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Abstract

We present cache-efficient chip multiprocessor (CMP) algorithms with good speed-up for some
widely used dynamic programming algorithms. We consider three types of caching systems for CMPs:
D-CMP with a private cache for each core, S-CMP with a single cache shared by all cores, and
Multicore, which has private L1 caches and a shared L2 cache. We derive results for three classes of
problems: local dependency dynamic programming (LDDP), Gaussian Elimination Paradigm (GEP),
and parenthesis problem.

For each class of problems, we develop a generic CMP algorithm with an associated tiling sequence.
We then tailor this tiling sequence to each caching model and provide a parallel schedule that
results in a cache-efficient parallel execution up to the critical path length of the underlying dynamic
programming algorithm.

We present experimental results on an 8-core Opteron for two sequence alignment problems that
are important examples of LDDP. Our experimental results show good speed-ups for simple versions
of our algorithms.
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1 Introduction

Chip multiprocessors (CMP) are rapidly becoming the dominant parallel computing platform. A key
feature that sets CMPs apart from earlier parallel machines is the organization and cost measure for
memory accesses. In a CMP, memory is organized in a hierarchy of caches, and two new features come
with this:

• The cost of a memory access is determined by whether the accessed data item is a cache hit or
a cache miss. This is in contrast to using the routing cost, or latency and gap parameters, to
measure communication cost as in, e.g., [33, 17, 12].

• A cache has a small finite size, hence a data item brought into cache and needed at a later time may
not reside there at that later time if it has been evicted to make space for other data items. This
is a feature that has not been captured in any of the traditional parallel models and algorithms.

In this paper we consider some important dynamic programming (DP) applications, and we develop
good CMP implementations under three types of caching models for CMP (private, shared, and
multicore). We elaborate on these three caching models in Section 1.1. For all three CMP models,
we develop parallelizations of dynamic programming algorithms that match the best sequential caching
complexity while achieving the maximum speed-up available in the algorithm. We obtain results for the
following classes of problems:

1. LDDP (Local Dependency DP) problems, where each update to an entry in the DP table is
determined by contents of neighboring cells. The simplest example of this class is the well-known
LCS (longest common subsequence) problem. Some widely-used string problems in bioinformatics
including PA (pairwise sequence alignment with affine gap cost) and Median (3-way sequence
alignment with affine gap) are examples of LDDP. We present experimental results for PA and
Median that show simplified versions of our algorithms to run several times faster than currently
used software for these problems even when using the default Linux scheduler for our parallel code.

2. GEP (Gaussian Elimination Paradigm), which solves another wide class of problems including
all-pairs shortest paths in weighted graphs (Floyd-Warshall DP), LU decomposition and Gaussian
elimination without pivoting, and matrix multiplication. Here we improve the p-processor cache-

efficient parallelism from Θ(n3

p + n log2 n) in the earlier CMP algorithms in [10, 2] to Θ
(

n3

p + n
)

1

on an n× n input, which is the best possible when staying within the GEP framework.

3. Parenthesis problem, which includes RNA secondary structure prediction, optimal matrix chain
multiplication, construction of optimal binary search trees, and optimal polynomial triangulation.

4. RNA-SP (RNA secondary structure prediction with simple pseudo-knots). Combining our results
for 3 dimensional LDDP and GEP it is straightforward to obtain results for RNA secondary
structure prediction with simple pseudo-knots, using the sequential RNA-SP algorithm in [8]. We
do not elaborate on this further.

Given a parallel algorithm, let T∞(n) denote the number of parallel steps in the algorithm as a
function of the input size n. This is normally referred to as the critical path length of the computation,
and represents its intrinsic parallelism. We use the term cache-efficient parallelism or cache-efficient

1In other words, we improve the critical pathlength of the computation from Θ
`

n log2 n
´

to Θ(n).
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Figure 1: Caching models for CMP: (a) D-CMP, (b) S-CMP, and (c) Multicore.

critical path length I∞(n) to denote the number of parallel steps in a parallel algorithm that also matches
the sequential work and I/O bound.

For all of the problems mentioned above we present CMP algorithms with I∞(n) = Θ(n) on all three
models described in Section 1.1. Since the sequential running time is Θ(n2) for LCS and PA, is Θ(n3)
for Median, GEP and Parenthesis, and Θ(n4) for RNA-SP, we obtain a good amount of parallelism with
I∞(n) = Θ(n). In fact, the defining DP algorithm for each of the problems, which is the one we use to
derive our cache-efficient implementation, has critical path length Θ(n), hence we achieve the maximum
parallelism possible while remaining as cache-efficient as the sequential case.

If we look purely for parallelism, there are NC algorithms known for all of these problems, and there
are also work-optimal parallel algorithms that beat our parallel bound I∞ (see, e.g., [16] and references
therein for LDDP and Parenthesis problem). However, none of these results incorporate cache-efficiency
in the parallel context, which is crucial for CMPs.

1.1 Caching models for CMP

We consider the following three models for CMPs. In all three models, data is transferred from one
memory/caching level to another in a block of a given size.

1. D-CMP. Here the CMP is viewed as a p-processor machine, where each processor has its own
private cache of size M [15, 10] (i.e., distributed caches). There is also a global shared memory that
is arbitrarily large. The performance of a parallel algorithm is measured in terms of the number of
parallel steps executed and the total number of block transfers of size B across all caches, assuming
the caches are ‘ideal’ [14].

2. S-CMP. This is similar to D-CMP, except that there is a single cache of size M ≥ p ·B shared by
all p processors [3, 10], where B is the block size. There continues to be a global shared-memory
that is arbitrarily large, and performance is measured as in D-CMP.

3. Multicore. This models the trend in current CMPs: distributed L1 caches (i.e., private to each
core), each of size C1, and a single shared L2 cache of size C2 ≥ p · C1 [2]. There continues to be
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Problem I/O Previous I∞ Our I∞
Tiling Parameters of Our Algorithms

Sequential D-CMP S-CMP Multicore

LCS & PA O
“

n2

MB

”

n2 (seq.) O (n)
t[d] = 2,

∀d
t[0] = p,

t[d] = 2, d > 0

t[d] = 2, d < r,

r = log(n/p),

t[r] = p

t[r] = p,

r = log(n/C2),

t[d] = 2, d 6= r

Median

Parenthesis

GEP

O
“

n3

B
√

M

”

n3 (seq.)

∗

O
`

n log2 n
´

[10, 2]

O (n)
t[d] = 2,

∀d
t[0] =

√
p,

t[d] = 2, d > 0

t[d] = 2, d < r,

r = log(n/
√

p),

t[r] =
√

p

t[r] =
√

p,

r = log(n/
√

C2),

t[d] = 2, d 6= r

RNA-SP O
“

n4

B
√

M

”

n4 (seq.) O (n) − − − −

Table 1: Table of our results. Here the ‘I/O’ column lists the sequential cache-oblivious bound, and the I∞
columns list the the number of parallel steps in a work-optimal parallel algorithm whose cache complexity
matches the sequential bound. The tiling parameters are explained in the section for each problem. RNA-SP
uses 3D-LDDP (similar to Median) and GEP as subroutines, and derives its tiling parameters from both. All
results assume that the input is too large to fit into the available cache space, and some of them (i.e., Median,
Parenthesis, GEP and RNA-SP) also assume that the cache is tall (i.e., M = Ω

(

B2
)

). ∗ For Parenthesis a
cache-efficient parallel algorithm for the IBM Cyclops64 processor is given in [30].

an arbitrarily large global shared memory. The cache complexity is specified by two parameters:
the number of block transfers, each of size B2, into L2, and the total number of block transfers,
each of size B1, across all L1 caches. One can consider a more general hierarchy of caches that are
successively shared by larger groups of processors, and our results generalize to this model as well.
We do not elaborate further on this.

We do not consider cache coherence protocols [20] since the updates that are performed in parallel
in the algorithms we present are always on disjoint sets of data, and hence coherence is never invoked.
We specify parallelism by parallel for loops and forking and joining through recursive calls. Our results
continue to hold if we replace the ideal cache assumption by LRU.

