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Abstract

We study the impact of using different priority queues in the performance of Dijkstra’s SSSP
algorithm. We consider only general priority queues that can handle any type of keys (integer,
floating point, etc.); the only exception is that we use as a benchmark the DIMACS Challenge
SSSP code [1] which can handle only integer values for distances.

Our experiments were focussed on the following:

1. We study the performance of two variants of Dijkstra’s algorithm: the well-known version
that uses a priority queue that supports the Decrease-Key operation, and another that
uses a basic priority queue that supports only Insert and Delete-Min. For the latter type
of priority queue we include several for which high-performance code is available such as
bottom-up binary heap, aligned 4-ary heap, and sequence heap [33].

2. We study the performance of Dijkstra’s algorithm designed for flat memory relative to
versions that try to be cache-efficient. For this, in main part, we study the difference in
performance of Dijkstra’s algorithm relative to the cache-efficiency of the priority queue
used, both in-core and out-of-core. We also study the performance of an implementation
of Dijkstra’s algorithm that achieves a modest amount of additional cache-efficiency in
undirected graphs through the use of two cache-efficient priority queues [25, 12]. This
is theoretically the most cache-efficient implementation of Dijkstra’s algorithm currently
known.

Overall, our results show that using a standard priority queue without the decrease-key op-
eration results in better performance than using one with the decrease-key operation in most
cases; that cache-efficient priority queues improve the performance of Dijkstra’s algorithm, both
in-core and out-of-core on current processors; and that the dual priority queue version of Di-
jkstra’s algorithm has a significant overhead in the constant factor, and hence is quite slow in
in-core execution, though it performs by far the best on sparse graphs out-of-core.
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1 Introduction

Dijkstra’s single-source shortest path (SSSP) algorithm is the most widely used algorithm for com-
puting shortest paths in a graph with non-negative edge-weights. A key ingredient in the efficient
execution of Dijkstra’s algorithm is the efficiency of the heap (i.e., priority queue) it uses. In this
paper we present an experimental study on how the heap affects performance in Dijkstra’s algo-
rithm. We mainly consider heaps that are able to support arbitrary nonnegative key values so that
the algorithm can be executed on graphs with general nonnegative edge-weights.

We consider the following two issues:

1. We study the relative performance of two variants of Dijkstra’s algorithm: the traditional
implementation that uses a heap with Decrease-Key operations (see Dijkstra-Dec in Section
1.1), and another simple variant that uses a basic heap with only Insert and Delete-Min
operations (see Dijkstra-NoDec in Section 1.1).

2. We study how the performance of Dijkstra’s algorithm varies with the cache-efficiency of the
heap used, both in-core and out-of-core. We also study the performance of the theoretically
best cache-efficient implementation of Dijkstra’s algorithm for undirected graphs that uses
two cache-efficient heaps (see Dijkstra-Ext in Section 1.1).

1.1 Dijkstra’s SSSP Algorithm

We consider the following three implementations of Dijkstra’s algorithm.

Dijkstra-Dec. This is the standard implementation of Dijkstra’s algorithm that uses a heap that
supports the Decrease-Key operation (see Function B.1 in the Appendix).

The heaps we use with Dijkstra-Dec are standard binary heap [40], which is perhaps the most
widely-used heap, pairing heap [19], and cache-oblivious buffer heap [12], which is the only nontrivial
cache-oblivious heap that supports the Decrease-Key operation. We implemented all three in-house.

The pairing heap was chosen as the best representative of the class of heaps that support
Decrease-Key in amortized sub-logarithmic time. Though the Fibonacci heap [20] and others sup-
port it in O (1) amortized time and the pairing heap does not, an experimental study of the Prim-
Dijkstra MST algorithm [29] found the pairing heap to be superior to other heaps considered (while
standard binary heap performed better than the rest in most cases). In our preliminary experiments
we used several other heaps including Fibonacci heap, and similar to [29] we found the pairing heap
and the standard binary heap to be the fastest among the traditional (flat-memory) heaps.

