We have used complexity results proved in [40] and [41] for

this analysis. Let P be the number of MPI processes, and p be the number of threads running

internally inside each process. Let, the molecule has M atoms in it.

Computational Cost, Tcomp:

Step 1: Each process builds octrees from atoms and quadrature points, which takes O(M logM)

time (assuming the number of Gaussian quadrature points, m = O(M))[40]. Once the octrees

have been built, we can approximate for any ε (recall that ε is an approximation parameter)

without reconstructing them. Moreover, for drug-design and docking where we need to place

the ligand at thousands of different positions w.r.t. the receptor, we can move the same octree

to different positions or rotate it as needed by multiplying with proper transformation matrices,

and then recompute the energy values. Therefore, we can consider the octree construction cost

as a pre-processing cost and ignore it.

Step 2: Each process calculates the Born radii by traversing the atoms octree starting at the

root node. The ith process computes only for the ith segment of leaf nodes from the quadrature

points octree using the approx-integrals algorithm. Since each process gets approximately

dM/P e atoms, and inside each process each of the p cores/threads again does approximately
dM/Pe

p part of the work, it costs O
((

1
ε3 (MP

1
p + logM

))
time (using results from [41]).

Step 4: Each process calls push-integrals-to-atom, and the ith process calculates Born

radii only for the ith segment of atoms. Traversing the entire tree takes O(M logM) time

but each process traverses only that part of the tree that falls in its range. Eventually each

thread traverses approximately O
(

1
P ( 1

p )
)

fraction of the tree. Therefore, this function will take

O
(

1
P ( 1

p (M logM))
)

time.

Step 6: Each process traverses TA, and the ith process calculates partial energy by computing

the one-to-one interactions of the ith segment of leaf nodes from TA with other nodes of TA.

Since each process gets d1/P e fraction of the total number of leaf nodes from the atoms-octree

containing approximately dM/P e atoms, each thread (or core) gets around dM/Pe
p of the atoms

for computation. Hence, this step will take O
(

1
P ( 1

ε3 (Mp + 1) logM)
)

time (using results from

[41]).

Therefore, the total parallel computation time is, Tcomp = O
(

1
P

1
ε3 (Mp + 1) logM

)
.

Communication cost Tcomm:

Step 3 & 5: Each process gathers the approximated integrals and Born radii of other segments

from other processes. It takes O(ts logP + tw
M
P (P − 1)) time, where ts is the startup time and

tw is the message passing time per word (costs for MPI primitives can be found in Table 4.1 of

[92] ).

Step 7: The master process accumulates partial energy values from Step 6 using MPI Allreduce

and generates the final Epol which takes O(ts logP + tw(P − 1)) time.
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Therefore, the total parallel time, Tp = Tcomp+Tcomm = O
(

1
P

1
ε3 (Mp + 1) logM + ts logP + tw

M
P (P − 1)

)
= O

(
1
Pp

1
ε3M logM + twM

)
.

Attribute Name Property

Processors 3.33 GHz-Hexa-Core 64-bit Intel-Westmere

Cores/node 12

RAM size and speed 24 GB, 1333 MHz

Cluster Interaction Type InfiniBand, fat-tree topology, 40Gb/s p2p bandwidth

Cache 12 MB L3, 64 KB private L1, 256 KB private L2

Operating System Linux CentOS 5.5.

Parallelism Platform Intel Cilk-4.5.4, MPI (MVAPICH2/1.6)

Optimization parameter -O3

Table 9.1: Simulation environment.

9.6 Simulation Results

All experiments included in this section were performed on the Lonestar4 computing cluster

located at the Texas Advanced Computing Center [6]. All algorithms were tested on ZDock

Benchmark Suite-2.0 containing 84 complexes (168 proteins) both in bound and unbound states.

We used proteins from the bound dataset only. The number of atoms per protein varied from

around 400 to 16, 000. Important properties of the simulation environment are summarized in

Table 9.1.

We have compared three different octree based implementations, namely, the shared-memory,

distributed-memory, and distributed-shared-memory implementations with GBr6 [183], and the

GB-polarization energy implementations from four existing well-known molecular dynamics pack-

ages, namely, Gromacs 4.5.3 [102], NAMD 2.9 [147, 174], Amber 12 [57] and Tinker 6.0 [72].

Table 9.2 summarizes some important properties of these programs. We have also reported the

running times and energy values computed by the näıve serial implementations of Equations 9.2

and 9.5.