1.2 On-line Schedules

We view the computation as a dynamic DAG that unfolds as the computation proceeds. Each node
in the DAG represents a sequence of instructions being executed, and an edge from node u to node
v indicates that computation at v uses a value computed at u. At any point in time, a node can be
scheduled on a processor provided its predecessors in the DAG have been evaluated.

A sequential computation will compute in program order, which automatically satisfies the DAG
constraints, and this is a depth-first topological sort of the DAG, called a 1DF schedule. In the parallel
context, we need a method to decide how the computation is distributed among the available processors
as it unfolds. In work-stealing [5], the unfolding DAG is distributed across the processors, and an idle
processor ‘steals’ some work from a random neighbor [5, 15]. Work-stealing has good performance for
certain classes of algorithms under D-CMP. A PDF schedule assigns to an available processor, the node
earliest in the 1DF schedule that is ready to be executed [4, 3], and it often has good performance under
S-CMP. The recently proposed controlled-PDF scheduler [2] is a refined version of PDF that gives good
cache performance for many divide and conquer algorithms under the Multicore caching model.

1.3 Overview of Our Technique

For each of the three classes of problems we consider, we introduce a tiling sequence t[d], d ≥ 0, and our
CMP algorithm is a parallel recursive algorithm that uses tiling parameter t[d] at level d of the recursion.
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For each type of CMP (D-CMP, S-CMP, or Multicore) we specify the tiling parameters and then give
a parallel schedule that ensures good performance with respect to both parallelism and cache-efficiency.
The known cache-oblivious sequential algorithms for the problems (given in [9] for LCS and GEP, in [8]
for LDDP, and in [6] for Parenthesis) can be viewed as special cases of our multicore algorithms, where
the tiling parameter t[d] is the same constant for all d (and where no parallelism is specified). Table 1
lists our results together with the tiling parameters used. Details are in the following sections, and the
pseudocode for each of our algorithms is included in the appendix.

2 LCS and LDDP

Local Dependence DP (LDDP) includes a very large group of problems solvable by dynamic program-
ming. The key feature of this class is that it applies to some constant number of dimensions k ≥ 2, and
it updates each position in a k-dimensional table by considering the previously computed values imme-
diately adjacent to the current position, and using exactly one of those values to compute the value at
the current position. Several LDDP problems are of practical importance, and we present experimental
results in Section 5 for two such problems, pairwise sequence alignment and 3-way sequence alignment
(or median), both with affine gaps. Here, for simplicity, we illustrate the LDDP method with arguably
the simplest problem in the class, the two-dimensional LCS (or longest common subsequence) problem
(see, e.g., [11]). Our results generalize to general k-dimensional LDDP (see [7, 8] for a definition and
sequential cache-oblivious algorithm for this problem. For convenience this definition is reproduced in
Appendix A.)

Given two sequences X = x1x2 · · · xn and Y = y1y2 · · · yn, (for simplicity, we assume equal-length
sequences here), an LCS of X and Y is a sequence of maximum length that is a subsequence of both X
and Y . If we define c[i, j], 0 ≤ i, j ≤ n, to be the length of an LCS of x1x2 · · · xi and y1y2 · · · yj then
c[n, n] is the LCS length of X and Y , and the c[i, j]’s can be computed by dynamic programming using
the following recurrence relation (see, e.g., [11]):

c[i, j] =







0 if i = 0 or j = 0,
c[i − 1, j − 1] + 1 if i, j > 0 ∧ xi = yj ,
max { c[i, j − 1], c[i− 1, j] } if i, j > 0 ∧ xi 6= yj .

(2.1)

We denote by parent(i, j), an adjacent cell whose c-value determines c[i, j].
Typically, two types of outputs are expected when evaluating this recurrence: (i) the value of c[n, n],

and (ii) the traceback path starting from c[n, n]. The traceback path from any cell c[i, j] is the path
following the chain of parent cells through c that ends at some c[i′, j′] with either i′ = 0 or j′ = 0.

Using equation 2.1 LCS can be solved by a simple O
(

n2
)

time dynamic programming algorithm,
whose DAG has linear critical path length (T∞(n) = Θ(n)). Several refinement of this algorithm that
optimize for space and cache-efficiency are known (e.g., [21, 9]), and the sequential algorithm in [9] that
gives an O (n)-space cache-oblivious algorithm with O

(

n2/(MB)
)

cache misses has the best performance
across both space and cache-efficiency.

Our tiled LCS algorithm is illustrated in Figure 2. The algorithm has two parts, both of which
are recursive. Figure 2(a) illustrates Tiled-Boundary-LCS, which computes the LCS costs for cells
corresponding to the output boundary of the LCS table, i.e., the rightmost column and the bottom row,
and additionally, for each such cell u, the cell on the input boundary at which the traceback path from u
will enter. The algorithm is supplied the subsequences X ′ and Y ′ for the current recursive call, together
with a positive integer τ , which is the tiling parameter for the current recursive call. Figure 2(a) is shown
with X ′ = X and Y ′ = Y and with τ = 4. The algorithm proceeds by dividing X and Y into τ equal
pieces, thereby tiling the cost table with τ2 sub-tables. These sub-tables are computed recursively in
2τ − 1 parallel steps, where the rth parallel step performs the computation for each sub-table along the
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Figure 2: The recursive tiled LCS algorithm: (a) Tiled-Boundary-LCS: Given τ =
t[recursion depth], the LCS table is decomposed into τ2 sub-squares of equal size. In step
r ∈ [1, 2τ − 1], output boundaries of all sub-squares labelled with r are computed recursively
in parallel. Outputs of step r act as inputs for step r + 1. For each cell u on an output boundary
we also compute the position on the input boundary at which the traceback path from u will en-
ter. (b) Tiled-LCS: It first computes the output boundaries of Q11, Q12, Q21 and Q22 by calling
Tiled-Boundary-LCS in sequence. Now given a location labelled 1 on the output boundary of
the current table, it determines in O (1) time the locations at which the traceback path through
location 1 intersects the input boundaries of all (at most three) quadrants (e.g., locations 2, 3 and
4 in the figure). Then it recursively calls itself in parallel on all quadrants hit by the traceback
path, and extracts the path fragments from each of them.

rth forward diagonal. In the figure all sub-tables computed in step r, for 1 ≤ r ≤ 7 are labelled with r.
The specification of the algorithm includes the tiling sequence t[d], d ≥ 0, which is a sequence of integers,
and at recursion level d the algorithm uses tiling parameter t[d]. These parameters will be optimized for
the three different caching models we consider. Additionally, we obtain the sequential algorithm in [9]
by using t[d] = 2 for all d. As in that sequential algorithm, the space requirement of our tiled algorithm
is linear in the size of the input (even though a quadratic number of intermediate values are computed).

Figure 2(b) illustrates Tiled-LCS, which computes the trace-back path from a given cell on the
output boundary. Tiled-LCS is again a recursive algorithm, and it also calls Tiled-Boundary-LCS.
It takes the same inputs as Tiled-Boundary-LCS, together with one additional input u, which a cell
on the output boundary of the current table. In figure 2(b), u is the bottom-right position in the table,
and is indicated by 1. The algorithm proceeds by calling Tiled-Boundary-LCS on the four sub-tables
Q11, Q12, Q21 and Q22, which are derived from the current table considering two equal-sized halves of
the two input strings. This computation generates for each output boundary cell x in each of these three
sub-tables, the entry point on the input boundary of the sub-table of the traceback path from x. After
this computation, the algorithm determines the cells 2, 3, and 4 shown in Figure 2(b), as we describe
below.

Cell 2 in the figure is the position on the input boundary of Q22 where the traceback path from cell 1
meets. This cell could be on the output boundary of either Q12 or Q21, and the figure has chosen this to
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be Q12 (as a result, the traceback path from cell 1 does not pass through Q21). Cell 3 is the cell on the
input boundary of Q12 where the traceback path from cell 2 meets; this cell will be either on the output
boundary of Q11 or on the input boundary of the overall table (in which case there is no cell 4). The
figure has illustrated the case when cell 3 is on the output boundary of Q11, and in this case, cell 4 is the
cell on the input boundary of Q11 where the traceback path from 3 meets. This cell is guaranteed to be
in the input boundary of the overall table. Since the earlier computation of Tiled-Boundary-LCS has
computed the corresponding traceback cell on the input boundary for each cell on the output boundary,
cells 2, 3, and 4 can be determined by at most 3 look-up steps given cell 1, and hence this computation
takes constant time and work.