Dijkstra-NoDec. This is an implementation that uses a heap with only Insert and Delete-
Min operations (see Function B.2 in the Appendix). This implementation performs more heap
operations and accesses to the graph data structure than Dijkstra-Dec. Further, theoretically
this implementation is inferior to the asymptotic running time of Dijkstra-Dec when the latter is
used with Fibonacci heap or other heap with amortized sub-logarithmic time support for Decrease-
Key. However, since Dijkstra-NoDec can use a streamlined heap without the heavy machinery
needed for supporting Decrease-Key (e.g., pointers in binary heap), the heap operations are likely
to be more efficient than those in Dijkstra-NoDec. (see Appendix B.3.1 for more details).

The heaps we use with Dijkstra-NoDec are bottom-up binary Heap, aligned 4-ary heap and
sequence heap, which are three highly-optimized heaps implemented by Peter Sanders [33], and two
heaps coded in-house, the standard binary heap without support for Decrease-Key and auxiliary
buffer heap, which is the buffer heap without support for Decrease-Key.

Dijkstra-Ext. This is an external-memory implementation for undirected graphs that uses two
heaps: one with Decrease-Key operation, and the other one supporting only Insert and Delete-
Min operations [25, 12] (see Function B.3 in the Appendix). This algorithm is asymptotically more
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cache-efficient (by a modest amount) than the two mentioned above, and this is achieved by reducing
the number of I/Os for accessing the graph data structure at the cost of increasing the number of
heap operations considerably (though only by a constant factor) relative to Dijkstra-NoDec. As
a result, Dijkstra-Ext is expected to outperform the other implementations only in out-of-core
computations, i.e., when the cost of accessing data in the external-memory becomes significant (see
Section B.3.1 in the Appendix for more details). We note that there are undirected SSSP algorithms
for graphs with bounded edge-weights [28, 3] that are more cache-efficient than Dijkstra-Ext, but
these algorithms are not direct implementations of Dijkstra’s algorithm as they use a hierarchical
decomposition technique (similar to those in some flat-memory SSSP algorithms [37, 32]), and thus
out of scope of this paper.

The theoretical I/O complexities of all heaps in our experiments are listed in Tables 1 and 2. In
Table 3 we list the implemented I/O complexities for Dijkstra’s algorithm.

For the purpose of comparison we include the following Dijkstra implementation which was used
as the benchmark solver for the “9th DIMACS Implementation Challenge – Shortest Paths” [1].

Dijkstra-Buckets. An implementation of Dijkstra’s algorithm with a heap based on a bucketing
structure. This algorithm works only on graphs with integer edge-weights.

We performed our experiments on undirected Gn,m and directed power-law graphs, as well as on some
real-world graphs from the benchmark instances of the 9th DIMACS Implementation Challenge [1].

Priority Queue Insert/Decrease-Key Delete Delete-Min

Standard Binary Heap [40] (worst-case bounds) O (log N) O (log N) O (log N)

Two-Pass Pairing Heap [19, 30] O
“

22
√

log log N
”

O (log N) O (log N)

Buffer Heap [12] (cache-oblivious) O
`

1
B

log N
M

´

O
`

1
B

log N
M

´

O
`

1
B

log N
M

´

Table 1: Amortized I/O bounds for heaps with Decrease-Keys (N = # items in queue, B = block size,
M = size of the cache/internal-memory).

Priority Queue Insert/Delete-Min

Bottom-up Binary Heap [39] (worst-case bounds) O (log2 N)

Aligned 4-ary Heap [26] (worst-case bounds) O (log4 N)

Sequence Heap [33] (cache-aware) O
`

1
B

logk
N
l

+ 1
k

+ log k
l

´

Auxiliary Buffer Heap (cache-oblivious, this paper) O
“

1
B

log M
B

N
B

”

Table 2: Amortized I/O bounds for heaps without Decrease-Keys (N = # items in queue, B =
block size, M = size of the cache/internal-memory, k = Θ (M/B) and l = Θ (M)).

1.2 Summary of Experimental Results

Briefly here are the conclusions of our experimental study:

• During in-core computations involving real-weighted sparse graphs such as undirected Gn,m,
road networks, and directed power-law, implementations based on Dijkstra-NoDec ran
faster (often significantly) than Dijkstra-Dec implementations. However, this performance
gap narrowed as the graphs became denser.

• Use of cache-efficient heaps generally improved performance of Dijkstra’s algorithm both dur-
ing in-core and out-of-core computations on low-diameter graphs such as Gn,m and power-law.