Package GB-Model Parallelism

Gromacs 4.5.3[102] HCT[100] Distributed (MPI)

NAMD 2.9[174] OBC[141] Distributed (MPI)

Amber 12[57] HCT Distributed (MPI)

Tinker 6.0[72] STILL[166] Shared (OpenMP)

GBr6[183] STILL Serial

Name GB-Model Parallelism

OCTCILK STILL Shared (cilk++)

OCTMPI STILL Distributed (MPI)

OCTMPI+CILK STILL Distributed
(MPI+cilk++)

Näıve STILL Serial

Table 9.2: Packages with GB models and types of parallelism used.

9.6.1 Dealing with NUMA Effect

To reduce the impact of NUMA (Non-uniform memory architecture) on Intel machines, we ran

all the MPI programs with ibrun tacc affinity, which is basically a wrapper around the mpirun

or mpiexec, and it fixes the affinity of the processes to the cores, sockets, and caches to reduce

overall cache misses. On the other hand, cilk++does not provide any thread affinity manager.

The cilk++work-stealing scheduler allows a thread to steal from any other thread. However, by

stealing the oldest entry from a deque (least recently used data), it tries to reduce the number

of cache misses. On Lonestar4, each machine was dual socket, and we launched one process with

6 threads on each socket for the OCTMPI+CILK program, which bounded those 6 threads only

to one socket and alleviated the NUMA effect.
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9.6.2 Scalability

Figure 9.5: Strong scalability with increasing number of cores.

Figures 9.5 shows how the running time decreases and speedup increases, i.e., the scalability

of our OCTMPI and OCTMPI+CILK implementations with the number of cores. We ran this

experiment on the Blue Tongue Virus (BTV ) that has 6-millions of atoms and over 3-millions

quadrature points. Since for a small number of cores (or processes), each core needs to handle a

comparatively larger data segment, that segment may not fit in the cache fully at the same time

leading to more cache misses. However, as the number of cores or processes increases, because

of the balanced work division, each core will work only on a smaller portion of data which can

easily fit into the cache.

ForOCTMPI program, we ran 12 processes in each compute node, and forOCTMPI+CILK program,

we ran 2 processes each running 6 threads in each compute node. For each configuration, we ran

all programs 20 times and plotted the minimum and maximum running times in the Figure 9.5.

We observe that the minimum running time of OCTMPI+CILK is always smaller than the mini-

mum running time of OCTMPI after the core count reaches 180, whereas we always (independent

of core count) see the opposite for the maximum running times. As the OCTMPI program has 6

times more processes than OCTMPI+CILK , the communication overhead of OCTMPI was more

than OCTMPI+CILK . Similarly, the memory overhead was also more in OCTMPI . For these

reasons OCTMPI+CILK eventually ran faster than OCTMPI . For BTV, when run on a sin-

gle node with 12 cores, OCTMPI+CILK (2 processes, each with 6 threads) took approximately

1.4GB of memory, whereas OCTMPI+CILK (12 processes, each with 1 thread) occupied 8.2GB,

which is 5.86 times more than that of OCTMPI+CILK (as expected). This ratio continues to

hold as we increase the number of compute nodes.

9.6.3 Running Time and Speedup

Next we ran OCTMPI and OCTMPI+CILK on a 12-core machine for the ZDock benchmark

molecules, and compared their performance with that of OCTCILK . Note that the algorithms

underlying OCTMPI and OCTMPI+CILK were different from the one used by OCTCILK . All

these algorithms were run with approximation parameters set to 0.9 (Born Radii) and 0.9 (Epol),
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respectively. We used approximate math for computing square root and power functions. No

vectorization was used.

We observed thatOCTCILK showed better performance than bothOCTMPI andOCTMPI+CILK for

molecules with less than 2500 atoms, since for small molecules the communication cost dominated

the computation cost. The OCTMPI implementation was significantly faster than OCTCILK for

molecules with greater than 2500 atoms, because for larger molecules computation costs beaten

communication cost, and the differences in running times increased with the size of the molecules.

Figure 9.6: Performance comparison of differ-
ent octree based algorithms (results are sorted by

the OCTCILK time).

The OCTMPI implementation was also

slightly faster than OCTMPI+CILK for

molecules with less than 7500 atoms. Af-

ter molecule size 7500, both OCTMPI and

OCTMPI+CILK showed similar performance.