Once the cells 2, 3 and (if needed) 4 of the traceback path are known, Tiled-LCS recursively calls
itself on the (at most three) subproblems that contain a portion of the traceback path, using the tiling
parameter for next level of recursion.

The base case of the recursion occurs when the parent of cell 1 lies on the input boundary of the
current table. Each parent cell is computed in such a base case call.

Correctness of this method is straightforward by induction on the input size. A succinct pseudocode
for this algorithm is included in Appendix B (see Figure 7).

2.1 Performance Analysis

For performance, we tailor the tiling sequence to the CMP models as well as the sequential case as
follows.

(1) Sequential algorithm in [9]. If we use t[d] = 2 for all d ≥ 0, a 1-processor implementation of
this multicore algorithm is exactly the sequential cache-oblivious algorithm in [9] and hence its I/O

complexity is O
(

n2

MB

)

, where M and B are the cache and block sizes respectively.

(2) p-processor D-CMP. Since this model has a private cache for each core, we use a tiling sequence
that gives the largest amount of locality to each processor, so that the private caches can be used most
effectively. For this we use t[0] = p and t[d] = 2 for d ≥ 1. Note that this results in a cache-oblivious
D-CMP algorithm.

The parallel schedule consists of assigning the ith column of sub-tables (see figure 2) to the ith
processor at the top level recursion (d = 0). Further levels of recursion are executed entirely on the
processor that was assigned the subproblem at level 0. On an input of size n and with p processors, the

parallel running time for Tiled-Boundary-LCS is TB(n, p) = O
(

(n
p )2 · (2p− 1) + n

)

= O
(

n2/p + n
)

since there are 2p − 1 parallel steps, each executing the sequential algorithm on an input of size n/p.
There are p2 subproblems of size n/p, each executing the sequential cache-oblivious algorithm, hence the

number of cache misses is O
((

(n/p)2

MB + n/p
B + 1

)

· p2
)

= O
(

n2

MB

)

under the natural assumptions that

n ≥ pM (i.e., the input does not fit within the caches), and block-size B ≤ n/p (which will hold since
B ≤M).

For Tiled-LCS, we schedule the (up to) 3 recursive subproblems with p/3 processors each, hence
the parallel running time T (n, p) is given by T (n, p) = O

(

n2/p + n
)

+ T (n/2, p/3), which remains
O

(

n2/p + n
)

. By a similar analysis the cache complexity also remains the same as for Tiled-

Boundary-LCS. Hence we obtain I∞(n) = Θ(n).

(3) p-processor S-CMP. Here all processors share a single cache, hence we choose a tiling schedule
that causes the processors to work on parallel tasks that are close to one another in the sequential order.
For this, we use t[d] = 2 for d < log(n/p) and t[log2(n/p)] = p. This is again a cache-oblivious strategy.

The parallel schedule consists of a Brent-type processor allocation (see, e.g., [22]) at recursion
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G(c, n, f, ΣG)

(Input c[1 . . . n, 1 . . . n] is an n×n matrix, f(·, ·, ·, ·) is an arbitrary problem-specific function, and ΣG is a problem-specific
set of triplets such that c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]) is executed in line 4 if 〈i, j, k〉 ∈ ΣG.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 3: GEP: Triply nested for loops typifying code fragment with structural similarity to
the computation in Gaussian elimination without pivoting.

level log n/p. At this level of recursion the input has two substrings of length p and hence we are
applying parallelism at the finest level of granularity. Since the shared cache can be expected to have
size M ≥ p this computation will have the same cache-complexity as the sequential case. There

are Θ
(

n2

p2

)

subproblems executed, each with parallel time Θ (p), hence the parallel running time is

O
(

p · (n2/p2) + n
)

and hence remains O
(

n2/p + n
)

. The analysis of Tiled-LCS is similar to that for
D-CMP, and again we have cache-efficient parallelism I∞ to be Θ(n).

(4) Multicore. Here we need to adapt to the the private L1 caches of size C1 and the shared L2 cache
of size C2. Hence we use a strategy that combines our approach for S-CMP and D-CMP. Let r = log n

C2
.

We use t[r] = p and t[d] = 2 for all d 6= r.
As in D-CMP, at recursion level r we assign the ith column of sub-tables to the ith processor, 1 ≤ i ≤

p. There are n2

C2
2

subproblems, each with two input strings of length C2. Each such subproblem is solved

similar to the D-CMP case, hence the parallel time is O
(

n2

C2
2
· (2p − 1) · (C2/p)2 + n

)

= O
(

n2/p + n
)

.

The C2 cache complexity is clearly the sequential complexity O
(

n2/(C2B)
)

since all parallelism is
exposed at a problem size when the entire input fits into the L2 cache. Since each subproblem whose
input size is C2 is solved with private caches using the same method as in D-CMP, the L1 cache complexity

is O
(

n2
2

C2
2
· C2

2
C1B

)

, which is O
(

n2/(C1B)
)

. Hence this give a Multicore LCS algorithm with cache-efficient

parallelism I∞(n) = Θ(n).

3 GEP (Gaussian Elimination Paradigm) Problems

Let c[1 . . . n, 1 . . . n] be an n × n matrix with entries chosen from an arbitrary set S, and let f :
S×S×S×S → S be an arbitrary function. By GEP (or the Gaussian Elimination Paradigm) introduced
by the authors in [9], we refer to the computation in Figure 3. Here the algorithm G modifies c by applying
a given set of updates of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n]. We use the
notation 〈i, j, k〉 (1 ≤ i, j, k ≤ n) denotes an update of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]),
and we let ΣG denote the set of such updates that the algorithm needs to perform.

As noted in [9] many practical problems can be solved using the GEP construct, including all-pairs
shortest paths, LU decomposition and Gaussian elimination without pivoting, and matrix multiplication.

An O
(

n3

B
√

M

)

I/O cache-oblivious sequential algorithm for solving some important special cases of

GEP including all problems mentioned above was presented by the authors in [9]. Later in [10], this
implementation was named I-GEP, extended to C-GEP which solves all instances of GEP within the

same performance bounds, and was also parallelized to run in O
(

n3

p + n log2 n
)

time on p processors

with schedulers to match its sequential cache complexity on D-CMP and S-CMP. Recently in [2] we
presented a scheduler to run I-GEP and C-GEP on multicores within the same performance bounds. In

this section we improve the parallel algorithm presented in [10] to run in O
(

n3

p + n
)

parallel time on

D-CMP, S-CMP and multicores while matching its sequential cache complexity. In other words, the new
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Figure 4: Execution of superstep k = 3 of I-GEP functions A (Figure 4(a)), B1 (Figure 4(b)) and
C1 (Figure 4(c)). Each cell contains the name of the function used to update the entries in the
corresponding submatrix. Submatrices corresponding to dotted cells (if any) are updated first. In
the next step all submatrices corresponding to cells with grids are updated in parallel. In the last
step submatrices corresponding to white cells are updated simultaneously. Pseudocode for these
functions are included in Figure 8 of Appendix B.