− When the computation was in-core, an implementation using the cache-aware sequence heap
ran the fastest followed by an implementation based on the cache-oblivious auxiliary buffer
heap. Both ran faster than the DIMACS SSSP code. Among implementations of Dijkstra-

Dec, the one using the cache-oblivious buffer heap was the fastest on Intel Xeon (which has
strong prefetcher support), but not on AMD Opteron.
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− When the computation was out-of-core, and the graph was not too dense, the external-
memory implementation of Dijkstra’s algorithm (Dijkstra-Ext) with cache-oblivious buffer
heap and auxiliary buffer heap performed the fewest block transfers.

− For high-diameter graphs of geometric nature such as real-world road networks, Dijkstra’s
algorithm with traditional heaps performed almost as well as any cache-efficient heap when
the computation was in-core.

Organization of the Paper. In Section 2 we give an overview of the heaps we used. We discuss
our experimental setup in Section 3, and in Section 4 we discuss our experimental results.

2 Overview of Priority Queues

2.1 Flat-Memory Priority Queues
We implemented pairing heap and standard binary heap. Both were implemented so that they
allocate and deallocate space from at most two arrays. Pointers were reduced to indices in the
array. This allows us to limit the amount of internal-memory available to the heaps during out-of-
core computations using STXXL (see Section 3).

Pairing Heap: We implemented four variants of the pairing heap: two-pass and multi-pass [19],
and their auxiliary variants [36]. The two-pass variant has better theoretical bounds than the
multi-pass variant and also ran faster in our experiments. The auxiliary variants ran only marginally
(around 4%) faster than the corresponding primary variants, and so we will report results only for
two-pass pairing heap. The two-pass pairing heap supports Delete and Delete-Min operations in

O (log N) and Decrease-Key operations in O
(

2
√

log log N
)

amortized time and I/O bounds each.

Standard Binary Heap: We implemented the standard binary heap [40, 14]. However, we allo-
cated nodes from a separate array and the heap stores only indices to those nodes. This ensures that
whenever a new element is inserted all necessary information about it is stored at a location which
remains static as long as the element remains in the heap. This allows Decrease-Key operations
to be performed on a node by directly accessing it at any time. Standard binary heap supports
Insert, Delete, Delete-Min and Decrease-Key operations in O (log N) time and I/O bounds each.

Binary Heap w/o Decrease-Keys: This is a streamlined version of our implementation of the
standard binary heap obtained by removing the overhead (e.g., pointers) of implementing Decrease-
Key operations. This is a completely array-based heap.

Bottom-up Binary Heap: The bottom-up binary heap is a variant of binary heap which uses a
bottom-up Delete-Min heuristic [39]. Compared to the traditional binary heap, this variant performs
only half the number of comparisons on average per Delete-Min. We used Peter Sanders’ highly
optimized implementation of bottom-up binary heap [33] that has no redundant memory accesses
or computations even in its assembler code, which supports only Insert and Delete-Min.

2.2 Cache-aware Priority Queues

Both of the following two heaps support only Insert and Delete-Min operations.

Aligned 4-ary Heap: In [26] this array-based heap was shown to outperform pointer based
heaps. It aligns its data to cache blocks (so needs to know block size B) which reduces the num-
ber of cache-misses when accessing any data item. It supports Insert and Delete-Min operations in
O (log4 N) time and block transfers each. In our experiments we used the optimized implementation
of aligned 4-ary heap by Peter Sanders with the bottom-up Delete-Min heuristic [39].

3



Sequence Heap: The sequence heap is a cache-aware heap developed in [33]. It is based on k-way

merging for some appropriate k. When the cache is fully associative, k is chosen to be Θ
(

M
B

)

, and

for some l = Θ (M) and R =
⌈

logk
N
l

⌉

, it can perform N Insert and up to N Delete-Min operations

in 2R
B +O

(

1
k + log k

l

)

amortized cache-misses and O (log N + log R + log l + 1) amortized time each.

For α-way set associative caches k is reduced by O
(

B
1
α

)

. We used a highly optimized version of

the sequence heap implemented by Peter Sanders [33], and used k = 128 as suggested in [33].

2.3 Cache-oblivious Buffer Heap and Auxiliary Buffer Heap

Buffer Heap: The buffer heap is an efficient stack-based cache-oblivious heap [12, 13] (see [7] for
a similar heap). It consists of log N levels with level i ∈ [0, log N) containing an element buffer Bi

and an update buffer Ui, each of size at most 2i. In our implementation we made design choices
which do not always guarantee the best worst-case behavior but perform reasonably well in practice.