As OCTMPI was using almost 6 times more

memory than OCTMPI+CILK , the difference

in performance diminishes with the size of the

molecule. MPI turns out to be more optimized

compared to the cilk++implementation5 and

cilk++does not maintain thread affinity.

There is an additional overhead of interfac-

ing cilk++ and MPI. These overheads of

OCTMPI+CILK were prominent for smaller

molecules and became less dominant as the size of the molecule increased.

Gromacs also has a shared-memory implementation of GB-energy, and we observed that for

Gromacs, too, the distributed-memory implementation was slightly faster than the shared-

memory implementation. Hence, in the rest of this section, we only compare with the MPI

based distributed-memory implementation of Gromacs.

(a) (b)

Figure 9.7: Performance comparison of different algorithms. Results are sorted by
molecule size.

For comparison purposes, we ran all programs mentioned in Table 9.2 on a 12-core machine (single

compute node). For the distributed implementations (NAMD, Gromacs, Amber, OCTMPI), we

ran 12 different MPI processes on these 12 cores. For NAMD, we were not able to find any way

5We have used cilk-4.5.4, which is a predecessor of Intel cilk plus, and Intel cilk plus is likely to be much better
optimized than cilk-4.5.4.
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to compute only the GB-energy. So, we first computed the total electrostatic potential with

GB energy turned on and then computed the electrostatic energy with GB energy turned off,

and took the difference to retrieve actual GB energy. We also took the difference of running

times of these two runs to get the time of GB energy computation. We took the average of 10

runs to reduce noise. Figure 9.7 shows the performance of different algorithms. From the plot

of running times for GB-energy (including Born radii), we observe that overall OCTMPI and

OCTMPI+CILK perform the best among all algorithms. The differences in performance among

Gromacs, OCTMPI and OCTMPI+CILK become prominent as the size of the molecule increases.

On the other hand, Amber was much slower than both OCTMPI and Gromacs but faster than

NAMD, Tinker, and GBr6. Our results show that Tinker is slightly faster than GBr6.

We can get a glimpse of the speedup achieved by these programs on 12 cores of one compute node

(1 core for GBr6) compared to Amber in Figure 9.7 (b) which shows that OCTMPI achieves

a speedup of approximately 11 w.r.t. Amber for a molecule of size 16, 301 using only 12 cores,

whereas Gromacs achieves a speedup of ∼ 2.7 for the same molecule (although the maximum

speedup achieved by Gromacs is 6.2 for a molecule with 2260 atoms). The maximum speedup

achieved by NAMD, Tinker and GBr6 for the ZDock benchmark molecules are 1.1, 2.1 and 1.14,

respectively.

9.6.4 Energy Value

Figure 9.8: Energy value computed by different
algorithms.

Figure 9.8 plots the GB-energy values for the

ZDock benchmark molecules calculated by dif-

ferent algorithms mentioned in Table 9.2. The

energy values computed by Amber, GBr6,

Gromacs, NAMD and OCTMPI match closely

with GB-energy computed by the näıve ap-

proach. Energy values reported by Tinker

were around 70% of the näıve energy. All oc-

tree based algorithms reported approximately

the same energy value. We have observed

that Tinker and GBr6 do not work for larger

molecules (> 12k and > 13k respectively) as

they run out of memory.

9.6.5 Change in Error and Runtime with Approximation Parameter

Recall that the octree-based algorithms are tunable because we can change the running time (as

well as the error in result) by changing the approximation parameters. An increase in approxima-

tion parameter ε increases error in energy value and decreases running time. However, for small

molecules, running times do not depend on ε at all. Figure 9.9 shows the impact of approximation

parameter on our distributed-shared-memory algorithm’s percentage of error in energy value and

running time. The distributed-memory algorithm also follows the same trend. For this experi-

ment, we kept the approximation parameter of Born Radii calculation fixed at 0.9 and varied the

approximation parameter of Epol from 0.1 to 0.9. We ran the OCTMPI+CILK implementation
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Figure 9.9: Change in performance of the OCTMPI+CILK algorithm with approxi-
mation parameter, ε; Born Radius ε is fixed at 0.9 and Epol ε varies.

on all protein molecules of the ZDock benchmark suite. Approximate math was turned “off”.