3.1 Improved CMP Algorithm

We present an improved parallel implementation of I-GEP which is an extension of the parallel
implementation we presented in [10]. We modify each I-GEP function (A, Bi, Ci, Dj , where i ∈ [1, 2]
and j ∈ [1, 4]) introduced in [10] so that one can control the way the input matrices are subdivided at
each level of recursion by specifying a vector t of tiling parameters. At recursion depth d ≥ 0, an n× n
input matrix is subdivided into r × r submatrices of size n

r × n
r each, where r = t[d]. We show that by

appropriately setting the tiling parameters we can reduce the parallel time complexity of the algorithm

from O
(

n3

p + n log2 n
)

[10] to O
(

n3

p + n
)

for p processors. Pseudocode for each of these functions is

given in Figure 8 of Appendix B.
Each function accepts a (recursion) depth parameter d ≥ 0, and four (not necessarily distinct) equal

size square submatrices X, U , V and W of the input matrix c. We assume that W has a diagonal aligned
to the (1, 1) to (n, n) diagonal of c, and for each c[i, j] ∈ X and c[k, k] ∈W , the entries c[i, k] and c[k, j]
can be found in U and V , respectively. Each function updates the entries in X using appropriate entries
from U , V and W . The functions differ in the amount of overlap X, U and V have among them.
Function A assumes that all three matrices completely overlap, while Dl (l ∈ [1, 4]) expects completely
non-overlapping matrices. In the intermediate cases, function Bl assumes that only X and V overlap,
while Cl assumes overlap only between X and U , where l ∈ [1, 2]. Intuitively, the less the overlap among
the input matrices the more flexibility the function has in ordering its recursive calls, and thus leading
to better parallelism.

The initial call is to function A with d = 0 and X = U = V = W = c. If X is a 1× 1 matrix, then
X is updated directly by setting X ← f( X, U, V, W ). Otherwise each matrix is subdivided into r× r
submatrices of size n

r × n
r each, where r = t[d] = t[0]. The submatrix of X at the i-th position from

the top and the j-th position from the left is denoted by Xi,j. Then the function executes r supersteps.
Superstep k ∈ [1, r] of function A consists of 3 steps (see Figure 4(a)). In step 1, submatrix Xk,k is
updated recursively by function A. In step 2, the remaining submatrices Xi,k and Xk,j (i 6= k, j 6= k)
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are updated in parallel using the entries in Xk,k by appropriate calls to functions B1, B2, C1 and C2 (see
Figure 4(a) for details). In step 3, the remaining submatrices of X are updated in parallel using entries
computed in step 2 by calling appropriate Dl (l ∈ [1, 4]) functions (see Figure 4(a)). Superstep k ∈ [1, r]
of functions Bl and Cl (l ∈ [1, 2]) consists of 2 steps. In case of function Bl (Cl), step 1 updates all Xi,k

(Xk,j, resp.) by parallel calls to Bl (Cl, resp.). In step 2, the remaining submatrices of X are updated
by parallel calls to appropriate Dl (l ∈ [1, 4]) functions (e.g., see Figures 4(b) and 4(c)). Each superstep
of function Dl (l ∈ [1, 4]) has only one step which updates all submatrices of X in parallel by calling Dl

recursively.
We now analyze the performance of the algorithm under different configurations below.

(1) Sequential. We use t[d] = 2 for all d ≥ 0, and execute the entire algorithm on a single processor.
We have already analyzed this case in [9, 10], and found the cache complexity of the algorithm to be

O
(

n3/(B
√

M) + n3/M + n2/B + 1
)

which reduces to O
(

n3/(B
√

M)
)

provided the cache is tall (i.e.,

M = Ω
(

B2
)

) and the input matrix is too large to fit into the cache (i.e., n2 > M). It is straight-forward
to see that the algorithm runs in O

(

n3
)

time.

(2) D-CMP. We set t[d] =
√

p for d = 0, and t[d] = 2 for d > 0. Hence at level 0 of recursion,
function A will execute

√
p supersteps, and in each superstep it will make a total of p parallel recursive

functions calls with submatrices of size (n/
√

p) × (n/
√

p) each. Each such function will be executed

sequentially in O
(

(

n/
√

p
)3

)

time on a single processor. Thus the parallel running time of the algorithm

is
√

p · O
(

(

n/
√

p
)3

)

= O
(

n3/p
)

. Now let QA(n), QBC(n) and QD(n) denote the cache complexity of

functions A, B1/B2/C1/C2 and D1/D2/D3/D4, respectively, on an input of size n. Assuming that a
submatrix of size (n/

√
p)× (n/

√
p) is too large to fit into the cache, and that the cache is tall, the total

number of cache misses is
√

p · QA(n/2) +
√

p · (2√p − 1) · QBC(n/2) +
√

p · (p − 2
√

p) · QD(n/2) =

O
(

n3/(B
√

M) + n3/M +
√

p · n2/B + p
√

p
)

= O
(

n3/(B
√

M)
)

.

(3) S-CMP. We set t[d] =
√

p if d ≥ log2
n√
p , and t[d] = 2 otherwise. We do not make any parallel

function calls until we reach a level d ≥ log2
n√
p . Hence, we can use the same recurrence relations as in

the sequential case and get the same cache complexity provided p ≤M . Now TA(n), TBC(n) and TD(n)
denote the parallel running times of functions A, B1/B2/C1/C2 and D1/D2/D3/D4, respectively on an
input of size n. Then TA(n) = TBC(n) = TD(n) = O

(√
p
)

if n ≤ √p. Otherwise,

TD(n) = 8 · TD (n/2) +O (1)

TBC(n) = 4 · TBC (n/2) + 4 · TD (n/2) +O (1)

TA(n) = 2 · TA (n/2) + 4 · TBC (n/2) + 2 · TD (n/2) +O (1)

Solving the recurrences and assuming that p ≤ n2, we obtain TA(n) = TBC(n) = TD(n) = O
(

n3/p
)

.

(4) Multicore. We set t[d] =
√

p if d = log2 (n/
√

C2), and t[d] = 2 otherwise. All parallel calls are
made only at level d = log2 (n/

√
C2). Observe that whenever we reach a subproblem of input size

n1 =
√

C2/p, it is executed entirely on a single processor, and there are (n/n1)
3 such subproblems.

Hence, the number of L1 cache-misses is (n/n1)
3 · O

(

n1
3/(B1

√
C1) + n1

3/C1 + n1
2/B1 + 1

)

, which
reduces to O

(

n3/(B1

√
C1)

)

under the assumption that C2 > p ·C1 (> p ·B1), and that the L1 cache is
tall (i.e., C1 = Ω

(

B1
2
)

). The number of L2 cache-misses can be computed using the same recurrence

relations as in the sequential case and in S-CMP, and thus the L2 cache complexity is O
(

n3/(B2

√

C2)
)

provided the L2 cache is tall (i.e., C2 = Ω
(

B2
2
)

), and the input matrix is too large to fit into that cache
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Figure 5: Execution of superstep k = 6 of function E for solving the parenthesis problem.
Figure 5(a) marks the submatrices used in steps 1 and 2 to update a submatrix x on diagonal
k′ ∈ [k + 1, 2k − 3]. Figure 5(b) shows that if x is on diagonal 2k − 2 then it is updated only
in step 1, and as shown in Figure 5(c) any submatrix on diagonal k is updated in all three steps
(submatrices used in step r ∈ [1, 3] are labelled with r).

(i.e., n2 > C2). The parallel running time can be computed using the same recurrence relations as in

S-CMP, but with a different base condition. We use TA(n) = TBC(n) = TD(n) = O
(

√
p ·

(

√

C2/p
)3

)

for n ≤
√

C2. Assuming n2 > C2, we obtain TA(n) = TBC(n) = TD(n) = O
(

n3/p
)

.

Observe that for all three models we obtain I∞(n) = Θ(n). For D-CMP and S-CMP models, our
algorithm is cache-oblvious.

4 The Parenthesis Problem

We consider the parenthesis problem [16] which is defined by the following recurrence relation:

c[i, j] =







xj if 0 ≤ i = j − 1 < n,

mini<k<j

{

(c[i, k] + c[k, j])
+w(i, k, j)

}

if 0 ≤ i < j − 1 < n;
(4.2)

where xj ’s are assumed to be given for j ∈ [1, n]. We also assume that w(·, ·, ·) is a function that can be
computed in-core without incurring any cache misses.