Size of Update Buffer. Our preliminary experiments suggested that bounding the sizes of update
buffers slows down the operations by about 50%. Therefore, we chose to keep these sizes unrestricted
as in [12]. This increases amortized I/O per operation to O

(

1
B log2 N

)

(up from O
(

1
B log2

N
M

)

).
This increase is reflected in the bound in Table 3.

Periodic Reconstruction. Periodic reconstruction ensures that the I/O complexity of buffer
heap operations depends on the current size of the data structure and not on the total number of
operations performed on it. However, in our preliminary experiments it slowed down the buffer
heap operations by about 33%, and so we chose to avoid it.

Sorting U0. We used randomized quicksort [23, 14] to sort U0 when a Delete-Min is performed.
It is simple, in-place and with high probability runs in O (N log N) time and O

(

N
B log2 N

)

I/O
operations. We chose not to use optimal cache-oblivious sorting [21] since this is complicated to
implement, and randomized quicksort is sufficient to guarantee the I/O bounds of buffer heap.

Selection Algorithm for Redistribution. A selection algorithm is required to partition the
elements collected for redistribution after a Delete-Min operation is performed. We used the classical
randomized selection algorithm [22, 14] which is in-place and runs in Θ (N) expected time and
performs Θ

(

N
B

)

expected I/O operations on a sequence of N elements.

Single Stack Implementation. We stored all buffers in a single stack with the update buffer on
top of the element buffer at the same level. All temporary space was allocated on top of the stack.
This implementation can benefit more from the limited number of prefetchers available for the caches
than a multiple-array implementation, and also allowed us to limit the amount of internal-memory
available to the data structure during our out-of-core experiments using STXXL (see Section 3).

Pipelining. Before we update any Bi (with updates in Ui) during a Delete-Min operation, we need
to merge the segments of Ui. In our implementation, we applied the updates on Bi on the fly as we
kept generating them during the merging process, which saved several extra scans over the updates.

Detailed description of most of our design choices for the buffer heap is available in the under-
graduate honors thesis of Lingling Tong [38].

Auxiliary Buffer Heap: A simplified version of the buffer heap, the auxiliary buffer heap, that

supports Insert and Delete-Min operations in optimal O
(

1
B log M

B

N
B

)

I/Os, but no Decrease-Keys is

described briefly in Appendix A. For our experiments, we implemented a streamlined version of this
optimal version, derived directly from the buffer heap, whose amortized I/O per operation remains
O

(

1
B log2 N

)

as in buffer heap, but the operations have much lower overhead. There are two main
reasons why we chose to implement this streamlined non-optimal version. Firstly, we wanted to
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Implementation Base Routine Priority Queue(s) I/O Complexity

Bin-Dij Dijkstra-Dec Standard Binary Heap O (m + (n + D) · log n)

Pair-Dij Dijkstra-Dec Two-Pass Pairing Heap O
“

m + n · log n + D · 22
√

log log n
”

BH-Dij Dijkstra-Dec Buffer Heap O
`

m + n+D
B
· log (n + D)

´

SBin-Dij Dijkstra-NoDec Binary Heap w/o Dec-key O (m + (n + D) · log (n + D))

FBin-Dij Dijkstra-NoDec Bottom-up Binary Heap O (m + (n + D) · log (n + D))

Al4-Dij Dijkstra-NoDec Aligned 4-ary Heap O (m + (n + D) · log (n + D))

Seq-Dij Dijkstra-NoDec Sequence Heap O
`

m + n+D
B
·

`

logk
n+D

l
+ 1

k
+ log k

l

´´

AH-Dij Dijkstra-NoDec Auxiliary Buffer Heap O
`

m + n+D
B
· log (n + D)

´

Dual-Dij
Dijkstra-Ext

(undirected graphs only)

Buffer Heap

& Auxiliary Buffer Heap
O

`

n + n+m
B
· log m

´

DIMACS-Dij
Dijkstra-Bucket

(integer edge-weights)

Buckets

+ Caliber Heuristic

O (m + n)

(expected)

Table 3: Different implementations of Dijkstra’s algorithm evaluated in this paper, where D (≤ m) is the number
of Decrease-Keys performed by Dijkstra-Dec, B is the block size, k = Θ (M/B) and l = Θ(M).

use this implementation in experiments that attempt to measure the improvement (if any) in the
performance of Dijkstra’s SSSP algorithm if we remove the overhead of implementing Decrease-Key
from a given priority queue and use it in Dijkstra-NoDec. Secondly, this version is easier to
implement and is likely to have much lower overhead in practice than the optimal version. Other
optimal cache-oblivious priority queues supporting only Insert and Delete-Min [4, 6] also appear to
be more complicated to implement than the streamlined non-optimal auxiliary buffer heap.

