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Abstract— We present efficient cache-oblivious algorithms for
some well-studied string problems in bioinformatics including the
longest common subsequence, global pairwise sequence alignment
and 3-way sequence alignment (or median), both with affine
gap costs, andRNA secondary structure prediction with simple
pseudoknots.

For each of these problems we present cache-oblivious al-
gorithms that match the best-known time complexity, match
or improve the best-known space complexity, and improve
significantly over the cache-efficiency of earlier algoritims.

We present experimental results which show that our cache-
oblivious algorithms run faster than software and implemerta-
tions based on previous best algorithms for these problems.

Index Terms—sequence alignment, median, RNA secondary
structure prediction, dynamic programming, cache-efficiet,
cache-oblivious.

I. INTRODUCTION

The cache complexityor I/O complexity of an algorithm is
measured in terms of the number of cache-misses it incurs and
thus the number of block transfers or /0O operations it cause
Algorithms designed for this model often crucially depemdtioe
knowledge ofM and B, and thus do not adapt well when these
parameters change.

The ideal-cache model [18] is an extension of the two-lei@| |
model with an additional requirement that algorithms mastain
oblivious of cache parameters, i.e., cache-oblivious. Triualel
assumes an optimal offline cache replacement policy, whéch ¢
be approximated to within a constant factor by standard each
replacement methods such as LRU and FIFO. A well-designed
cache-oblivious algorithm is flexible and portable, andustame-
ously adapts to all levels of a multi-level memory hieratchy

A. Our Results

LGORITHMS for sequence alignment and for RNA sec- In this paper we present an efficient cache-oblivious fraankw
ondary structure prediction are some of the most widef@t solves a general class of recurrence relations in 2-3and

studied and widely-used methods in bioinformatics. Manthese
are dynamic programming algorithms that run in polynomiialkt
under the traditionalon Neumann Modedf computation which

imensions that are amenable to solution by dynamic program
with ‘local dependencies’. In a dynamic program with local
dependencies the value of each cell in the DP table depends

assumes a single layer of memory with uniform access codt, d'ly on values in adjacent cells. In principle our framewoeln

many have been further improved in their space usage, maiﬁ’l?

generalized to any number of dimensions, although weystud

using a technique due to Hirschberg [23]. Modern compute/@<Plicitly only the 2- and 3-dimensional cases. We descdbe
however, differ significantly from the original von Neumanrnethodology using the simple and well-knodengest common
architecture. Unlike von Neumann machines, memory on thed@sequencgLCS) problem. We generalize this framework to

machines is typically organized in a hierarchy with registim

develop cache-oblivious algorithms for several well-knostring

the lowest level followed by several levels of caches (L1, LProblems in bioinformatics, and show that our algorithme ar

and possibly L3), RAM, and disk. The access time and size
each level increases with its depth, and data is transfdrred

eth theoretically and experimentally more efficient thaevipus
algorithms for these problems. Our results for the strirgpbjams

blocks between adjacent levels. When executed on such eatyp!Ve consider_ are the_ following (recall that is the block transfer
modern computer algorithms designed for the traditionatieho Siz€: and is the size of the cache):
often cause the processor to stall while waiting for datad@o b e Global pairwise alignmentvith affine gap costs: On a pair

transferred from slower levels of memory. The situationhe t
worst for large datasets that involve block transfers to fiath
the disk. Therefore, in order to perform well on these maahin

new algorithms must be designed that reduce the number ckblo «

transfers between different levels of the memory hierarchy

Cache-efficiency and cache-oblivious algorithmslhe two-level

I/O model [1] is a simple abstraction of the memory hierarchy

that consists of a cache of siaé, and an arbitrarily large main
memory partitioned into blocks of sizB. An algorithm is said
to have caused a cache-miss if it references a block thatrdues

reside in the cache and must be fetched from the main memory. incurs© (
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of sequences of length each our cache-oblivious algorithm
runs inO n2) time, usesO (n) space and incur® (B"—;{)
cache-misses.

Median (i.e., optimal alignment of three sequencesith
affine gap costs: Our cache-oblivious algorithm runs in
O (n?) time and® (n?) space, and incurs only ( )
cache-misses on three sequences of lengéach.

RNA secondary structure prediction with simple pseudaknot
On an RNA sequence of length, our cache-oblivious
algorithm runs in(’)(n4 time, uses® (n2) space and

n3

BV M

n

B\/M) cache-misses.

Our cache-oblivious algorithms improve on the space usage
of traditional dynamic programs for each of the problems we
study, and match the space usage of the Hirschberg’s space-
reduced version [23] of these traditional DPs. However,space
reduction is obtained through a divide-and-conquer giyathat




is quite different from the method used in [23]. Hirschberg’ Given two sequenceX = ziz2...zn aNdY = y1y2...yn
approach, too, decomposes the problem into subproblents, @ar simplicity, we assume equal-length sequences here), w
uses a method that involves the application of traditioteabtive define c[i,j] (0 < 4,7 < n) to be the length of an LCS of
DP in both forward and backward directions. The applicatibn ziz2...xz; andyiyz...y;. Thencn, n] is the length of an LCS
iterative DP results in inefficient cache usage. Moreoves, use of X andY’, and can be computed using the following recurrence
of both forward and backward DP, and particularly the need telation (see, e.g., [14]):
combine the results obtained from them, sometimes contesca 0 . .

. . . , X if =0 or 7 =0,
the implementation of Hirschberg’s method (e.g., for npli . . o
. , . . ci—1,7—-14+1 ifi,j>0Az; =vy;,
simultaneous recurrences or recurrences with multipleddjel  c¢[i, j] = clij— 1] :
In contrast, our algorithm always applies DP in one directio max{c[i’J_ 1 ‘]’} ifi,5 >0Az; #yj.
and is arguably simpler to implement. A method for applying ) J ) )
Hirschberg's space-reduction using forward-only DP isegiin Ve can rewrite the recurrence above in the following form:

(I1.1)

[17], but it involves repeated linear scans and thus is nohea h( (i, j)) if i=0o0rj=0,
efficient. T <7'7 ] >7 <CC’L'7 Yj >7 1.2

In our experimental study of the first two problems we compareC[W] "N flei—=1:4, j—1:5]]| otherwise. (1.2)
our implementations to publicly available software writtey oth- \c[i, 7]

ers, and for the last one our comparison is to our implemientat
of the best previous algorithm (due to Akutsu [3]). In gehera
cache-oblivious algorithms outperformed the other athors for
all three problems.

wherekh () is an initialization function that always returns 0, and
f(,-,-) is the function that computes the value of each cell based
on the values in adjacent cells as follows.

In related work, in [13] we present parallel cache-obligou (i, ), (i ¥j )s
implementations of these algorithms for distributed andrsti / < cli—1:4, 5—1:5]\¢[i,]] )
caches, and fomulticores Additionally, we present cache- li—1,j—1+1 if 2 = yj,
oblivious sequential and parallel algorithms for solvireyeral — cliyj— 1], .
dynamic programming recurrences with ‘non-local dependen max{ ci — 1, 4] } otherwise.

cies including those for pairwise sequence alignment with ge
eral gap costs, and the basic RNA secondary structure fiedic
(without pseudoknots) problem in [10], [8], [13].

rI]—:unction f uses exactly one cell from its third argument to
compute the final value of[i, j], and we call that specific cell
the parent cellof [i, j]. The traceback pathfrom any cellc[s, j]

is the path following the chain of parent cells througthat ends
B. Organization of the Paper at somec[i’, ;] with i’ = 0V j/ = 0. An LCS can be extracted

In Section Il we describe our cache-oblivious framework fofom the traceback path starting ét:, n).
solving dynamic programming problems with local depengenc All computations above are performed in the domain of non-
in Section II-A we use the simple and well-known 2-dimenaion Negative integers (i.e., the s&tof natural numbers).
dynamic programming recurrence for finding a longest commonRecurrence 11.2 gives the general form of a DP with local
subsequence (LCS) to describe our methodology, in SedtBn | dependencies in 2 dimensions. It can be evaluated itelaiive
we formulate the general-dimensional framework, in Section © (n*) time, O (nz) space andO (n*/B) cache-misses. It
II-C we establish its I/O lower bound, and in Section 1I-D wéas been shown in'[2], [24], [32] that the LCS problem cannot
apply this framework to obtain cache-oblivious algorithfies be solved ino (n?) time if the elementary comparison operation
global pairwise sequence alignment, median, and RNA seegndis of type ‘equal/unequal’ and the alphabet size is unretsul
structure prediction with simple pseudoknots. In Sectibrwe However, if the alphabet size is fixed the theoretically dast
present our experimental results on the three problems. known algorithm runs ir©® (%) time and space [33], though
Preliminary versions of the LCS results in Section II-A ahd t this appears to be impractical to implement. Faster alymst
I/O lower bound in Section II-C appeared in a conference.[10exist for different special cases of the problem [6]. If thehabet
size is unrestricted, this problem can be solved)ié%nght?me
[I. CACHE-OBLIVIOUS DYNAMIC PROGRAMS WITHLOCAL and space [15], wherg is the entropy of the sequences.
DEPENDENCIES In most applications, however, the quadratic space redjuire
A. The LCS DP by an I__CS al_gorithm is a more constraining factgr than its
) ) . . _Quadratic running time [22]. Fortunately, there are linepace
In this section we describe our methodology using the S'mﬁlﬁlplementations [23], [29], [5] of the LCS recurrence, bhet
2

and well-known dynamic programming recurrence for the éstg cache complexity remaing (% ) and the running time roughly
common subsequence (LCS.) problem. doubles. Hirschberg’s space-reduction technique [23] tfor