The class of problems defined by the recurrence relation above includes RNA secondary structure
prediction, optimal matrix chain multiplication, construction of optimal binary search trees, and optimal
polygon triangulation. A variant of this recurrence which does not include the w(i, k, j) term and is

defined as the simple dynamic program, was considered in [6], where an O
(

n3/(B
√

M)
)

I/O sequential

cache-oblivious algorithm based on Valiant’s context-free language recognition algorithm [32] was given
for solving the recurrence. A parallel algorithm for solving the parenthesis problem which runs in

O
(

n
3
4 log n

)

time and performs optimal O
(

n3
)

work was given in [16], but the algorithm is not cache-

efficient. A cache-efficient multicore algorithm for the IBM Cyclops64 processor was given in [30].
As in [6], instead of recurrence 4.2 we will use the following slightly augmented version of 4.2 which

will considerably simplify the recursive subdivision process in our cache-oblivious algorithm.
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c[i, j] =















∞ if 0 ≤ i = j ≤ n,
xj if 0 ≤ i = j − 1 < n,

mini≤k≤j

{

(c[i, k] + c[k, j])
+w(i, k, j)

}

if 0 ≤ i < j − 1 < n;
(4.3)

where w(i, k, j) is defined to be ∞ when k = i or k = j. It is straight-forward to see that recurrences
4.2 and 4.3 are equivalent, i.e., they compute the same values for any given c[i, j], 0 ≤ i < j − 1 < n.

4.1 CMP Algorithm

We assume that the input to the algorithm is an n×n matrix c that has all c[i, j] with 0 ≤ i ≤ j ≤ i+1 ≤ n
initialized as in recurrence 4.3, and the remaining entries (i.e., all c[i, j] with 0 ≤ i < j−1 < n) initialized
to ∞. The algorithm works by recursively subdividing the input matrix, and assumes the existence of
a global vector t of tiling parameters which for each level of recursion specifies how the input matrix is
subdivided. Pseudocode for the algorithm is given in Figure 9 of Appendix B. Here we give an informal
description of the algorithm.

The algorithm (i.e., function E in Figure 9 of Appendix B) splits the input matrix X (which is
initially set to c) into r × r submatrices of size n

r × n
r each, where r = t[d] and d (≥ 0) is the level (i.e.,

depth) of recursion. The submatrix of X at the i-th position from the top and the j-th position from
the left is denoted by Xi,j. The k-th diagonal of X includes the submatrices Xi,i+k, where k ∈ [0, n− 1]
and i ∈ [1, n− k] (see Figure 5). Observe that the submatrices on diagonal 0 of X are smaller instances
of the original parenthesis problem defined by X and all of them are independent, and hence are solved
recursively by n

r parallel calls to E. The algorithm then executes r − 1 supersteps, and maintains the
following invariant.

Invariant 4.1. At the start of superstep k ∈ [1, r − 1],

(i) all entries of c in the submatrices on diagonals 0 to k − 1 of X have their values finalized, and

(ii) all remaining cells c[i, j] are updated with (c[i, l] + c[l, j]) + w(i, l, j), where both c[i, l] and c[l, j]
belong to the submatrices on diagonals 0 to k − 2 of X.

Superstep k (1 ≤ k < r) consists of up to 3 parallel steps. The first two steps are executed only for
k > 1. In step 1 each submatrix Xi,j on diagonals k to min {2k − 2, r − 1} is updated using data from
the submatrix Xi,r+k−i on diagonal k − 1 that lies to the left of Xi,j, and the corresponding submatrix
Xi−k+1,j below Xi,j . All such Xi,j ’s are updated in parallel using another recursive function H (see Figure
9 of Appendix B for pseudocode) which is implemented in exactly the same way as the I-GEP function
D3. Similarly, step 2 updates each submatrix Xi,j on diagonals k to min {2k − 3, r − 1} using data from
the submatrix Xr+k−j,j on diagonal k−1 that lies below Xi,j, and the corresponding submatrix Xi,j−k+1

to the left of Xi,j . All such updates are also performed in parallel by calling H. Observe that in step 1, for
Xi,j’s on diagonal 2k − 2 both input submatrices lie on diagonal k − 1. Hence, submatrices on diagonal
2k − 2 need not be updated in step 2. In step 3 each submatrix Xi,j on diagonal k is updated using
the two submatrices on diagonal 0 that lie to the left of Xi,j and below it, i.e., Xi,r−i+1 and Xr−j+1,j,
respectively. All these updates are performed in parallel by calling function F. The implementation
of this function is similar to that of function E (see Figure 9 of Appendix B for pseudocode). Since
invariant 4.1 was true before the start of superstep k, it is easy to see that after step 3 of this superstep
all entries of c inside submatrices on diagonal k will have their values finalized.

Now we analyze the performance of the algorithm under different machine configurations.

(1) Sequential. We use t[d] = 2 for all d ≥ 0, and execute the entire algorithm on a single processor.
In this case the algorithm reduces to the sequential algorithm given in [6]. It is straight-forward to see
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that the running time of each of the three functions (i.e., E, F and H) is O
(

n3
)

. Let the sequential
cache-complexity of the three functions on an input of size n be QE(n), QF (n) and QH(n), respectively.
Then QE(n) = QF (n) = QH(n) = O (n + n/B) for n2 ≤ γM , where γ is a suitable constant. Otherwise,

QH(n) = 8 ·QH (n/2) , QF (n) = 4 ·QF (n/2) + 4 ·QH (n/2)

and QE(n) = 2 ·QE (n/2) + QF (n/2)

Solving the recurrences we obtain, QE(n) = QF (n) = QH(n) = O
(

n3/(B
√

M ) + n3/M + n2/B + 1
)

which reduces to O
(

n3/(B
√

M)
)

provided the cache is tall and the input matrix is too large to fit into

the cache.

(2) D-CMP. We use the same tiling parameters as in the D-CMP case of I-GEP in Section 3.1, and
the analyses of performance bounds are also similar. The parallel running time of the algorithm turns out

to be O
(

n3/p
)

, and the cache complexity O
(

n3/(B
√

M) + n3/M +
√

p · n2/B + p
√

p
)

, which reduces

to O
(

n3/(B
√

M)
)

provided the input is too large to fit into the cache (i.e., n2 > p ·M) and the cache

is tall (i.e., M = Ω
(

B2
)

).

(3) S-CMP. We use the same tiling parameters as in the S-CMP case of I-GEP in Section 3.1, and
compute the cache complexity similarly. Let TE(n), TF(n) and TH(n) be the parallel running times of E,
F and H, respectively, on input size n. Then TE(n) = TF (n) = TH(n) = O

(√
p
)

if n ≤ √p. Otherwise,

TH(n) = 8 · TH (n/2) +O (1)

TF (n) = 4 · TF (n/2) + 4 · TH (n/2) +O (1)

TE(n) = 2 · TE (n/2) + TF (n/2) +O (1)

Solving the recurrences and assuming that p ≤ n2, we obtain TE(n) = TF (n) = TH(n) = O
(

n3/p
)

. The
cache complexity remains the same as in the sequential case.

(4) Multicore. The analysis is exactly the same (using the same tiling sequence) as in the multicore
case of I-GEP in Section 3, and we get TE(n) = TF (n) = TH(n) = O

(

n3/p
)

. The cache complexities
for both the L1 and L2 caches match its sequential cache complexity.

Observe that similar to the results for I-GEP in Section 3, this algorithm acheives I∞(n) = O (n)
for all three CMP models, and is cache-oblivious for D-CMP and S-CMP.

5 Experimental Results

We ran experiments for PA (pairwise global sequence alignment with affine gap penalty) and for Median
(median of 3 sequences, again with affine gap penalty). Definitions for PA and Median problems as
2- and 3-dimensional LDDP respectively can be found in Appendix A. Our sequential cache-oblivious
algorithms and experimental results for them are given in [8]. We ran our experiments on an 8-core 2.2
GHz AMD Opteron 850, with cache sizes 64KB and 1 MB (8-way) for L1 and L2 caches, 32 GB RAM.

Since we were dealing with only p = 8 cores, we used a simple CMP algorithm with tiling parameter
t[d] = 2 for all d, which is the same tiling sequence used by the sequential algorithm in [9]. This gives
rise to parallelism T∞(n) = O

(

nlog2 3
)

since it satisfies the recurrence T∞(n) = 3 ·T∞(n/2)+O (1), with
T∞(1) = O (1). Using techniques similar to those we have described in section 2 for LCS on D-CMP,
S-CMP and Multicore, it is straightforward to obtain schedules that achieve I∞(n) = O

(

nlog2 3
)

on all
three models. However, since our experiments were actual runs on an existing 8-core machine and not
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Figure 6: Performance of algorithms for PA and Median on randomly generated sequences over { A, T, G, C }.