Major features of the streamlined auxiliary buffer heap we implemented are as follows.

No Selection. There are log N levels, and contents of the buffers in each level are kept sorted by key
value instead of element id and time stamp as in buffer heap. As a result during the redistribution
step we do not need a selection algorithm.

Insertion and Delete-Min Buffers. Newly inserted elements are collected in a small insertion
buffer. A small delete-min buffer holds the smallest few elements in the heap (excluding the insertion
buffer) in sorted order. Whenever the insertion buffer overflows or a Delete-Min operation needs
to be performed, appropriate elements from the buffer are moved to the heap. An underflowing
delete-min buffer is filled up with the smallest elements from the heap.

Efficient Merge. We use the optimized 3-way merge technique described in [33] for merging an
update buffer with the (at most two) segments of the update buffer in the next higher level.

Less Space. Uses less space than buffer heap since it does not store timestamps with each element.

Table 3 lists I/O complexities of different implementations we ran of Dijkstra’s algorithm.

3 Experimental Set-up

We ran our experiments on the following two machines.

Model Processors Speed L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 8 KB (4-way, B = 64 B) 512 KB (8-way, B = 64 B) 4 GB
AMD Opteron 250 2 2.4 GHz 64 KB (2-way, B = 64 B) 1 MB (8-way, B = 64 B) 4 GB

Table 4: Machines used for experiments.

Both machines ran Ubuntu Linux 5.10 “Breezy Badger”. The Intel Xeon machine was connected
to a 73.5 GB 10K RPM Fujitsu MAP3735NC hard disk with an 8 MB data buffer. The average
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seek time for reads and writes were 4.5 and 5.0 ms, respectively. The maximum data transfer rate
(to/from media) was 106.9 MB/s. All experiments were run on a single processor.

We used the Cachegrind profiler [35] for simulating cache effects.
We implemented all algorithms in C++ using a uniform programming style, and compiled using

the g++ 3.3.4 compiler with optimization level −O3.
For out-of-core experiments we used STXXL library version 0.9. The STXXL library [15, 16] is

an implementation of the C++ standard template library STL for external memory computations,
and is used primarily for experimentation with huge data sets. The STXXL library maintains its
own fully associative cache in RAM with pages from the disk. We compiled STXXL with DIRECT-
I/O turned on, which ensures that the OS does not cache the data read from or written to the hard
disk. We also configured STXXL (more specifically the STXXL vectors) to use LRU paging.

We store the entire graph in a single vector so that the total amount of internal-memory available
to the graph during out-of-core computations can be regulated by changing the STXXL parameters
of the vector. The initial portion of the vector stores information on the vertices in increasing order
of vertex id (each vertex is assumed to have a unique integer id from 1 to n) and the remaining
portion stores the adjacency lists of the vertices in the same order. We store two pieces of information
for each vertex: its distance value from the source vertex and a pointer to its adjacency list. For
SSSP algorithms based on internal-memory heaps with Decrease-Keys (e.g., standard binary heap
and pairing heap) we also store the pointer returned by the heap when the vertex is inserted into
it for the first time. This pointer is used by all subsequent Decrease-Key operations performed on
the vertex. For each edge in the adjacency list of a vertex we store the other endpoint of the edge
and the edge-weight. Each undirected edge (u, v) is stored twice: once in the adjacency list of u

and again in the adjacency list of v. For each graph we use a one-time preprocessing step that puts
the graph in the format described above.

Graph Classes. We ran our experiments on three graph classes obtained through the 9th DIMACS
Implementation Challenge [1]: Two synthetic classes, undirected Gn,m (PR) [31] and directed power-
law graphs (GT) [5], and the real-world class of undirected U.S. road networks [34]. In Appendices
D and E we present experimental results on the following additional (undirected) graph classes:
regular [31], grid [31], geometric [31] and layered [2]. A more detailed description of these graphs is
included in Appendix C.