Turning approximate math “on” shifted the error by 4−5% and decreased the running times by

a factor of 1.42 on average (Figure 9.6 vs. Figure 9.9). We collected the average and standard

deviation of percentage of error for Epol, and plotted the avg. ± std. for all molecules.

9.6.6 Scalability with Larger Molecule

We also ran all octree-based implementations and Amber on the Cucumber Mosaic Virus (CMV)

shell consisting of 509, 640 atoms and 1, 929, 128 quadrature points. GBr6 and Tinker ran out of

memory for CMV. We were able to run Gromacs and NAMD on CMV only for cutoff values up to

2 and 60, respectively, which are not reasonable cutoff values for such a large molecule. For CMV,

OCTMPI and OCTMPI+CILK achieved a speedup of more than 400−500 using only 12 cores of a

single compute node and 300−400 times speedup using 144 cores (12 compute nodes each running

12-threads internally) w.r.t. Amber, while the errors w.r.t. the näıve energy were still less than

1% 6. Note that we get such a high speedup because of three levels of acceleration: (a) from

parallelism, (b) from two levels of approximations (numerical and algorithmic) in calculations

(in Born Radii and Epol), (c) from using the cache-friendly octree data structure and (d) using

a recursive divide-and-conquer algorithm.

(a) CMV
Virus Shell.

Program
12 Cores      
(Time )

144 Cores 
(Time)

Speedup 
wrt Amber 

using 12 
Cores

Speedup 
wrt Amber 
using 144 

Cores

Energy 
Value 

Kcal/Mol 

(106)

% of 
Difference 
with Naïve 

OCTCILK 12.5s X 187 X -1.48 -0.95

Amber 39min 3.3min 1 1 -1.44 2.2
OCTMPI+CILK 4.8s 0.61s 488 325 -1.47 -0.07

OCTMPI 4.5s 0.46s 520 430 -1.47 -0.07

(b) Scalability on a large molecule (Cucumber Mosaic Virus shell).

9.6.7 Comparison with Amber GPU Implementations

After we finished this work, a lot of improvements have been made in Amber, Gromacs, and

NAMD packages. For example, all of these MD packages now have GPU based implementations

which in general perform much better than their CPU-based implementations that we used for

6 At present, Amber does not support concurrent execution of more than 256 cores.
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comparison in this work. So we have redone some of the experiments to compare the performance

of our algorithms with Amber GPU versions [57, 58, 89] and the result has been shown in Table

9.3. For these experiments, we use CMV as an input.

Energy -1410965 Energy -1410965 Energy -1410965 Energy -1410965 Energy -1470540 Energy -1470530

Time 	91.79 Time 61 Time 46 Time 49 Time 5 Time 4.8

98%	of	
Total	
Time

90
98%	of	
Total	
Time

60
98%	of	
Total	
Time

45
98%	of	
Total	
Time

48

Speedup	
w.r.t	
fastest	
Amber

10

Speedup	
w.r.t	
fastest	
Amber

9.4

OCT_MPI+CILK		on	12-
core	Intel	Westmere

Amber	12	on											
Tesla	M2090

Amber	12	on							
Kepler	20

Amber	14	on				
GTX780

Amber	14	on												
Kepler	80

OCT_MPI	on	12-core	
Intel	Westmere

Table 9.3: Comparison with Amber GPU implementations on CMV.

We ran Amber 12 and Amber 14 on four different GPUs (Tesla, GTX and Kepler) with dif-

ferent compute capabilities. Since Amber GPU versions do not directly report the GB energy

time, we consider 98% of the non-bonded energy time reported by Amber as the GB time as

suggested by an Amber GPU developer [155]. Table 9.3 shows that our original OCTMPI and

OCTMPI+CILK implementations are still 10× faster than Amber GPU implementations. Am-

ber’s GPU implementations compute the forces, that we do not compute. This might be one

reason of Amber’s slow down.

9.6.8 Full Vs. Half Energy

Figure 9.11: Speedup w.r.t. Amber when only
half of the energy terms are computed.