A sequence’ = 21z ... 2, is called asubsequencef another | ~g" o rrence has become the most widely used method for
sequ_enceX‘ = @123...zp if there exists a strictly increasing reducing the space complexity of similar DP-based algorith
function f : [1,2,...,k] — [1,2,...,n] such that for alli € in computational biology [34], [36], [42], [26]. Howeverf i
[1, k], zi =z In the Longest Common Subsequert€s)  , ,cehack path is not required it is easy to reduce space
problem we are given two input sequences, and we need to f\%%uirement of the iterative algorithm & (n) even without using
a maximum-length subsequence common to both SequenceS'Hirschberg’s technique (see, e.g., [14]), and its cachaptexity

2

1In a dynamic program with non-local dependencies valuesinesor all can be |n_1proved tf@ Bar ) Using the cache-oblivious stencil-
cells in the DP table depend on values in non-adjacent cells. computation technique [19].
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Fig. 1. (Cache-oblivious computation of traceback path (by fumcf@OMPUTE-TRACEBACK-PATH)) (a) The inputs are the two sequenc&sandY’, and

the entries on the left and the top boundaries of mafyix= ¢[ 1 : n, 1 : n |. (b) Forward Pass: The output boundaries of three of the four rguésl of

Q@ are computed recursively (by callingo®PUTE-BOUNDARY) in the following order:Q:11, Q12 and Q21. This order ensures that the input boundaries
of each quadrant are already available at the time it is gs®mE by ©MPUTE-BOUNDARY. () Backward Pass: The fragments of the traceback path are
extracted from the quadrants by callingp@PUTE-TRACEBACK-PATH on them recursively in the opposite order of the forward pass

In the rest of this section we present a cache-oblivious-algcomputation space) (initially Q = ¢[ 1 : n, 1 : n]) into 4
rithm for solving recurrence 1.2 along with a tracebackhpatquadrants@; ;, 1 < i,j < 2, where@Q; ; denotes the quadrant
in O (n2 time, O (n) space and® % cache misses. It that isi-th from the top and-th from the left. It then computes
improves over the previous best cache-miss bound by at let¥ output boundary of each quadrant recursively as thetinpu
a factor of M, and reduces space requirement by a facton of boundary of the quadrant becomes available during the psoce
when compared with the traditional iterative solution. of computation. After all recursive calls terminate, thetpoi

boundary of@ is composed from the output boundaries of the

Cache-oblivious Algorithm for Solving Recurrence 11.2. Our quadrants.

algorithm GoMPUTE-TRACEBACK-PATH works by decomposing

the given matrixc[ 1 : n, 1 : n ] into smaller submatrices, Analysis. Let I1(n) be the cache-complexity of @PUTE-
and then recursively extracting the fragments of the trackb BOUNDARY on input sequences of lengtheach. If the sequences
path from them. For any such submatrix one can recursivedje small enough so that the entire input of sizg:) completely
compute the entries on its output boundary (i.e., on itstréagid  fits into the cache, then the only cache-misses incurred &y th
bottom boundaries) provided the entries on its input bogndafunction will be O (1 + ) in order to read the input into the
(i.e., entries immediately outside of its left and top boanes) are Ccache initially, and write the output to the main memory at
already known. Since the submatrices share boundaries) thike the end. In this case, the intermediate recursive functialts c
output boundaries of all submatrices are computed the gmoblWill incur no additional cache-misses since the entire tnisu
of finding the traceback path through the entire matrix isiced already in the cache. However, if the the input is too largétto
to the problem of recursively finding the fragments of thehpatnto the cache, the total number of cache-misses incurrethéy
through the submatrices. Though we computendllentries of function is the sum of the cache-misses incurred by the saur
¢, at any stage of recursion we only need to save the entries fgfction calls, andO (1 + ) additional misses incurred while
the boundaries of the submatrices and thus we use Or(ly) saving/restoring intermediate outputs between recuffsiretion
space. The divide and conquer strategy also improves tpcafalls. Thus we have . _

of computation and consequently leads to an efficient cache- I(n) :{ O(lj ) " it n < (.XM_’

oblivious algorithm. 411 (3) +O(1+5) otherwise;

We describe below the two parts of our algorithm. The psewherex is a suitable constant such that computation involving two
docode for both parts are given in Figure 2. The initial caltd input sequences of lengthl/ each can be performed completely
CoMPUTE-TRACEBACK-PATH on the two input sequences, whichinside the cache. Solving the recurrence we obthitn) =
computes the traceback path through the input matrix startipp (1 + 34+ %) for all n. It is straight-forward to show that
at its bottom-right corner. This function uses theNMPUTE- . .
BOUNDARY routine for decomposing the input matrix into sub-the algorithm runs in0
matrices each representing a smaller instance of the afigithe cache complexity reduces @(%) when the input is too
problem. large for the cache (i.ep = Q(M)). In contrast, though the
standard iterative dynamic programming approach for camgu

CoOMPUTE-BOUNDARY. Given the input boundary of{ i : the output boundary has the same time and space complexities
i2, j1 : jo ] this function (Function 2.2) recursively computes, P y P P

its output boundary. For simplicity of exposition we assutmet (seg, eg. [14] fqr a standard tgchnlque that allows the ®P t
iy — iy = ja — j1 = 29 — 1 for some integex > 0. be implemented irO (n) space), it incurs a factor af/ more

If ¢ = 0, the function can compute the output boundary directl(f/aChe_mlsses'

using recurrence 1.2, otherwise it decomposes its quadraCOMPUTE-TRACEBACK -PATH. This is the main algorithm,

(n2) time and useg) (n) space, and



FUNCTION 2.1: COMPUTE-TRACEBACK-PATH( X, Y, L, T, P)

Input. Herer = | X| = |Y| = 2¢ for some integet € [1,p], andQ[0: 7, O:r]=clu—1:u+r—1, v—1:v+7r—1], X = TZuTy41 ... Tutr—1
andY = yyYu+1 ... Yotr—1 for someuv andv (1 < u,v < n —r+ 1). The left and top boundaries 6§[ 1 : r, 1 : 7 ] are inL (= Q[ 0, 0:r])
andT (= Q[ 0:r 0]), respectively. Current traceback path is givenAn

Output. Returns the updated traceback path.

1. if PNQ=0return P
2. if r =1 then updateP using recurrence 1.2

3. dse { For i,j € [1,2], the left, right, top and bottom boundaries of quadrang; are denoted byl;;, R;j;, Ti;
and D;;, respectively.X; and X2 denote the 1st and the 2nd half &f, respectively (similarly fo®").}
4, Extract Ly ; from L, andT; ; from T, wheres, j € [1,2] {Laj=RijandT; s = D; fori,je[1,2] }

5. quadrant[ 1:4 ]« ((1,1), (1,2), (2,1), (2,2))
Forward Pass ( Compute Boundaries )
6. for I — 1to 3 do
7. (1, j ) < quadrant[ 1],  Ri;, Di; ) < COMPUTE-BOUNDARY( X;, Yj, L}, T}, )
{ L, is the same ad.;; except that it contains one additional cell at the top|

Similarly, Ti’j contains one more cell to its left thak;. }

Backward Pass ( Compute Traceback Path:)
for | < 4 downto 1 do
9. (4, j) < quadrant[l], P «— COMPUTE-TRACEBACK-PATH( X;, Yj, L,’L.].,
10. return P

T

/LJ'vP)