4 Experimental Results

We present a detailed description of our experimental results on Intel Xeon, and summarize our
results on AMD Opteron in Section 4.6. Unless specified otherwise, all experimental results pre-
sented in this section are averages of three independent runs from three random source vertices on
a randomly chosen graph from the graph class under consideration, and they do not include the
cost of the one-time preprocessing step that puts the graph in the format mentioned in Section 3.

4.1 In-Core Results for Gn,m

We consider graphs in which we keep the average degree of vertices fixed and vary the number of
edges (by varying the number of vertices), and also graphs in which we keep the number of edges
fixed and vary the average degree of vertices (again by varying the number of vertices).

4.1.1 Gn,m with Fixed Average Degree
Figure 1 shows the in-core performance of all implementations (except Dual-Dij which was much
slower than all others in-core) on Gn,m with a fixed average degree 8, i.e., m

n = 8.
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In-Core Performance on Gn,m with Fixed Average Degree 8 (on Intel P4 Xeon)

BH-Dij AH-Dij Bin-Dij SBin-Dij FBin-Dij Pair-Dij Al4-Dij Seq-Dij DIMACS-Dij

(a) Absolute Running Times
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Figure 1: In-core performance of algorithms on Gn,m with fixed average degree 8 (on Intel P4 Xeon).

In-Core Performance on Gn,m with m Fixed to 4 Million (on Intel P4 Xeon)
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Figure 2: In-core performance of algorithms on Gn,m with m fixed to 4 million (on Intel P4 Xeon).

Running Times. Figures 1(a) and 1(b) show that as n was varied from 215 to 222, all Dijkstra-

NoDec implementations (i.e., AH-Dij, FBin-Dij, SBin-Dij, Al4-Dij and Seq-Dij) ran at least 1.4
times faster than any Dijkstra-Dec implementation (i.e., BH-Dij, Bin-Dij and Pair-Dij). We will
investigate this observation in more detail in Section 4.2.

Among all implementations, Seq-Dij consistently ran the fastest, while AH-Dij was consistently
faster than the remaining implementations. Seq-Dij ran around 25% faster than AH-Dij. FBin-Dij,
SBin-Dij, Al4-Dij and DIMACS-Dij ran at almost the same speed, and were consistently 25% slower
than AH-Dij. BH-Dij was the fastest among Dijkstra-Dec for n ≥ 128, and ran up to 25% faster
than the remaining two. The slowest of all implementations was Bin-Dij.

Cache Performance. Figures 1(c) and 1(d) plot the L2 cache misses incurred by different imple-
mentations (except Dual-Dij). As expected, cache-aware Seq-Dij incurred the fewest cache-misses
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followed by cache-oblivious AH-Dij. The cache-oblivious BH-Dij incurred more cache-misses than
AH-Dij, but fewer than any Dijkstra-Dec implementation.

As n grows larger the cache performance of BH-Dij degrades with respect to Bin-Dij and Pair-Dij

which can be explained as follows. All Dijkstra-Dec implementations perform exactly the same
number of Decrease-Key operations (our experimental results suggest that this number is ≈ 0.8n
for Gn,m with average degree 8). The flat-memory priority queues we used support Decrease-Key
operations more efficiently on average than in the worst case, which is not the case with buffer
heap. Hence the cache-performance of BH-Dij degrades as a whole with respect to that of Bin-Dij

and Pair-Dij as n increases. Surprisingly, however, Figure 1(b) shows that the running time of BH-

Dij improves with respect to most other implementations as n increases. We believe this happens
because of the prefetchers in Intel Xeon. As the operations of buffer heap involves only sequential
scans it benefits more from the prefetchers than the internal-memory heaps. The cachegrind profiler
does not take hardware prefetching into account and as a result, Figures 1(c) and 1(d) failed to reveal
their impact. The same phenomenon is seen to a lesser extent for AH-Dij.