In all our implementations we target to

compute all O(M2) pairwise interactions (of

course some of them were approximated for

being far). However, since pairwise interac-

tions for polarization energy is symmetric (i.e.,

the energy between x and y is the same as the

energy between y and x), it is possible to com-

pute only O
(
M2

2

)
energy terms. Multiplying

this half energy by 2 will give the desired full

energy value. Computing full energy from the

half energy directly would reduce the running

time by half of what we have presented here so

far. We conducted one experiment where we

computed half of the energy terms, and Figure 9.11 shows the result. In this case, the OCTCILK

algorithm runs 16× faster than Amber, whereas in Figure 9.7 it ran around 6.3× faster for full

energy computation. Note that computing half energy not only reduces the amount of compu-

tation but also the amount of data that need to be loaded from memory/cache. That might

explain why the speedup is > 2×. This result shows that, it is possible to further improve all

running times presented earlier in this chapter.
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9.7 Conclusion

In this chapter, we have presented a hybrid distributed-shared-memory parallel octree based

algorithm for approximating molecular polarization energy, and provided detailed performance

comparison with popular MD packages: Gromacs, NAMD, Amber, Tinker and GBr6. We have

shown that our octree based polarization energy approximation algorithms run significantly faster

than Amber, Gromacs, NAMD, Tinker, and GBr6, and can handle molecules with millions of

atoms which cannot be handled by most of the other implementations. The presented octree-

based algorithms also have very good scalability with the number of cores and molecule size. We

believe that octree is the right data-structure to use in MD packages instead of nonbonded lists

that cause most MD packages to run out of memory for very large molecules. A complete MD

package based on octrees and the ideas presented in this chapter will accelerate MD simulation

process undoubtedly. However, for that, we need to compute forces using octrees, which is an

interesting research that needs to be done.

Our experience says that if a program runs significantly faster than another program while

doing the same computation, it also consumes less energy than the later. Since our octree-based

algorithms are significantly faster than other available MD packages, they should also consume

less energy than those packages. Analyzing the energy and bandwidth profiles, cache-adaptivity

in a multi-programming environment of these algorithms is interesting. The current distributed

and distributed-shared memory algorithms are processor aware, making them processor oblivious

while maintaining the performance is also interesting.
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Lemkul and Szilárd Páll for their help with Gromacs, and to Michael Schnieders for helping with

Tinker.

145



Chapter 10

Future Research

In this chapter, we discuss implications of our work to future parallel algorithm design, and ways

to extend our research on other domains. We first discuss the scope of improvements and open

problems related to each research work presented in the prior chapters. We end by discussing

some open research problems.

Chapter 2: Dynamic programming on spatial architectures. Exploring the possibility

of mapping other dynamic programming problems with non-local dependencies on the Triggered

Instruction Spatial Architectures (TIA) is the next step in this research. Solving cache-oblivious

wavefront (COW) algorithms [173] on TIA is an interesting research direction to pursue since

both use the concept of a trigger: COW algorithms use the triggers in the scheduler, where

triggered instruction spatial architecture implements them in hardware scheduler.

Chapter 3: CORDAC for solving dynamic programming problems. Apart from the

research presented in this dissertation, we have also been working on automating the process of

generating CORDAC algorithms from their corresponding serial iterative DP implementations

by analyzing the data access patterns [14]. Having a full-fledged system that can take a serial

iterative implementation of any DP problem and generate an efficient CORDAC algorithm while

predicting the theoretical parallelism and cache-complexity, and then can generate an efficient

implementation of the generated algorithm will immensely benefit the computational scientists

(e.g., biologists, chemists and others) who occasionally deal with big scale dynamic programming

problems and also need high-performance. Our work presented in Chapter 3 shows that opti-

mization of the CORDAC algorithms in a systematic process. Building a specialized CORDAC

compiler that can automatically optimize CORDAC algorithms is also an interesting research

direction to pursue.

The shared-distributed-shared-memory algorithmic framework presented for CORDAC algo-

rithms is processor-aware. Designing a processor-oblivious shared-distributed-shared-memory

algorithmic framework for dynamic programming problems is challenging and interesting. Since

in the near future, we are going to have machines with many more diverse architectural prop-

erties, the question that we ask is, “is it possible to design a framework that can generate and

implement algorithms for cross-platform operativeness - e.g., algorithms that can work efficiently

146



Chapter 10. Future Research

on shared-memory, distributed-memory, distributed-shared memory and co-processor settings?”.

If the answer is “yes”, building such a system will be a challenging research project.

Chapter 4: Robustness and adaptivity of CORDAC algorithms. There are many

open questions regarding adaptivity and robustness that we still do not have answers to. We

do not know how the cache-adaptivity changes based on overall parallelism, space usage and

cache-complexity of a program. Other questions that we would like to answer in the future

are as follows. Is there any predictable relationship among adaptivity, parallelism, space-usage,

cache-efficiency and obliviousness (in both single and multiprogramming environments)? Are the

cache-oblivious wavefront algorithms more/less adaptive than CORDAC algorithms? What are

the relationships among energy consumption, cache-miss, bandwidth and running time? Can

they be represented as simple equations that can portrait the asymptotic relations correctly?