COMPUTE-TRACEBACK-PATH ENDS

FUNCTION 2.2: COMPUTE-BOUNDARY( X, Y, L, T )
Input. Same as the input description 0o@PUTE-TRACEBACK-PATH (Function 2.1).
Output. Returns an ordered tupleR, D), whereR (= Q[ r, 1:7]) andD (= Q[ 1:r, r]) are the right and bottom boundaries@f 1 : r, 1: 7 ],
respectively.
1. ifr=1then R=D — fo((u, v), (X, Y), LUT)
2. dse
3 Extract L1,; from L, andT; ; from T, respectively, wheré, j € [1, 2]
4. quadrant[ 1:4]— ((1,1), (1,2), (2,1), (2,2))
5 for [ «— 1 to 4 do
6 (4, j )« quadrant[1], ( Rij, Di; ) < COMPUTE-BOUNDARY( X;, Yj, Li;, T}, )
7 ComposeR from Ry ;, and D from D; o, respectively, where, j € [1,2]
8. return ( R, D)

COMPUTE-BOUNDARY ENDS

Fig. 2. Cache-oblivious algorithm for evaluating recugenl.2 along with the traceback path. For convenience obsition we assume that we only need
to computec[ 1 : n, 1:n ] wheren = 29 for some nonnegative integer The initial call to @MPUTE-TRACEBACK-PATH is made withX = z1z2 ... xn,
Y=v1y2.-..yn, L=¢[0, 0:n ], T=¢[0:n, 0] and P = ((n,n)).

which recursively calls both itself and dPUTE-BOUNDARY. enters the quadrant and initially this point is known for yonl
Given the input boundary of| i1 : i2, j1 : jo ] and the entry one quadrant. The quadrants are processed in the backwded or
point of the traceback path on the output boundary, thistfanc because it ensures that the exit point of the traceback paith f
(Function 2.1) recursively computes the entire path. Rebal one quadrant can be used as the entry point of the path to the
a traceback runs backwards, that is, it enters the cube ghrownext quadrant in the sequence.

a point on the output boundary and exits through the inpxtnalysis Let I(n) be the cache-complexity of @MPUTE-
boundary. ' 2

If ¢ = 0, the traceback path can be updated directly usin-!—.chCEBACK'pATH on input sequences of Ieng'aln.ea.ch. We
. . serve that though the algorithm calls itself recursivetimes in
recurrence 1.2, otherwise the function performs two pasSE : .
. he backward pass, at most 3 of those recursive calls wiligdlgt
forward and backward. In the forward pass it computes the . . . .
. . bé executed and the rest will terminate at line 1 of the allyori
output boundaries of all quadrants excépt, as in COMPUTE- . - .
. - ’ . (see Figure 2)) since the traceback path cannot intersect mo
BOUNDARY. After this pass the algorithm knows the input bound} . S .
X . than 3 quadrants. Then using arguments similar to those insed
aries of all four quadrants, and the problem reduces to seely determiningl (n), we have
extracting the fragments of the traceback path from eactirgua 9h(n), ’
and combining them. In the backward pass the algorithmssrt
Q2,2 and updates the traceback path by calling itself recussivel I2(n) = {
on the quadrants in the reverse order of the forward pass. Thi
backward order of the recursive calls is essential sincederado wherey is a suitable constant such that the computation involving
find the traceback path through a quadrant the algorithminreju sequences of length M each can be performed completely
an entry point on its output boundary through which the paihside the cache. Solving the recurrence we obtaitn) =

o1+ %) if n <~yM,
3> (%) +30L (5) +O(1+ %) otherwise;



@] (1 + 5+ %) for all n. The algorithm runs ir© (n2 time Each cell ofc can have multiple fields and in that cagenust

d compute a value for each field, though as before, it is alloteed

2
and usesO (n) space, andz(n) reduces toO (E?—M) provide . . . :
the inputs are too large to fit into the cache. When compargae exactly one field from its third argument to compute thal fin

with the cache-complexity of any existing algorithm for fing value of any field inc[iy, iz, . . = iq)- The _definition of traceback
the traceback path our algorithm improves it by at least tofac %at::. ?;(t]?g%‘; naturally to this case, i.e., when the cells hav
of M, and improves the space complexity by a factonaihen l:?(le%urr:ance'll 2 in Section II-A gives the 2 dimensional i@rs
compared against the standard dynamic programming solutio ‘ 9 )

of recurrence 1.3 and thé, and f functions for the LCS

Our algorithm can be easily extended to handle lengths teat a .
recurrence are listed below that recurrence.

not powers of 2 within the same performance bounds. Thus Wenacurrence 11.3 can be solved(m(nd) time, © (nd_l) space
have the following theorem.

Theorem 2.1:Given two sequencest and Y of length n andoO (nd/3> cache-misses using Hirschberg's technique [23].

each, recurrence 1.2 can be solved and a traceback path caA straight-forward extension of the cache-oblivious aitjon

be computed cache-obliviously i (n2) time, O (n) space and given in Section II-A and Figure 2 for solving the 2D recurren

I1.2 solves the general recurrence 1.3 along with a tracklpath

for any arbitrary dimensionl > 2. The algorithm is similar to

If the sequences are long enouéhe.,n = Q(M)) the cache the 2D algorithm, but the computation space ig-dimensional

hypercube, and the input and output boundaries are of dioens

d—1. The algorithm works by decomposing the hypercube #ito

sub-hypercubes, and computing the output boundaries dfuthe

B. A General Framework for DPs with Local Dependencies hypercubes recursively in a sequence so that the outputiaoes

of a sub-hypercube are computed only after its input boueslar

become available (possibly as outputs of recursive callgee@

* d>2sequences; = s;1si2.. sin 1 <i < d oflengthn e sequence). After the output boundaries of all sub-fyirs
each, with symbols chosen from an arbitrary finite alphabgte computed, we can find the traceback path through thesentir
3. We define the following (to be used later). hypercube by recursively extracting the fragments of thth pa

— Given integersi; € [0,n], j € [1,d], we denote byi through the sub-hypercubes and stitching them togethers Ve
the sequence of integersiy, iz, ...,iq; and by(i) we have the following theorem.

o (1 + 5+ %) cache misses.

complexity of the algorithm reduces t© (B”—ID)

Suppose we are given the following.

denote thei-dimensional vectof iy, ia,...,iq ). Theorem 2.2:Given d > 2 sequencesS;, 1 < i < d, of

- By ( S; ) we denote thed-dimensional vector length n each, with symbols chosen from an arbitrary finite
( 81,41, $2,i5+---» Sd,iy ) CONtaining thei;-th symbol alphabet, recurrence 11.3 can be solved and a tracebackcpath
of S; in j-th position, where eacty € [1,n]. be computed cache-obliviously @ (nd) time, O (ndfl) space

o An arbitrary set/. nd . . 1
« An initialization functionh(-) that accepts a vectgri ) as and O (BMﬁ) cache misses provided = (Mdil) and

input and outputs an element frath M=0(Bi1).

« Afunction f(-,-,-) that accepts vectorsi ) and( S; ), and  petails of the cache-oblvious algorithm far= 3 as well as
an ordered set o2’ — 1 elements froms, and returns an g pseudocode can be found in [9] and in the PhD thesis of the
element oft/. first author [8].
Now supposec[ 0 : n, 0 : n, ..., 0:n|is ad-dimensional
matrix that can store elements from the given &etand we C. 1/0O Lower Bound
want to compute the entries ef using the following dynamic

- The following theorem establishes that our cache-oblsiou
programming recurrence.

algorithm for solving recurrence 11.3 is cache-optimal:
h((i)) if 34, =0, Theorem 2.3:For any d _2 2, any algorithm that imple-
i =1y, ' ments t?e computation defined by recurrence 11.3, must parfo
ci] = o osiy el 1: g, \e[i]]| otherwise. Q ﬁ) block transfers.
R We oé{ain he lower bound in Theorem 2.3 using the 1/O lower
ig—1:ig bound proved by Hong & Kung [25] for executing the DAG

. . o (I1.3) obtained by taking the product af directed line graphs. Let
Function f can be arbitrary except that it is allowed to usg _ (V, E) be a directed line graph, wheié={ 1,2,...,n }
exactly one cell from its third argument to compute the firale .4 _ (Gi+1) i€ Ln-1] } Nodes inL; ;eprésent

of cfi1, iz, ..., 14] (though it can consider all cells), which we cally o ations, and edges represent data-flow. The node with no
the parent cell Oﬁ[“’z?’“‘j id)- We alg,c.) assume thgtdoes not _incoming edges (i.e., node 1) is the unigm@ut and the node
access any memory locations in addition to those passeda® it no outgoing edges (i.e., nods is the uniqueoutput For

inputs_ except possibly some constant size local variables. d> 2, L is obtained by taking the product dfsuchZ,s. Figure
Typically, two types of outputs are expected when eval@atiny ;) showsL,. Corollary 7.1 in [25] gives the following lower

this recurrence:(i) the value ofc[n,n,...,n], and (i) the 40 on the number of I/0 operatiogsrequired to executé,.
traceback path starting fronin, n, ..., n|. As in the case of LCS

recurrence, the traceback path from any ell,iz,...,i4] IS Corollary 7.1 in [25]. For the product L; with d > 2,
the path following the chain of parent cells throughhat ends Q=0 ( a N

n
at somec[i, 5, .. ., iy with 3 i = 0. —

Md—T1



-
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L=L,xL,
b

(a) (
Fig. 3. (/O lower bound for DP implementing recurrence ).@) Computational DAGG> implementing recurrence 1.3 fai = 2. The nodes colored
white represent input node¢b) Product graphLo of two line graphs L.1), which is a subDAG of DAGG2 shown in Figure 8z). Hence, I/O lower bound
for executingL2 also holds forG.