Seq. Lengths Cost FASTA Multicore PA

Pair (×106) (×103) [27] 1 core 2 cores 4 cores 6 cores 8 cores

human

baboon
1.80|1.51 689 21h 43m (5.87) 17h 41m (4.79) 8h 58m (2.43) 5h 26m (1.47) 4h 21m (1.17) 3h 42m (1.00)

human

chimp
1.80|1.32 585 20h 15m (6.34) 14h 28m (4.53) 7h 20m (2.30) 4h 28m (1.40) 3h 32m (1.11) 3h 12m (1.00)

baboon

chimp
1.51|1.32 574 17h 57m (6.22) 13h 0m (4.51) 6h 36m (2.29) 4h 3m (1.40) 3h 16m (1.13) 2h 52m (1.00)

human

rat
1.80|1.50 1, 143 27h 55m (6.15) 21h 47m (4.80) 11h 2m (2.43) 6h 37m (1.46) 5h 11m (1.14) 4h 32m (1.00)

rat

mouse
1.50|1.49 822 18h 39m (5.31) 15h 42m (4.47) 7h 58m (2.27) 4h 55m (1.40) 3h 54m (1.11) 3h 31m (1.00)

Table 2: Performance of pairwise alignment algorithms on 8-core AMD Opteron 850 on CFTR DNA sequences
[31]. Parameters used: gap open cost = 2, gap extension cost = 1, mismatch cost = 1. Each number outside
parentheses in columns 4–9 is the time for a single run, and the ratio of that running time to the corresponding
running time for Multicore PA with 8 cores is given within parentheses.

simulations, we had no control over the scheduler, so our parallel code was run with the default Linux
thread scheduler.

Our algorithms were implemented in C++ (compiled with g++ 3.3.4) while some software packages
we used for comparison were written in C (compiled with gcc 3.3.4). Optimization parameter -O3 was
used in all cases.

For PA we compared our code (PA-CO) with FASTA (fasta2) [27], and for median we compared our
code (Median-CO) with Knudsen [25], and with ukk.alloc and ukk.checkp, both from Powell et al. [29].
These are all well-known software, and FASTA especially is very widely used. None of the code we used
for comparison were designed for parallelism, but in all cases even the 1-core version of our parallel code
ran faster than the all compared code on random triples from the data set.

Experimental Performance. Our experimental results for random input strings in Figure 6 show that
both PA-CO and Median-CO achieve good speed-up as the number of processors increases. For example,
with 8 processors PA-CO achieves a speed-up factor of about 5 when n = 1024 K, and MED-CO achieves
speed-up 5.5 when n = 1024.

Tables 2 and 3 present a sample of runs on real data, both on our code and the other software. As
seen from the tables, the 1-core runs of our code are faster than the software we compare against. The
speed-up for these real data samples as we increase the number of cores is similar to our results for
random input strings in Figure 6.
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Knudsen ukk.alloc ukk.checkp Multicore Median

No Lengths Cost [24] [28] [28] 1 core 2 cores 4 cores 6 cores 8 cores

1 367|387|388 299 1, 061 (6.93) 396 (2.59) 548 (3.58) 431 (2.82) 274 (1.79) 181 (1.18) 158 (1.03) 153 (1.00)

2 378|388|403 324 1, 136 (7.01) − 707 (4.36) 460 (2.84) 298 (1.84) 190 (1.17) 173 (1.07) 162 (1.00)

3 342|367|389 339 936 (6.37) − 795 (5.41) 388 (2.64) 256 (1.74) 166 (1.13) 152 (1.03) 147 (1.00)

4 342|370|474 432 1, 154 (7.08) − 1, 595 (9.79) 464 (2.85) 281 (1.72) 195 (1.20) 175 (1.07) 163 (1.00)

5 370|388|447 336 − − 768 (4.74) 494 (3.05) 307 (1.90) 204 (1.25) 170 (1.05) 162 (1.00)

Table 3: Performance on an 8-core AMD Opteron 850 of Median algorithms on triples of random sequences
from 16S bacterial rDNA sequences from the Pseudanabaena group [13]. Parameters used: gap open cost
= 2, gap extension cost = 1, mismatch cost = 1. A ‘−’ in a column denotes that the corresponding algorithm
could not be run due to high space overhead. Each number outside parentheses in columns 4–11 is the time in
seconds for a single run, and the ratio of that running time to the corresponding running time for Multicore
Median with 8 cores is given within parentheses.
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APPENDIX

A Dynamic Programs with Local Dependencies (LDDP)

For convenience, we describe the definition of LDDP here, which is also available in [7, 8]. Given d ≥ 1
sequences Si = si,1si,2 . . . si,n, 1 ≤ i ≤ d, and functions h(·) and f(·, ·, ·), we consider dynamic programs
that compute entries of a d-dimensional matrix c[0 : n, 0 : n, . . . , 0 : n] as follows, where i = i1, i2, . . . , id
and Si is the tuple 〈 s1,i1, s2,i2, . . . , sd,id 〉 containing the ij-th symbol of Sj in j-th position.

c[ i ] =























h ( 〈 i 〉 ) if ∃ ij = 0,

f









〈 i 〉, Si, c









i1 − 1 : i1,
i2 − 1 : i2,

. . . ,
id − 1 : id









\ c[ i ]









otherwise.
(A.4)

Function f can be arbitrary except that it is allowed to use exactly one cell from its third argument
to compute the final value of c[i1, i2, . . . , id] (though it can consider all cells), and we call that specific
cell the parent cell of c[i1, i2, . . . , id]. We also assume that f does not access any memory locations in
addition to those passed to it as inputs except possibly some constant size local variables.

Typically, two types of outputs are expected when evaluating this recurrence: (i) the final value of
c[n, n, . . . , n], and (ii) the traceback path starting from c[n, n, . . . , n]. The traceback path from any cell
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c[i1, i2, . . . , id] is the path following the chain of parent cells through c that ends at some c[i′1, i
′
2, . . . , i

′
d]

with ∃ i′j = 0.
Each cell of c can have multiple fields and in that case f must compute a value for each field, though

as before, it is allowed to use exactly one field from its third argument to compute the final value of any
field in c[i1, i2, . . . , id]. The definition of traceback path extends naturally.

The standard DP evaluation of recurrence A.4 runs in O
(

nd
)

time, O
(

nd
)

space and O
(

nd/B
)

cache-misses (assuming a tall cache, i.e., M = Ω
(

B2
)

). In [8] we present a sequential cache-oblivious

algorithm with the same time bounds, but using only O
(

nd−1
)

space, and incurring only O
(

nd

BM
1

d−1

)

(when M = Ω
(

Bd−1
)

). The CMP algorithm for LDDP is a fairly straightforward extension of the LCS
algorithm.

LDDP includes many important problems, especially in bioinformatics, including longest common
subsequence (LCS), global pairwise sequence alignment (PA) and Median (both with affine gap costs), and
RNA secondary structure prediction with simple pseudoknots (RNA-SP). It also includes local alignment,
generalized global alignment with intermittent similarities, multiple sequence alignment under several
scoring functions such as ‘sum-of-pairs’ objective function and RNA secondary structure prediction with
simple pseudoknots using energy functions based on adjacent base pairs.

A.1 Pairwise Global Sequence Alignment with Affine Gap Penalty. Sequence alignment plays
a central role in biological sequence comparison, and can reveal important relationships among organisms.
Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over a finite alphabet Σ, an alignment of X and Y
is a matching M of sets {1, 2, . . . ,m} and {1, 2, . . . , n} such that if (i, j), (i′ , j′) ∈M and i < i′ hold then
j < j′ must also hold [23]. The i-th letter of X or Y is said to be in a gap if it does not appear in any pair
in M . Given a gap penalty g and a mismatch cost s(a, b) for each pair a, b ∈ Σ, the basic (global) pairwise
sequence alignment problem asks for a matching Mopt for which (m+n−|Mopt|)× g +

∑

(a,b)∈Mopt
s(a, b)

is minimized [23].
For simplicity we will assume m = n. The formulation of the basic sequence alignment problem

favors a large number of small gaps while real biological processes favor the opposite. The alignment
can be made more realistic by using an affine gap penalty [18, 1] which has two parameters: a gap
introduction cost gi and a gap extension cost ge. A run of k gaps incurs a total cost of gi + ge × k.