What about other parallel programming platforms, such as host + coprocessor setting?

Chapter 5: Provably efficient scheduling of cache-oblivious wavefront algorithms.

There are a lot of opportunities to extend this work. It is highly likely that the complete-

time, start and end timestamps for each cell and each recursive function call in a recursive

wavefront algorithm can be automatically generated. If that is done, the next step would be

to develop an autowave system that can automatically convert a standard 2-way CORDAC

algorithm to a cache-oblivious wavefront algorithm while guaranteeing cache-optimality with

improved parallelism.

Chapter 6: Cache-efficient Viterbi algorithm. The open problem here is to understand

and find out whether is it possible to extend the ideas of rank convergence to solve other irregular

DP problems such as the knapsack problem. Is it possible to improve the performance of the

known recursive algorithm for LCS by using rank-convergence? It will be interesting to assess

cache-adaptivity and bandwidth-performance of Viterbi algorithm. Extending Viterbi algorithm

to run on manycores and distributed settings is also interesting.

Chapter 7 and 8: Optimistic parallelization and graph algorithms. It would be in-

teresting to see if optimistic parallelization technique can be used to improve the performance

of other nontrivial parallel applications that use dynamic load-balancing. Lockfree optimistic

parallelization for approximation algorithms where some error in the result is acceptable is also

an interesting research direction to pursue. Furthermore, even for the dynamic programming

problems presented in this dissertation, where we need to take minimum or maximum from a

range of values, use of optimistic parallelization may improve parallelism even further.

Chapter 9: Molecular Energetics. Since our octree based near-far approximation algorithms

to compute polarization energy run orders of magnitude faster than other Molecular Dynamic

(MD) packages, it is likely that other molecular energetics terms can also be computed faster by

following similar octree-based approach. For other energetic terms, although shared-memory im-

plementations are available, octree-based distributed and distributed-shared-memory algorithms

still need to be implemented. A complete MD package based on octrees using similar ideas may

accelerate MD simulation process significantly. However, for that to happen, we need to compute

forces using octree-like data structures, which is another way to extend this work.
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Open problem: Completing the automation pipeline. One of the major contribution

of this dissertation is to show that recursive divide-and-conquer algorithms for solving dynamic

programming problems are high-performing, and their performance is more robust than the other

two popular options to solve them, namely the iterative and tiled-loop techniques. However, to

motivate scientists to use these algorithms for their own unique dynamic programming problems,

it is very important to complete the following pipeline.

Figure 10.1: Ideal pipeline for the automatic generation of efficient recursive algo-
rithms and their implementations.

At the beginning of the pipeline a biologist or a scientist who needs to solve a dynamic program-

ming problem would write a simple iterative solution to her problem and feed that to Autogen

[14], which would generate a recursive divide-and-conquer (CORDAC) algorithm along with the

theoretical time and cache complexity from the given serial iterative implementation. Then

the output of Autogen will be fed to AutoImp: an automatic implementer which can read the

generated pseudocode and generate an actual executable implementation of the algorithm. The

generated code will then be fed to AutoOpt : a machine specific optimizer which will automati-

cally optimize the code so that it leads to better practical performance on a particular machine,

with a given compiler and input size. At this point, if the biologist wants, she can take the opti-

mized implementation and run her application. Otherwise, she can use the Autowave to generate

a cache-oblivious wavefront algorithm to get even better parallelism. The generated recursive

wavefront algorithm will be fed to an AutoWaveImp which will generate an implementation for

a recursive wavefront algorithm of the original DP problem. Finally, the AutoOpt will be used

to optimize the generated code for a given machine and input range which can then be used by

the scientist for her computation.

To summarize, the aim of this dissertation was to present algorithms/algorithmic frameworks

that solve many problems in bioinformatics more efficiently than their existing solutions on

modern heterogeneous parallel architectures. However, our algorithms/algorithmic techniques

are generic. Some of the algorithmic frameworks are also suitable for automation on modern

multicore and manycore machines. The results are very promising and should encourage the rest

of the research community to use our approaches, and extend them as needed.
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