using Hirschberg’s space-reduction technique [34] or thgahal
The corollary above assumes that data is transferred to asfbckpointing technique described in [21]. Gotoh’s altdoni

from the cache in blocks of size 1. For block size2 Q = solves the following DP recurrences.
d
Q<m%%)' G(0,7) + ge ifi=0 A j>0
Now consider the computation DAG; given by recurrence D(i,j) = . D(i —1,j), o )
[1.3 for dimensiond. Figure 3a) shows this DAG ford = 2. mm{G(i —-1,7) +gi} tge MHi>0Aj>0.
It is easy to see thal, is, in fact, a SubDAG ofG,, and (1.4)
hence 1/0 lower bound for executing,; also holds forGy.
Therefore, Theorem 2.3 follows from the corollary above amd G(i,0) + ge ifi>0 A j=0
the assumption that data is transferred in blocks of size 1(i,5) = min{ I(i,j —1), } tge fi>0A j>0.
G(Zvj - 1) + g:
(1.5)
D. Applications of the Cache-oblivious Framework
In this section we apply the cache-oblivious framework de- 0 ifi=0Aj=0
scribed in Section 1I-B to obtain cache-oblivious algarith for gi+9exJ ifi=0nj>0
pairwise sequence alignment, median of three sequences, ang(;, j) = 9i + ge X'i . o ifi>0 A j=0
RNA secondary structure prediction with simple pseudoknot D(i, 5), 1(i,3),
min{ G(i— 1,5 —1) ifi>0 A j>0.
1) PAIRWISE GLOBAL SEQUENCE ALIGNMENT WITH ()
AFFINE GAP PENALTY : Sequence alignment plays a central role v (11.6)
in biological sequence comparison, and can reveal imporédar
tionships among organisms. Given two strings= 21z . .. zm The optimal alignment cost isiin {G(n, n), D(n,n), I(n,n)}

andY = y1ys ...y OVer a finite alphabet, analignmentof X and an optimal alignment can be traced back from the smallest
andY is a matchingM of sets{1,2,...,m} and{1,2,...,n} Of G(n,n), D(n,n) andI(n,n).
such that if(s, 5), (¢, j/) € M andi < 4’ hold then;j < 5 must
also hold [26]. The-th letter of X or Y is said to be in agap if
it does not appear in any pair io. Given agap penaltyg and
a mismatch cost(a,b) for each paira, b € 3, the basic (global)
pairwise sequence alignment problexsks for a matching,:
Eor iNhiCh (m4n—|Mopt|) Xg'l’z(a,b)eMom s(a,b) is minimized
26].

For simplicity of exposition we will assume = n for the rest
of this section.

The formulation of the basic sequence alignment problem fa- vp = min{ c[i—1,j].D, c[i—1, j].G+g }+ge
vors a large number of small gaps while real biological psses

Cache-oblivious Implementation.Recurrences 1.4 - 1.6 can be
viewed as evaluating a single matik0 : n, 0 : n ] with three
fields: D, I andG. These recurrences can be treated as a single
recurrence matching the general recurrence 11.3doe 2 by
defining functionsh and f to output triplets with their 1st, 2nd
and 3rd entries containing values for thig 7 and G fields of

c, respectively. For examplef,( (4, j ), (@i, y;j ), c[i—1:

i, j—1:5]\c[i,j]) returns a triple vp, vr, ve ), where,

favor the opposite. The alignment can be made more realigtic v = min{ 4, j - 1 I, o S L].G+gi }+ge
using anaffine gap penalty20], [4] which has two parameters: gnqg,., — min{ i, j1.D, e[, j I, }

a gap introduction cosy; and agap extension cosfe. A run of cli—1, j—1].G+s(zi,y;)

k gaps incurs a total cost @f + ge X k- Therefore, function @MPUTE-BOUNDARY in Figure 2 can be

In [20] Gotoh presented a® {)nQ) time and O (nQ) space ysed to compute the optimal alignhment cost cache-oblipasd
DP algorithm for solving the global pairwise alignment jeb  CompUTE-TRACEBACK-PATH can be used to extract the optimal
with affine gap costs. The algorithm incuﬁs(%) cache misses. alignment. Thus the following claim follows from Theoreni 2.
The space complexity of the algorithm can be reduced{@) in Section II-A.



Claim 2.1: Optimal global alignment of two sequences obehind these conditions). Thus only 10 of tiit= 16 possible
lengthn each can be performed cache-obliviously using an affimesidue configurations are valid. We defirle, ¢') = ¢ if applying
gap cost ino (n2) time, O (n) space and) (%) cache misses. the residue configuration to the indel configuration’ leads to

the indel configuratiory. Knudsen'’s algorithm uses the following

The cache-complexity of the our cache-oblivious algoritism recurrence relation which for any indel configuratipwomputes

a factor of M improvement over previous algorithms [20], [34].the field K (i, j, k)q from all fields K (i',j',k"), such that for

. - . N g
2) ALIGNMENT OF THREE SEQUENCES (MEDIAN): Given >°M€ residue configuration v(e,q') = ¢, @ =i—e1,j' =j—e2

three sequenced, Y and Z, the median problemasks for a andk’ =k — e3.

sequenceV such that the sum of the pairwise alignment costs 0 fi=j=k=0Aq¢=qo
of W with X, Y and Z is minimized. The sequend& is called o 00 ifi=j=k=0Aq#qo
the medianof the three given sequences. In this section we wiff (7, k)q = min K@, K g + Geor .
assume affine gap costs for the alignments. The 3-way seguenc e,q’;q:y(e,q'){ + M k/q)_}(i . kj } otherwise.
alignment can be obtained as the pairwise alignment of efch o e (1.7)

X, fY glnd ZthW'th tz? median sequendd’. Hence we will focus where ¢, is the indel configuration where all symbols match,
on finding the median sequence. . ) o M i i,k 1S the matching cost when going from align-
In [28] Knudsen presented a dynamic programming algor'thFHent(ii, y-/'zk/) to alignment(z;, y;, 2.), and G, . is the gap

for optimal multiple alignment of any number of sequenceg,s; of abpjly;inge ong' e a
related by a tree under affine gap costs. The input sequenceThe M and G matrices can be pre-computed. Therefore,

are assumed to be at the leaves of the tree, and the optima ) . . 3\ . . n3
. . o L . r?nudsens algorithm runs i@ (n ) time and space witth (F)
alignment cost is the minimum sum of pairwise alignment Soscache-misses

of the sequence pairs at the ends of each edge of the treelbver a

possible ancestral sequences (i.e., the unknown sequehties Cache-oblivious Algorithm. In order to make recurrence 1.7
internal nodes of the tree). FOF sequences of length each, the match the general recurrence 1.3 far= 3 given in Section
algorithm runs inO (16.81Vn" ) time and use® (7.442V»™) I, we shift all symbols of X, ¥ and Z one position to the
space. ForV = 3, Knudsen’s algorithm solves the median probright, introduce a dummy symbol in front of each of those ¢hre
lem in © (n?) time and space, and incu¢s nT; cache-misses. sequences, and obtain the following recurrence by modjfyin
An Ukkonen-‘based algorithm for the median problem is preesen ecurrence 1.7, wherefi, j1, k], = K(i — 1,j — 1,k — 1) for

in [38], which performs well especially for sequences wh(ge 1 <i,j,k <n+1 and anyg.