In [18] Gotoh presented an O
(

n2
)

time and O
(

n2
)

space DP algorithm for solving the global

pairwise alignment problem with affine gap costs. The algorithm incurs O
(

n2

B

)

cache misses. The space

complexity of the algorithm can be reduced to O (n) using Hirschberg’s space-reduction technique [26]
or the diagonal checkpointing technique described in [19]. However, the time and cache complexities
remain unchanged. Gotoh’s algorithm solves the following DP recurrences.

D(i, j) =







G(0, j) + ge if i = 0 ∧ j > 0

min

{

D(i− 1, j),
G(i − 1, j) + gi

}

+ ge if i > 0 ∧ j > 0.

I(i, j) =







G(i, 0) + ge if i > 0 ∧ j = 0

min

{

I(i, j − 1),
G(i, j − 1) + gi

}

+ ge if i > 0 ∧ j > 0.
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G(i, j) =































0 if i = 0 ∧ j = 0
gi + ge × j if i = 0 ∧ j > 0
gi + ge × i if i > 0 ∧ j = 0

min







D(i, j), I(i, j),
G(i− 1, j − 1)

+s(xi, yj)







if i > 0 ∧ j > 0.

The optimal alignment cost is min {G(n, n),D(n, n), I(n, n)} and an optimal alignment can be traced
back from the smallest of G(n, n), D(n, n) and I(n, n).

Connection to 2-dimensional LDDP. The three recurrences above can be viewed as a single
recurrence evaluating a single matrix c[0 : n, 0 : n] with three fields: D, I and G. When i = 0 or
j = 0 each field of c[i, j] depends only on the indices i and j, and constants gi and ge, and hence each
such entry can be computed using a function similar to h in the general recurrence A.4 in Section A.
When both i and j are positive, c[i, j] depends on xi, yj, the entries in c[i− 1 : i, j− 1 : j] \ c[i, j] (i.e., in
D(i−1 : i, j−1 : j)\D(i, j), I(i−1 : i, j−1 : j)\I(i, j) and G(i−1 : i, j−1 : j)\G(i, j),), and constants
gi and ge. Hence, in this case c[i, j] can be computed using a function similar to function f in recurrence
A.4. Thus the recurrences used by Gotoh’s algorithm completely match the general recurrence A.4 for
d = 2.

A.2 Median of Three Sequences. The Median problem is the problem of obtaining an optimal
alignment of three sequences using an affine gap penalty. The median sequence under the optimal
alignment is also computed. Knudsen [25] presented a dynamic program to find multiple alignment of N
sequences, each of length n in O

(

16.81N nN
)

time and O
(

7.442NnN
)

space. For the median problem,

this gives an O
(

n3
)

time and space algorithm that incurs O
(

n3

B

)

cache-misses. An Ukkonen-based

algorithm is presented in [29], which performs well especially for sequences whose (3-way) edit distance
δ is small. On average, it requires O

(

n + δ3
)

time and space [29].
Knudsen’s Algorithm [25] for three sequences (say, X = x1x2 . . . xn, Y = y1y2 . . . yn and Z =

z1z2 . . . , zn) is a dynamic program over a three-dimensional matrix K. Each entry K(i, j, k) is composed
of 23 fields. Each field corresponds to an indel configuration q, which describes how the last characters xi,
yj and zk are matched. A residue configuration defines how the next three characters of the sequences will
be matched. Each configuration is a vector e = (e1, e2, e3, e4), where ei ∈ {0, 1}, 1 ≤ i ≤ 4. The entry ei,
1 ≤ i ≤ 3 indicates if the aligned character of sequence i is a gap or a residue, while e4 corresponds to the
aligned character of the median sequence. There are 10 residue configurations out of 16 possible ones.
The recursive step calculates the value of the next entry by applying residue configurations to each indel
configuration. We define ν(e, q) = q′ if applying the residue configuration e to the indel configuration q
gives the indel configuration q′. The recurrence relation used by Knudsen’s algorithm is:

K(i, j, k)q =























0 if i = j = k = 0 ∧ q = qo

∞ if i = j = k = 0 ∧ q 6= qo

min
e,q′:q=ν(e,q′)







K(i′, j′, k′)q′
+Ge,q

+M(i′,j′,k′)→(i,j,k)







otherwise.

where qo is the configuration where all characters match, i′ = i − e1, j′ = j − e2 and k′ = k − e3,
M(i′,j′,k′)=(i,j,k) is the matching cost between characters of the sequences, and Ge,q is the cost of
introducing or extending the gap.
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The M and G matrices can be pre-computed. Therefore, Knudsen’s algorithm runs in O
(

n3
)

time

and space with O
(

n3

B

)

cache-misses.

Connection to 3-Dimensional LDDP. In order to make the recurrence used by Knudsen’s algorithm
match the general recurrence A.4 for d = 3 given in Section A, we shift all characters of X, Y and Z
one position to the right, introduce a dummy character in front of each of those three sequences, and
obtain the following recurrence.

c[i, j, k]q =































∞ if i = 0 ∨ j = 0 ∨ k = 0
0 if i = j = k = 1 ∧ q = qo

∞ if i = j = k = 1 ∧ q 6= qo

min
e,q′:q=ν(e,q′)







c[i′, j′, k′]q′
+Ge,q

+M(i′,j′,k′)→(i,j,k)







otherwise.

It is easy to see that K(i, j, k)q = c[i + 1, j + 1, k + 1]q for 0 ≤ i, j, k ≤ n and any q. If i = 0 or j = 0
or k = 0 then c[i, j, k]q can be evaluated using a function h( 〈 i, j, k 〉 ) =∞ as in the general recurrence
A.4. Otherwise the value of c[i, j, k]q depends on the values of i, j, and k, values in some constant
size arrays (G and M), and on the cells to its left, back and top. Hence, in this case, c[i, j, k]q can be
evaluated using a function similar to f in recurrence A.4 for d = 3. Therefore, the above recurrence
matches the 3-dimensional version of the general recurrence A.4.

B Pseudocode for CMP Algorithms

Tiled-Boundary-LCS(X′, Y ′, d)
Input. X′ and Y ′ are substrings of LCS inputs X and Y , respectively, with |X′| = |Y ′|. We let Q[1..s,1..s] be the (virtual)
subsquare of cost table c for pairs of positions falling in X′ and Y ′ (where s = |X′|). The c values at the input boundary of Q
are available (the input boundary consists of the portions of the row and column of c just above and to the left of Q).
The third parameter d is a non-negative integer that gives the recursion level for this call, hence this call with use tiling parameter

t[d] (see text for more details).
Output. The c values at the output boundary of Q (i.e., at Q[i, s] and Q[s, j], 1 ≤ i, j ≤ s), and for each such position, the entry
point of its traceback path on input boundary of Q. Space usage is O(s).

if s = 1 then directly compute the output values for Q[1, 1] in constant time else

Let τ := t[d] (we assume for convenience that τ divides s); we divide X′ and Y ′ into τ equal-sized
pieces X′

i and Y ′
j , hence we tile Q with τ2 subsquares Qi,j where, for 1 ≤ i, j ≤ τ ,

Qi,j = Q[(i− 1)(s/τ) + 1 .. is/τ, (j − 1)(s/τ) + 1 .. js/τ ]
for 1 ≤ k ≤ 2τ − 1 do

pfor all pairs (i, j) with i + j = k + 1 do Tiled-Boundary-LCS(X′
i, Y

′
j , d + 1)

Tiled-LCS(X′, Y ′, u, d)
Input/Output. X′, Y ′, d are same as above; u is a position on output boundary of Q from which a traceback path is required.
Output. The traceback path from u to the input boundary of Q, together with the LCS cost at u. The space usage is O(s).