4.1.2 Gn,m with Fixed Number of Edges
Figures 2(a) and 2(b) plot running times as the number of vertices is increased from 2500 to 1
million while keeping m fixed to 4 million (i.e. average degree is decreased from 1600 down to
4). As before, cache-aware Seq-Dij consistently ran the fastest followed by the cache-oblivious AH-

Dij. When the graph was sparse all implementations based on Dijkstra-NoDec ran significantly
faster than any implementation based on Dijkstra-Dec, but this performance gap narrowed as
the graph became denser. As in Section 4.1.1, for Dijkstra-Dec the cache-oblivious BH-Dij ran
faster than flat-memory implementations (i.e., Bin-Dij & Pair-Dij). As the average degree of the
graph decreased down to 160, performance of the DIMACS-Dij solver degraded significantly, but
after that its performance improved dramatically.

Remarks on Dijkstra-Ext. Dual-Dij ran considerably slower than other implementations as it
performs significantly more heap operations compared to any of them (see Table 7 in the Appendix).
For example, on Gn,m with average degree 8, Dual-Dij consistently performed at least 6 times more
heap operations and ran at least 6 times slower than any other implementations.

4.2 Dijkstra-Dec vs. Dijkstra-NoDec

In Figure 3 we take a closer look at the performance gap between Dijkstra-NoDec and Dijkstra-

Dec. In Figures 3(a) and 3(b) we plot the running times of Bin-Dij, SBin-Dij, BH-Dij and AH-Dij

on Gn,1000000 as n (and thus edge-density) varies. Both Bin-Dij and BH-Dij are based on Dijkstra-

Dec, and they use standard binary heap and cache-oblivious buffer heap, respectively, as heaps. In
contrast, SBin-Dij and AH-Dij are based on Dijkstra-NoDec, and they use streamlined versions
of the standard binary heap and the buffer heap, respectively. These two streamlined heaps are
obtained by removing the heavy machinery for supporting Decrease-Key operations from the original
heaps (see Section 2 for details), and thus support only Insert and Delete-Min operations. Since
these light-weight heap implementations have much lower overhead compared to their heavy-weight
counterparts, they contribute to more efficient shortest path computation in spite of the fact that
Dijkstra-NoDec performs more heap operations than Dijkstra-Dec. Figures 3(a) and 3(b)
show that for sparse graphs SBin-Dij and AH-Dij run significantly faster than Bin-Dij and BH-Dij,
respectively, though the performance gap diminishes as the graphs become denser.

In order to understand the relative performance of Dijkstra-Dec and Dijkstra-NoDec, let
us compute their theoretical complexity in terms of the heap operations performed. We observe
that Dijkstra-Dec performs n Insert and Delete-Min operations each, and the corresponding
figure for Dijkstra-NoDec is n+D, where D is the number of Decrease-Key operations executed
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Comparison between Dijkstra-Dec and Dijkstra-NoDec Implementations (on Intel P4 Xeon)

BH-Dij AH-Dij Bin-Dij SBin-Dij
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(d) Cycles (avg.) per PQ Operation

on G2500,1000000

efgh efgh efghiefgh iefghjkjjljjmjjnjjojjpjjqjjrjjsjj
kjjjkkjjkljjkmjjknjjkojjkpjjkqjj

tuvwxy zw{xw|vw}~w� zw�wyw}��u��������������������
(e) Ratio of Decrease-Key and Insert

Performed by Dijkstra-Dec on Gn,1000000

����
����

���������������������
��� �� �����

� ��� � �� �� �� ��� ��� ��� �¡���¢£¤¥¦§ ¨© ª¦§«¬­¦® ¯ ° ±�² ³µ́¶·̧¶¹º¶»¼¶½¾́¿Àº¶̧Á ÂÂ
Figure 3: Plots (a) and (b) compare runtimes of Bin-Dij & BH-Dij, and SBin-Dij & AH-Dij, respectively,
on Gn,1000000 as n varies. Plots (c) and (d) show the avg. number of cycles per heap operation performed
by Bin-Dij and SBin-Dij on G250000,1000000 and G2500,1000000, respectively. Plot (e) shows the ratio of the
number of Decrease-Key and Insert operations performed by Dijkstra-Dec on Gn,1000000 as n varies.