way) edit distance’ is small. This method performs DP on the 00 ifi=0vVvj=0V k=0
edit distance instead of sequence lengths. On averagejLires 0 fi=j=k=1A4qg=20o
o (n+ 63) time and space. A space-reduced version of thg,J, kg = { °© fi=j=k=1A q#q

min {c[i’?j’7 Ky + Geyq
e,q":q=v(e,q") +M(i/,j/,k’)—>(i,j,k)
Knudsen’s algorithm [28] for three sequences (say, = If i = 0orj=0ork=0thenc[,j k], can be evaluated

using a functiomx( (4, j, k) ) = oo as in the general recurrence

1%2..-Tn, ¥ = Y1Y2...yn @and Z = z129...,2zpn) iS a dy- herwise th e ofi. i q q H | ¢
namic program over a three-dimensional matix These three !l-3- Otherwise the value ofi, j, k], depends on the values g
andk, values in some constant size arragsgnd M), and on

sequences are assumed to be at the leaves of a star-shaged”tr I its left. back and L thi .
the root of which corresponds to the ancestor/median sequque cells to its left, ack an tqp. H.en.ce, n this cast, klg
W. Each entryK(i, j, k) is composed of several fields eactFan be evaluated using a function similarftan recurrence 11.3

of which corresponds to an indel configuration that keepsktra!©f ¢ = 3 This function is defined simply by the last three rows
of ongoing insertions/deletions in the alignment. In a iplet of the recurrence fot[i, j, k],. Therefore, the above recurrence

alignment, if we compare the symbalsand w at locationi of matches th_e 3-dimensio_na| ve_rsion of the general recuerér,
X andW, respectively, they will be in one of the following three@nd we claim the following using Theorem 2.2.

states:(i) = is a residue andv is a gap (i.e., an insertion to Claim 2.2: Optimal alignment of three sequences of length
X), (i) = is a gap andw is a residue (i.e., a deletion from each can be performed and the median sequence under thaloptim

X), and (iii) either both of them are residues or both are gap&ignment can be computed cache-obliviously using an affare

3

Thus if all three input sequences are considered, we wileha§0StinO (”3) time, O (”2) space an@ ( 7+ ) cache misses.
a total of 33 = 27 such possibilities, each of which is called

an indel configuration. However, 4 of those 27 configurations 3) RNA SECONDARY STRUCTURE PREDICTION WITH

are considered invalid since they lead to contradictontestaSIMPLE PSEUDOKNOTS: A single-stranded RNA can be viewed
assignments for the sequences. Hehdg, j, k) consists of only as a stringX = zjzs...z, over the alphabef{A, U, G,C} of

23 fields. A residue configuration defines how the next thrdmses. An RNA strand tends to give rise to interesting sirast
symbols of the sequences will be matched. Each configuratiby forming complementary base paimith itself. An RNA sec-
is a vectore = (e, es, e3,¢e4), Wheree; € {0,1}, 1 <i < 4. The ondary structure(w/o pseudoknots) is a planar graph with the
entrye;, 1 <14 < 3, is 1 if the aligned symbol of sequenéds nesting condition: if{z;,z;} and {z;,x;} form base pairs and
a residue, and 0 otherwise. The last entfycorresponds to the i < j, k < [ andi < k hold then eitheri < & < I < j or
aligned symbol of the median sequence. A residue configuratii < j < k < [ [42], [39], [3]. An RNA secondary structure with
is valid provided at least one @f;, es andes is 1, and if more pseudoknotss a structure where this nesting condition is violated
than one of them is 1 thesy is also 1 (see [28] for the reasoning[39], [3].

algorithm uses”® En +62) space, but runs i© (n logd + 63) } otherwise.

time on average [38].




In [3] Akutsu presented a DP to compute RNA secondanysing the cache-oblivious GEP (Gaussian Elimination Rgnad
structures with maximum number of base pairs in the presehceframework we presented in [10], [11], [12].

simple pseudoknotsee [3] for definition) which runs i® (n4)

Space Reduction.We now describe our space reduction result.

time, O (n3) space andD (”—g) cache-misses. In this SectionA similar method was suggested in [31]. Observe that evialgat

we improve its space and cache complexitiesa((nQ) and
n

°(zm)

, respectively, without changing its time complexity.

list’below the DP recurrences used in Akutsu’s algorithicyrrence I,

[3]. For every pair(ig, ko) with 1 < ig < kg — 2 < n — 2, recur-

rences I1.8 - .12 compute the maximum number of base pairs ing ysin

a pseudoknot with endpoints at theth andkg-th residues. The
value computed by recurrence 11.12, i.€p.c40(%0, ko), iS the
desired value. Recurrences 1.8 - 11.10 consider threetiooa
(4,7,k) (io — 1 < i < j < k < kp) on the RNA at a time.
Recurrences 11.8 and 1.9 correspond to cases wHergz;}

and{z;,z;} form base pairs, respectively, while recurrence 11.10

handles the case where neithgs;,z;} nor {z;,z,} forms a
base pair. The variabléy; 4 x (¢, 7, k) in recurrence 11.11 contains

recurrence I1.12 requires retaining éll n3) values computed by
recurrence 11.11. We avoid using this extra space by comguti
all required Spscyq0(i0, ko) values on the fly while evaluating
11. We achieve this goal by introducing resnce

II.14, replacing recurrence 11.12 with recurrence 11.18.8 ., 4,
gsg,seudo instead ofS,,..q4, fOr evaluating recurrence
[1.13. Intuitively, the variableSp(i, 5, k) in recurrence 11.14 stores
the maximum score among all triplés j', k) with 5 > j. All

uninitialized entries in recurrences 11.14 and 11.15 arsumsed to
SMAX(imja k)7

have value—oco.
m“{ Spli,j+1,k)

SP(i7j +1, k)

} if ip <i<j <k,

if ig<i>j<k.

SP(ivjv k)

the maximum score for the tripl€i, j, k). In recurrences 1.8 , ) (I1.14)
and 1.9, v(xs,y:) = 1 if {xs,y:} form a base pair, otherwise Spseudo (10; ko) , )
v(zs,yt) = —oo. All uninitialized entries are assumed to have Spseudo(i0; ko — 1), "
= max max . if kg > i + 2.
value 0. iogi<k071{5p(7,720+17k0)}
v(zi, 2j) if ig <i<j>k, (11.15)
Sp(i,j, k) = v(a;, ay) if io <i<j<k We claim that recurrence 11.15 computes exactly the same
+Smax(i—1,j+1,k) - values as recurrence 11.12.
(11.8) Claim 2.3: For 1 < ig < ko —2 < n — 2, S} cua0(i0, ko) =
) . . . _ Spseudo(i()ka)'
Spis k) = U(wﬂ’mk)( _ “; -l=i<j-l=k-2 Proof: (sketch) We obtain the following by simplifying
R\L 3, 8) = viag, Ok if ig<i<j<k. recurrence 11.14.
+Smax (@, j+1,k—1) ..
(1.9) Sp(i, 4, k)
max L o . .
SL(i— 1,§ k) max{i+1,j}§j’<k{ SMAX(%J 7k) } if ig <i A Jj <k,
Sm(i—1,7,k), —00 otherwise.
i, g k) = ) if i9<i<j :
S (i, 7, k) = max SJ\S{A)((Z(? jk+ 117)k)7 ifig<i<j<k Therefore,
M\ J, - ’
Sgr(i,j,k—1 Sp(i,io + 1,ko)} = s i j, K
R(iJ ) (1.10) iog?iaéq{ p(isio 0)} i031?<83x<k0{ max (i, j, ko) }
We can now evaluate’ ... . (io, ko) by induction onky. For
Snax (i,j, k) = max { Sp(i,5,k), Snm(i,G.k), SR(5.K) ) po>io+2, e
(“11) , Szlmeudo(i@ ko — 1)7
. .. S, ig, ki = max max .
Spseudo(7'07 kO) = ig<iglja%Xk<ko{ S]WAX(%]? k) } (“12) pseudo( 0 0) i0§i<k0—l{SP(7‘77‘0 + 17 kO)}
After computing all entries ofSy;4x for a fixed iy, all - max {S (i, 5, k) }
Spseudolio, ko) values for kg > ip + 2 can be computed - inSi<j<k<ho—1\ PMAXL L) g
3 = X
using equation 11.12 inO (n*) time and space and ”T; - max {SMAX(Z' j ko) }
cache-misses. Since there are- 2 possible values fot, all fosi<j<ho T
Spseudo(i0, ko) can be computed i® (n4) time, © (n3) space =  max { Snax (i, j, k) }
i0<t1<j<k<ko

andO g%) cache-misses.
Finally, the following recurrence computes the optimalreco
S(1,n) for the entire structure.