if s = 1 then directly compute value of Q[1,1], and its parent in the c-table in constant time else

Let τ := t[d]; divide each of X′, Y ′ into two equal halves s.t. X′ =< X′
1, X′

2 >, Y ′ =< Y ′
1 , Y ′

2 >,
and let Qi,j [1..s/2, 1..s/2] be the (virtual) Q table for X′

i and Y ′
j , 1 ≤ i, j ≤ 2

1. Call Tiled-Boundary-LCS with (X′
1, Y ′

1 , d), then (X′
1, Y ′

2 , d) and (X′
2, Y ′

1 , d), then (X′
2, Y ′

2 , d)
2. Using the entry points of the traceback paths in the Qi,j , identify the set Σ of those triples X′

i, Y
′
j , v such that

the traceback path from u enters Qi,j at v (by starting at Q2,2 and working backward) in O(1) time
3. pfor each of the (at most 3) S ∈ Σ do Tiled-LCS(S, d + 1)

Figure 7: CMP algorithms for LCS. The initial call is Tiled-LCS( X, Y, (n, n), 0 ), where X and Y
are the input sequences, both of length n.
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A( d, X, U, V, W )

(Each of X, U , V and W points to the same m×m square submatrix of the n× n input matrix c. We assume for simplicity that r
divides m (if m > 1), where r = t[d]. The initial call to A is A(0, c, c, c, c).)

1. if TXUV ∩ ΣG = ∅ then return {TXUV = { updates on X using (i, k) ∈ U and (k, j) ∈ V },
and ΣG is the set of updates performed by iterative GEP}

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. r ← t[d]

Split each of X, U , V and W into r × r square submatrices of size n
r
× n

r
each. The submatrix of X (or U or V or W )

at the i-th position from the top and the j-th position from the left is denoted by Xij (or Uij or Vij or Wij , resp.).

4. for k ← 1 to r do

5. A( d + 1, Xkk, Ukk, Vkk, Wkk )

6. parallel : B1+|j<k|( d + 1, Xkj , Ukk, Vkj , Wkk ), j ∈ [1, r], j 6= k

C1+|i<k|( d + 1, Xik, Uik, Vkk, Wkk ), i ∈ [1, r], i 6= k

7. parallel : D1+2|i<k|+|j<k|( d + 1, Xij , Uik, Vkj , Wkk ), i, j ∈ [1, r], i 6= k, j 6= k

Bl( d, X, U, V, W ) { l ∈ {1, 2} }
(X ≡ V ≡ c[i1..i2, j1..j2] and U ≡ W ≡ c[i1..i2, k1..k2], where
i2− i1 = j2− j1 = k2−k1, [i1, i2] = [k1, k2] and [j1, j2]∩ [k1, k2]
= ∅.)

1–3. As in steps 1–3 of A

4. for k ← 1 to r do

5. parallel : Bl( d + 1, Xkj , Ukk, Vkj , Wkk )

j ∈ [1, r]

6. parallel : Dl+2|i<k|(d+1, Xij , Uik, Vkj , Wkk)

i, j ∈ [1, r], i 6= k

Cl( d, X, U, V, W ) { l ∈ {1, 2} }
(X ≡ U ≡ c[i1..i2, j1..j2] and V ≡ W ≡ c[k1..k2, j1..j2], where
i2− i1 = j2− j1 = k2−k1, [j1, j2] = [k1, k2] and [i1, i2]∩ [k1, k2]
= ∅.)

1–3. As in steps 1–3 of A

4. for k ← 1 to r do

5. parallel : Cl( d + 1, Xik , Uik, Vkk, Wkk )

i ∈ [1, r]

6. parallel : D2l−|j>k|(d+1, Xij , Uik, Vkj , Wkk)

i, j ∈ [1, r], j 6= k

Dl( d, X, U, V, W ) { l ∈ {1, 2, 3, 4} }
(X ≡ c[i1..i2, j1..j2], U ≡ c[i1..i2, k1..k2], V ≡ c[k1..k2, j1..j2] and W ≡ c[k1..k2, k1..k2], where i2 − i1 = j2 − j1 = k2 − k1,
[i1, i2] ∩ [k1, k2] = ∅, and [j1, j2] ∩ [k1, k2] = ∅.)

1–3. As in steps 1–3 of A

4. for k ← 1 to r do

5. parallel : Dl( d + 1, Xij , Uik, Vkj , Wkk ), i, j ∈ [1, r]

Figure 8: CMP Implementation of I-GEP. Initial call is A( 0, c, c, c, c ) on an n× n matrix c.
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E( d, X )

(X points to a m×m square submatrix of the n× n input matrix c such that the top-left to bottom-right diagonal of X lies on the
top-left to bottom-right diagonal of c. We assume for simplicity that r divides m (if m > 1), where r = t[d]. The initial call to A is
E(0, c).)

1. if X is not a 1× 1 matrix then

2. r ← t[d]

Split X into r × r square submatrices of size n
r
× n

r
each. The submatrix of X at

the i-th position from the top and the j-th position from the left is denoted by Xi,j .

3. parallel : E( d + 1, Xi,j ), i, j ∈ [1, r], i + j = r + 1

4. for k ← 1 to r − 1 do

5. parallel : H( d + 1, Xi,j , Xi,r+k−i, Xi−k+1,j ), i, j ∈ [1, r], r + k < i + j < r + 2k

6. parallel : H( d + 1, Xi,j , Xi,j−k+1, Xr+k−j,j ), i, j ∈ [1, r], r + k < i + j < r + 2k − 1

7. parallel : F( d + 1, Xi,j , Xi,r−i+1, Xr−j+1,j ), i, j ∈ [1, r], i + j = r + k + 1

F( d, X, U, V )

(X, U and V are m×m disjoint submatrices of the n× n input matrix c such that X lies entirely above the top-left to bottom-right
diagonal of c, and the top-left to bottom-right diagonals of U and V lie on that of c. The submatrix U lies to the left of submatrix
X, and both lie on the same rows of c. The submatrix V lies below submatrix X, and both lie on the same columns of c. We assume
for simplicity that r divides m (if m > 1), where r = t[d].)

1. if X is a 1× 1 matrix then

2. X ← min { X, (U + V ) + W }, where W = w(i, k, j) assuming X ≡ c[i, j], U ≡ c[i, k] and V ≡ c[k, j]

else

3. r ← t[d]

Split each of X, U and V into r × r square submatrices of size n
r
× n

r
each. The submatrix of X (or U or V )

at the i-th position from the top and the j-th position from the left is denoted by Xi,j (or Ui,j or Vi,j , resp.).

For i, j ∈ [1, r], we define the following two mappings.

U ′
i,l =



Xi,l if l > 0,
Ui,l+r otherwise.

V ′
l,j =



Xl,j if l > 0,
Vl+r,j otherwise.

4. for k ← 1 to r do

5. parallel : H( d + 1, Xi,j , U ′
i,k−i

, V ′
i−k+1,j

), i, j ∈ [1, r], k < i + j < 2k

6. parallel : H( d + 1, Xi,j , U ′
i,j−k+1, V ′

k−j,j
), i, j ∈ [1, r], k < i + j < 2k − 1

7. parallel : F( d + 1, Xi,j , U ′
i,1−i, V ′

1−j,j ), i, j ∈ [1, r], i + j = k + 1

H( d, X, U, V )

(X, U and V are m×m disjoint submatrices of the n×n input matrix c each of which lies entirely above the top-left to bottom-right
diagonal of c. The submatrix U lies to the left of submatrix X, and both lie on the same rows of c. The submatrix V lies below
submatrix X, and both lie on the same columns of c. We assume for simplicity that r divides m (if m > 1), where r = t[d].)

1–3. As in steps 1–3 of F

4. for k ← 1 to r do

5. parallel : H( d + 1, Xi,j , Ui,k, Vk,j ), i, j ∈ [1, r]

Figure 9: CMP algorithm for the parenthesis problem defined by recurrence 4.3. Initial call is E( 0, c )
for an n× n input matrix c.
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