Spseudo(i:j)v S(Z +1,75— 1) + U(ai7a.j)7
(11.13)

max;«g<j {S(ka - 1)7S(kvj)}
lterative evaluation of recurrence 11.13 requir®@s(n3) time
andO (n?

sufficient
only O (

S(i,5) = max{

. 3 . . .
P space, and incur® %) cache-misses [3] which is
or our purposes. This recurrence can be evaluiate

n3

BVM

Spseudo (7:0 ’ kO)

[ |
Now observe that in order to evaluate recurrence 11.15 wg onl
need the valuesp(i, j, k) for j = ig+ 1, and each entryi, j, k)
in recurrences 11.8 - .11 and 11.14 depends only on enttigs -)
and (-, j + 1,-). Therefore, we will evaluate the recurrences for
j = n first, then forj = n — 1, and continue downtg = ig + 1.
Observe that in order to evaluate fpe= ;' we only need to retain
the © (n?) entries computed fof = ;' + 1. Thus for a fixedig

) cache-misses without changing the other boundsgl 5, (i, 4y + 1, k) and consequently all re|eVam;;seudo(i07 ko)



Machine H Processor% Speed ‘ L1 Cache L2 Cache ‘ RAM ‘

Intel P4 Xeon 2 3.06 GHz| 8 KB (4-way, B = 64 B) | 512 KB (8-way,B = 64 B) | 4 GB
AMD Opteron 250 2 2.4 GHz |64 KB (2-way,B =64 B)| 1 MB (8-way,B=64B) | 4 GB
AMD Opteron 850 8 2.2GHz |64 KB (2-way, B =64 B)| 1 MB (8-way, B =64 B) |32 GB

TABLE |

MACHINES USED FOR EXPERIMENTSON ALL MACHINES ONLY 1 PROCESSOR WAS USED

Algorithm Comments H Time ‘ Space‘ Cache Misses ‘
PA-CO our cache-oblivious algorithm (see Section I1-D.1) 0 (n?) | O(n) (@] (B”—L>
PA-FASTA linear-space implementation of Gotoh's algorithm [34]ikakde in fasta2[35] 0 (n?) | O(n) @ (”—5)
TABLE Il

PAIRWISE SEQUENCE ALIGNMENT ALGORITHMS USED IN OUR EXPERIMETS.

can be computed using onl§ (n?) space, and the same spacesed. TheCachegrindprofiler [40] was used for simulating cache
can be reused for alt values ofig. effects.

In order to reduce the overhead of recursion in the cache-
oblivious algorithms, in our implementations we did not tine
recursion all the way down to sequence length- 1. Instead
we stopped the recursion at a larger valuerpfind solved the
subproblem at that size using the traditional iterative hoet
A This is a commonly-used methodology: if we were to keep the
. L0 T pase case size at 1, the cost of the overheads associated with
¢ (io, ko) values. in recursive call would far exceed the useful computationqreréd
o (n3) time, O (ng) space and? (BT/M) cache-misses. All during execution of the base case. Note that this unrelaied t

;seudo(imko) values can be computed by applications (i.e., the cache-size, except that one would want to use a base-case
once for eachy) of the algorithm. size that is sufficiently small so that it does not overflow the

For any given pair(ig, ko) the pseudoknot with the optimal cache. The values of that we used were = 256 for pairwise
score can be traced back cache-obliviously dn(n3) time, alignment (PA-CO), and = 64 for median (MED-CO) and for
RNA secondary structure with simple pseudo-knots (RNA-CO)
Details on the iterative methods used to solve the base cases
be found in the theses [8], [30].

Cache-oblivious Algorithm. The evaluation of recurrences 11.8
- 11.11 and I1.14 can be viewed as evaluating a single n x n
matrix ¢ with five fields: S, Sg, Sy, Smax and Sp. If we
replace allj with n—j 41 in the resulting recurrence it conforms
to recurrence 1.3 fod = 3. Therefore, for any fixeé, we can use
our cache-oblivious algorithm to compute all entrigs(
1,k) and consequently all relevarﬁl’)

seudo

@] nQP space an® an cache-misses using our algorithm
Thus from Theorem 2.2 we obtain the following claim.

Claim 2.4: Given an RNA sequence of length a secondary
structure that has the maximum number of base pairs in the pre Our cache-oblivious algorithms outperformed currentlgibv
ence of simple pseudoknots can be computed cache-obliyiouble software and methods for all three applications. Werds

in O (n4) time, O (nQ) space and@® (B@M) cache misses. details of our experimental results below.

Extensions.In [3] the basic dynamic program for simple pseu-

doknots has been extended to handle energy functions based\o Pairwise Global Sequence Alignment with Affine Gap Pgnalt
adjacent base pairs within the same time and space bounds. Owye performed experimental evaluation of the implementatio
cache-oblivious technique as described above can be adtpte|isted in Table II: PA-CO is our implementation of our linear
solve this extension within the same improved bounds ashi®r Ispace cache-oblivious algorithm given in Section II-D.hd a
basic DP. AnO (n475) time approximation algorithm for the PA-FASTA is the implementation of the linear-space versién
basic DP has also been proposed in [3], and our techniquésecaiGotoh’s algorithm [34] available in thiasta2 package [35].

used to improve the space and cache complexity of the abgorit  |n most cases, for input sequence sizes ranging from 1,000

to O (nQ) (from O (n3)) and O (gi;%) (from O (”; )), to over a million, PA-FASTA ran about 20%-30% slower than
respectively. PA-CO on AMD Opteron and up to 10% slower on Intel Xeon.
We note that most bioinformatics applications use relétive

I1l. EXPERIMENTAL RESULTS short sequences of length less them000, and this sequence

In this section we present experimental results for theethrtleength falls within the range considered in Figure 4, thoogi

bioinformatics applications discussed in section II-D. \ged the experiments also considered much longer sequence pairs.
machines listed in Table | for our experiments. All machin@s Random Sequenced/e ran on randomly generated equal-length
Ubuntu Linux 5.10. All our algorithms were implemented in€+ string-pairs ovef A,C,G,T } on AMD Opteron 250 (see Figure
(compiled withg++ 3.3.4), while some software packages wéd(a)) and Intel P4 Xeon (see Figure(¥d). We varied string
used for comparison were written in C (compiled wittc 3.3.4). lengths from 1 K to 512 K. In our experiments PA-FASTA
Optimization parameter -O3 was used in all cases. Each machalways ran slower than PA-CO on AMD Opteron (around 27%
was exclusively used for experiments, and only one procesas slower for sequences of length 512 K) and generally theivelat




Running Times of Pairwise Sequence Algorithms (Normalizedv.r.t. Cache-Oblivious Algorithm) on Random Sequences

(a) Runtimes on AMD Opteron

[—®—PA-CO - -a - PAFASTA]

250

running time

(b) Runtimes on Intel P4 Xeon

running time
( normalized w.r.t. PA-CO )

10

08

8K 16K 32K 64K 128K 256K 512K

sequence length (n )

8K 16K 32K 64K 128K 256K 512K

sequence length (n )

Fig. 4. Pairwise alignment on random sequences: All runrimgs are normalized w.r.t. that of PA-CO. Each data pointhiss average of 3
independent runs on randomly generated strings ¢var T, G, C' }.

1K 2K 4K

Sequence pairs with lengthis Running times of pairwise alignment algorithms 6RTR DNA Sequencdd1] (on AMD Opteron)
(106)"1 PA-CO (t1) | PA-FASTA (t) | ratio (t2/t1)
human/baboon (1.80/1.51) 17h 23m 20h 34m 1.18
human/chimp (1.80/1.32 15h 25m 19h 51m 1.29
baboon/chimp (1.51/1.37 12h 43m 16h 43m 1.31
human/rat (1.80/1.50 18h 16m 24h 1m 1.31
rat/mouse (1.50/1.49 13h 55m 16h 49m 1.21

TABLE Il
PAIRWISE ALIGNMENT ALGORITHM REAL DATA : EACH ENTRY IN COLUMNS 2 AND 3 IS THE TIME FOR A SINGLE RUN

Ratio of Cache Misses Incurred by PA-FASTA to that Incurred by PA-CO for Random Sequences

[—®— L1 Cache —&— L2 Cache

(a) AMD Opteron 250 (b) Intel P4 Xeon

10,000.00 4 1,000.00 4

1,000.00 + 100.00 4

100.00 4
10.00 A

10.00 A

Ratio of Cache-misses
(PA-FASTA | PA-CO)
Ratio of Cache-misses

(PAFASTA | PACO)

1K
2K
4K

. . 3
= © o
&

n

1K
2K
4K

< < <
= e ES

sequence length (17 )

64K
128K
256 K

64K
128K
256 K

sequence length (17 )

Fig. 5. Ratio of cache-misses incurred by PA-FASTA to thatimed by PA-CO (see Table Il) on random sequences for botandlL2 caches.
Data was obtained using Cachegrind [40].

performance of PA-CO improved over PA-FASTA as the lengtbache-misses incurred by both PA-FASTA and PA-CO on random
of the sequences increased. The trend was almost similarteh | sequences (see Figure 5). Though PA-FASTA causes fewee-cach
Xeon except that the improvement of PA-CO over PA-FASTAnisses than PA-CO when the input fits into the cache, it incurs
was more modest. We also obtained some anomalous resultssignificantly more misses than PA-CO as the input size grows
n ~ 10, 000 which we believe is due to architectural affects (cachieeyond cache size. On AMD Opteron PA-FASTA incurs up to 300
misalignment of data in PA-FASTA). times more L1 misses and 2500 times more L2 misses than PA-
Real-World Sequence®/e ran PA-CO and PA-FASTA on CFTR CO while on Intel Xeon the figures are 10 and 1000, respegtivel
DNA sequences of lengths between 1.3 million to 1.8 millio®bserve that the larger the cache the larger the cache-atiss r
[41] on AMD Opteron, and PA-FASTA ran 20%-30% slowemwhich follows theoretical predictions since we know that@€®
than PA-CO on these sequences (see Table Ill). Though progblould incur fewer cache-misses on larger caches whileecach
alignment of these genomic sequences require more sagtiesdi performance of PA-FASTA should be independent of cache size
cost functions, running times of PA-CO and PA-FASTA on these

sequences give us some idea on the relative performances® thg. Median of Three Sequences

implementations on very long sequences. In this section we report our experimental results for the
Cache Performance.We measured the number of L1 and L2nedian problem (i.e., the problem of determining 3-way glob
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Algorithm Comments Time Space ,\(/:“é;(;};i
MED-CO our cache-oblivious algorithm (see Section I1-D.2) O (n?) 0(n?) |O (B(L;W)
MED-Knudsen Knudsen’s implementation of his algorithm [27] O (n3) 0 (n3) o (”—BB)
o : 3 . : 3 )
MED-ukk alloc | Powell's implementation [37] of a® (6%)-space Ukkonen-based algorithii O (n + &%) om+5)| o (g)
(6 = 3-way edit distance of sequences) (avg.) B
_ Powell's implementation [37] of a® (62)-space Ukkonen-based algorithfh O (rnlogd + &%) 2 53
MED-ukk.checkp (6 = 3-way edit distance of sequences) (avg.) © (n +9 ) o (f)
our implementation of MED-Knudsen with Hirschberg’s spaeguction 3 5 n3
MED-H (used in study of space reduction and cache efficiency) o (" ) o (" ) o (f)
TABLE IV

MEDIAN ALGORITHMS USED IN OUR EXPERIMENTS

sequence alignment with affine gap penalty). We performépteron 850. The trends were very similar on both machines.
experimental evaluation of the implementations listed @bl  The results show that our cache-oblivious algorithm MED-CO
IV: MED-CO implements our quadratic-space cache-obligiothas the best performance, since it runs to completion onipléts
median algorithm described in Section II-D.2, MED-Knudsen and is considerably faster than the other 3 methods in messsca
Knudsen’s cubic-space median algorithm [28] implementgd b The results also closely track theoretical predictionsdibr4
Knudsen himself [27], MED-ukk.alloc is th® (n + §°)-space algorithms. The theoretical analysis shows that the nunafer
(whereg is the 3-way edit distance of sequences) Ukkonen-basstps, space usage and cache misses for both MED-Knudsen and
median algorithm described in [38], and MED-ukk.checkphis t MED-CO should increase with the product of the lengths of the
space-reduced version of MED-ukk.alloc based on checkipgin three sequences, and we note the overall running time fdr bot
technique. Both Ukkonen-based algorithms were implententef these algorithms increases with this product on both tite! |
by Powell [37]. Finally, MED-H is our quadratic-space impleand AMD machines. However, MED-Knudsen ran arouwid-
mentation of Knudsen’s algorithm based on Hirschberg'sspa 50% slower than MED-CO on the Xeon and over twice as slow
reduction technique, which we consider at the end of thiS@ec on the Opteron 850.

We used a gap insertion cost of 3 (i.¢. = 3), a gap extension  On the other hand, the resource usage of the two Ukkonen-
cost of 1 (i.e.ge = 1) and a mismatch cost afin all experiments. based methods increases with the alignment cost, and hesme t

We first compare the performance of our cache-obliviousethods are best suited for sequences with small alignnuesnt ¢
algorithm MED-CO with the three publicly available code: BE This again shows up in our results: On the Opteron 850, MED-
Knudsen, MED-ukk.alloc and MED-ukk.checkp. Overall, MEDykk.alloc is actually faster than our cache-oblivious MED- on
Knudsen ran about 1.5-2.5 times slower than MED-CO on bothe triple 2, which has smallest alignment cost, but becafiis
machines, and MED-ukk.alloc and MED-ukk.checkp were evefubic space dependence on alignment cost, it is unable teorun
slower. Furthermore, due to their high space overhead MEBompletion on the other triples. The more space-efficienDVIE
Knudsen, MED-ukk.alloc and MED-ukk.checkp could not be runkk.checkp runs to completion on all triples, but its parfance
on any machine for sequences longer than 640, while MERegrades with the alignment cost, and even for triple 2, risru
CO ran to completion on sequences of length over 1,000. Wgout 20% slower than MED-CO.
summarize our results below. We ran the same triples on Opteron 850 with mismatch cost
Random SequencedVe ran all implementations on random_set to 2 instead_ of 1, and we summarize the results here. This
(equal-length) sequences of lengihi, 1 < i < 16 on AMD increases the alignment costz apql as expected, the two @hkon
Opteron (see Figure (6)) and Intel Xeon (see Figure(®). based methods degraded §|gn|f|cantly: MED-ukk.alloc did no
On both machines MED-CO ran the fastest, and MED-KnudsefPMplete on any of the S triples, and MED-ukk.checkp ran 5 to
MED-ukk.alloc and MED-ukk.checkp crashed as they ran out o times slower than MED-CO. Also as expected, the runtimes
memory for sequences longer than 384, 256 and 640, respigctivior MED-Knudsen and MED-CO were virtually unchanged from

On Intel Xeon, MED-CO ran at least45 times faster than the timings in Table V.
MED-Knudsen. Both MED-ukk.alloc and MED-ukk.checkp ran Overall, our experimental results suggest that MED-CO is
at least2 times slower than MED-CO for lengtht, and continued always a better choice than MED-Knudsen, and a better choice
to slow down even further with increasing sequence lengtieyT than the two Ukkonen-based algorithms (MED-ukk.alloc and
ran up to3.3 times (for length256) and4.8 times (for lengthe40)  MED-ukk.checkp) except when the alignment cost is very smal
slower than MED-CO, respectively. The trends were s?millar %ffects of Space-reduction and Cache-efficiencyn Figures
AMD Opteron and MED-CO ran at least5, 3.4 and 4.2 times 7(a) and Tb) we plot the running times on triples of random
faster than MED-Knudsen, MED-ukk.alloc and MED-ukk.chgck sequences of Knudsen's algorithm (MED-Knudsen), our imple

respectively. mentation of a Hirschberg-style space-reduced versionhef t
Real-World Sequence®Ve ran the algorithms on triplets of 16Ssame algorithm (MED-H), and our space-efficient cachevighls
bacterial DNA sequences from theseudanabaena groufi6] algorithm (MED-CO). As the plots show, after simply redugin
(see Table V). the space usage froM n3) (MED-Knudsen) ta® (n?) (MED-
The triplets in Table V were formed by choosing at randorhl), the median algorithm runs faster and can handle muctelong
three sequences of length less than 500 from the group. Videtregequences. For space-intensive algorithms reducing spssge
results for the same 5 triplets on both the Intel Xeon and AMDBPan improve its cache performance significantly since nogv th




Performance of Median Algorithms (Normalized w.r.t. CacheOblivious Algorithm) on Random Sequences
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(a) Runtimes on AMD Opteron 250
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Fig. 6. Median on random

data: Each data point is the averb@eirmlependent runs on random strings ofed, 7', G, C' }.

Random triples ofl6S Bacterial rDNA Sequencé®m the Pseuanabaena Groufi6]

MEDIAN ON REAL DATA: THE TRIPLETS WERE FORMED BY CHOOSING RANDOM SEQUENCES OF LENB LESS THAN500. EACH NUMBER OUTSIDE

Intel Xeon: Running times in seconds ( runtime w.r.t. MED-CO )

No. || Lengths Product of Lengths| MED-CO | MED-Knudsen | MED-ukk.a||0c| MED-ukk.checkp| Alignment Cost

1 342, 367, 389 ~ 49 x 106 451 ( 1.00) 611 (1.35) - (=) 863 (11.91) 339

2 367, 387, 388 ~ 55 x 10° 487 ( 1.00) 722 (1.48 ) | 512 ( 1.05) 601 ( 1.23) 299

3 || 378, 388, 403 ~ 59 x 10° 529 ( 1.00) 752 (11.42) — (=) 769 ( 1.45) 324

4 342, 370, 474 ~ 60 x 106 531 ( 1.00 ) 764 (1.44) - (=) 1,701 (3.20) 432

5 370, 388, 447 ~ 64 x 10° 553 ( 1.00 ) 824 (11.49) - (=) - (=) 336
Opteron 850 Running times in seconds ( runtime w.r.t. MED-CO )

No. || Lengths Product of Lengths| MED-CO | MED-Knudsen | MED-ukk.aIIOc| MED-ukk.checkp| Alignment Cost

1 342, 367, 389 ~ 49 x 108 445 ( 1.00 ) 937 (12.11) - (=) 831 (11.87) 339

2 367, 387, 388 ~ 55 x 10° 493 (11.00) | 1,057 (2.14) | 427 ( 0.87) 572 (11.16) 299

3 378, 388, 403 ~ 59 x 106 528 (11.00) | 1,133 ( 2.15) - (=) 740 ( 1.40) 324

4 342, 370, 474 ~ 60 x 106 528 (11.00) | 1,151 ( 2.18) - (=) 1,636 ( 3.10) 432

5 370, 388, 447 ~ 64 x 10° 562 ( 1.00 ) - (=) - (=) 798 (1.42) 336

TABLE V

12

PARENTHESES IN COLUMNSA—71S THE TIME FOR A SINGLE RUN AND THE RATIO OF THAT RUNNING TIME TO THE CORRESPONDING RUNNG TIME FOR
MED-COIS GIVEN WITHIN PARENTHESESA ‘' —’ IN A COLUMN DENOTES THAT THE CORRESPONDING ALGORITHM COULD BT BE RUN DUE TO HIGH
SPACE OVERHEAD

Improvements in the Running Time of a Median Algorithm (MED-Knudsen) on Random Sequences

with Space-reduction (MED-H) and Cache-efficiency (MED-CQ

(Normalized w.r.t. MED-CO)
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(a) Runtimes on AMD Opteron 250
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Fig. 7.

Improvements in the performance of a median algorithe., MED-Knudsen: Knudsen's implementation of his aitpon [28]) as its space

requirement is reduced (with a Hirschberg-style impleraton of Knudsen's algorithm (MED-H)), and as both its spasage and cache performance

are improved using our cache-oblivious median algorithnE[MCO). Each data point is the average of 3 independent ronsmdom strings over

{ A, T,G,C}.
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ALGORITHMS FORRNA SECONDARY STRUCTURE PREDICTION USED IN

Runtimes (w.r.t. CO Algorithm) for Random Sequences on Inté P4 Xeon

[- = - RNA-CS - -o- —-RNA-QS —@— RNA-CO |

. ) Cache 80
Algorithm Comments Time | Space Misses o
cache-oblivious algorithm 4 2 nt -
RNA-CO (see Section 1-D.3) || © (n") |0 (n?)]O (Bm) gee T
i Akutsu's original 4 3 nt o3 50 o
RNA-CS cubic-space algorithm [3] O (nh) |0 (%) | O <f> §§ 40 *
our iterative quadratic L
) -space implementation 4 2 nt E )
RNA-QS | of Akutsu’s algorithm o) 0] o ( B ) Fzoq o e ~
(see Section 11-D.3) 101 SESEEELS T — b
TABLE VI 00

256 512

1,024

sequence length (n)

OUR EXPERIMENTS . . s
Fig. 8. RNA secondary structure prediction with simple pkeunots

on random data: All running times are normalized w.r.t. RN®- Each
data point is the average of 3 independent runs on randomgstover

{AUGC}.
Runtimes of algorithms for RNA secondary structure préafictvith simple pseudoknots
on Intel Xeon forBacterial (Spirochaetes) 16S rRNA Sequer{@gs
Organism | Length (n) [ Cache-oblivious ( RNA-CO )| Quadratic Space ( RNA-QS ) RNA-QS/RNA-CO
Brevinema andersonii 1443 1h 22m 2h 14m 1.64
Borrelia burgdorferi 1530 1h 44m 2h 48m 1.62
Borrelia burgdorferi 1537 1h 45m 2h 48m 1.60
Borrelia hermsii 1523 1h 41m 2h 43m 1.61
Brachyspira hyodysenteriae 1463 1h 27m 2h 21m 1.61
Cristispira CP1 1491 1h 33m 2h 30m 1.62
Leptonema illini 1526 1h 42m 2h 45m 1.61
Leptospira interrogans 1508 1h 38m 2h 3Tm 1.61
Spirochaeta aurantia 1520 1h 41m 2h 42m 1.60
Treponema pallidum (rRNA A) 1549 1h 48m 2h 54m 1.60
| Average [ 1509 ] Lh 38m | 2h 38m | 1.61
TABLE VII

RNA SECONDARY STRUCTURE PREDICTION WITH SIMPLE PSEUDOKNOTS OREAL DATA: INPUTS AREBACTERIAL (SPIROCHAETEY 16 SRRNA
SEQUENCEY[7] WITH AN AVERAGE LENGTH OF 1509. EACH NUMBER IN COLUMNS 3 AND 4 REPRESENTS TIME FOR A SINGLE RUN

data fits in lower cache levels and thus incurs fewer caclssesi to lack of space RNA-CS could not be run for strings longentha
Although we were able to improve the performance of Knuds12. In our experiments RNA-CO ran the fastest while RNA-CS
sen’s algorithm significantly by reducing its space usage(te?) was the slowest. Though both RNA-QS and RNA-CS have the
we observe that our cache-oblivious, space-efficient ghlgorfor same time and cache-complexity, RNA-QS ran significantyeia
median has better performance. On AMD Opteron the runnitigan RNA-CS (e.gs- 4.5 times faster for length 512). We believe
time of Knudsen’s algorithm improves by 40% after spacehis happened because even for small sequence lengths FINA-C
reduction (MED-H), and our cache-oblivious implementatiooverflows the L2 cache, and most of its data reside in the slowe
(MED-CO) gives afurther 30% improvement. A similar trend RAM, while both RNA-QS and RNA-CO still work completely
is observed on Intel P4 Xeon. inside the faster L2 cache. For strings of length 512 RNA-CO
ran about 35% faster than RNA-QS and about 7 times faster than
RNA-CS. The performance of RNA-CO improved over that of

both RNA-CS and RNA-QS as the length increased.
We implemented the algorithms in Table VI for computing

all values of Sp,scyq0 OF Sé,seudo (i.e., we compute the optimal
scores only, we do not traceback the pseudoknots). We ran Islcln!

experiments on Intel Xeon using a single processor. . :
gverall RNA-QS ran about gO% sl%wepr than RNA-CO anaet of 24 bacterial 5S rRNA sequences obtained from [7]. The
RNA-CS ,ran up to 7 times slower than RNA-CO for S‘equence(teverage length of the sequences was 118, and the averagegrunn
lengths it could handle. For sequences longer than 512 REA- rztgssc;fCR(;\l 252;?:90(23856132?: Rr(’a\?g:(t)ivzrl] e\?\f:;:gl::;\%viere
could not be run due to lack of memory space. We summarizé S ) - Tesp -
our results below and RNA-CO on a set of 10 bacterial (spirochaetes) 16S rRNA
' sequences of average length 1509. The RNA-CS implementatio
Random Sequence$Ve ran all three algorithms on randomlycould not be run on these sequences due to space limita@ons.
generated string-pairs over A,U,G,C } (see Figure 8). The these sequences RNA-CO took 1 hour 38 minutes while RNA-QS

lengths of the strings were varied from 64 to 2048. Howewvee dtook 2 hours 38 minutes on the average (see Table I1I-B).

C. RNA Secondary Structure Prediction with Pseudoknots

al-World Sequence$Ve ran all three implementations on a




IV. CONCLUSION

In this paper we have presented a general cache-oblivi

[17]
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R. Durbin, S. Eddy, A. Krogh, and G. MitchisomBiological Sequence
Analysis Cambridge University Press, 1998.

§] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandr&ache-

framework for a class of widely encountered dynamic program

ming problems with local dependencies, and applied it t@iabt
efficient cache-oblivious algorithms for three importarting
problems in bioinformatics, namely global pairwise seqieen oo

[19]

alignment and median (both with affine gap costs), and RNA

secondary structure prediction with simple pseudoknots.héle

[21]

shown that our algorithms are faster, both theoreticallyg any

experimentally, than previous algorithms for these pnolsle

Our framework can be applied to several other dynamic pr{g3]

gramming problems in bioinformatics including local aligent,
generalized global alignment with intermittent similees, mul-
tiple sequence alignment under several scoring functiooh as
‘sum-of-pairs’ objective function and RNA secondary stue
prediction with simple pseudoknots using energy functibased

on adjacent base pairs.
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