by Dijkstra-Dec. Let the heap used by Dijkstra-Dec support each Insert, Delete-Min and
Decrease-Key operation in cins, cdel and cdec clock cycles (avg), respectively, and let the heap for
Dijkstra-NoDec support each Insert and Delete-Min operation in c′ins and c′del clock cycles (avg),
respectively. Hence, if Dijkstra-Dec requires ∆ extra clock cycles compared to Dijkstra-NoDec

to perform all heap operations, then ∆ = n(cins − c′ins) + n(cdel − c′del) + D(cdec − c′ins − c′del).
In Figures 3(c) and 3(d), we compare empirically obtained (using Callgrind [35]) values of cins,

cdel and cdec with those of c′ins and c′del for G250000,1000000 and G2500,1000000, respectively. In Figure
3(e), we plot the empirical ratio of the number of Decrease-Key operations (= D) to the number of
Insert operations (≈ n) performed by Dijkstra-Dec on Gn,1000000 for different values of n. Now for
G250000,1000000 , from Figure 3(e) we obtain D ≈ 0.32n, and using this value we obtain from Figure
3(c), ∆ = 990n − 350D ≈ 220 × 106. Therefore, SBin-Dij, indeed, spends fewer clock cycles on
heap operations than Bin-Dij in this case, and Figures 3(a) and 3(b) show that this translates into
a better overall running time for SBin-Dij. Similarly, for G2500,1000000, we obtain ∆ = 330n − 540D
from Figure 3(d), and D ≈ 4.3n from Figure 3(e). Thus ∆ ≈ −5 × 106, and hence Bin-Dij will
perform better than SBin-Dij in this case. Figures 3(a) and 3(b) confirm our conclusion.

More experimental results on the relative performance of Bin-Dij and SBin-Dij can be found in
the undergraduate honors thesis of Mo Chen [10].

The relative performance of BH-Dij and AH-Dij follows a trend similar to that of Bin-Dij and
SBin-Dij (see Figures 3(a) and 3(b)), which can be explained similarly.
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In-Core Performance on Power-Law Graphs (on Intel P4 Xeon)
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Figure 4: In-core performance of algorithms on power-law graphs.

4.3 In-Core Results for Directed Power-Law Graphs
In Figures 4(a) and 4(b), we plot the running times of different implementations on directed power-
law graphs with fixed average degree 4 as the number of vertices is varied. Figures 4(c) and 4(d)
plot running times as the average degree of the graph is varied by keeping the number of edges fixed
to 1 million. The trends in both cases are similar to those observed for Gn,m in Section 4.1.

4.4 Out-of-Core Results for Undirected Gn,m

We report our experimental results for fully external computation where neither the vertex set nor
the edge set completely fits in internal memory, and the heap also is too large to fit in internal
memory. We fixed the amount of internal memory available to store the graph and the heap
separately by fixing the STXXL parameters of the corresponding vectors. We fixed the block size B

to 4 KB and internal-memory size M to 4 MB. We have not included Seq-Dij in these experiments
because it was quite difficult to reimplement it in order to make it compatible with STXXL.

Figures 5(a) and 5(b) plot the number of blocks transferred by different implementations for
Gn,m as the average degree of the graph is varied while keeping the number of edges fixed to 2
million. They show that both BH-Dij and AH-Dij perform over 2 times more block transfers than
Dual-Dij, while FBin-Dij and Al4-Dij perform over 2.5 times more. We believe that this is due to
the O (m) I/O overhead of BH-Dij, AH-Dij, FBin-Dij and Al4-Dij, for accessing the graph data
structure compared to only O

(

n + m
B

)

I/O operations performed by Dual-Dij for the same (see
Table 6 in the Appendix).

More information on the out-of-core performance of these implementations can be found in the
undergraduate honors thesis of David Lan Roche [27].
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Out-of-Core Performance on Gn,m with m = 2 Million ( B = 4 KB and M = 4 MB )

BH-Dij AH-Dij FBin-Dij Al4-Dij Dual-Dij
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Figure 5: Out-of-core performance on Gn,m with m fixed to 2 million.

4.5 Performance on Real-World Graphs
In Table 5 we tabulate the results for road networks of different regions of the United States.
These regional networks were downloaded from the DIMACS Challenge 9 website [1]. We chose the
physical distance between the endpoints as the weight of each edge.

The Seq-Dij implementation was the fastest followed by FBin-Dij, SBin-Dij, AH-Dij and Al4-Dij,
all four of which ran at around the same speed. As usual, all Dijkstra-Dec implementations (i.e.,
Bin-Dij, Pair-Dij and BH-Dij) were slower than all Dijkstra-NoDec implementations with BH-Dij

being the slowest. Though for smaller networks the DIMACS-Dij benchmark code was competitive
with Dijkstra-NoDec implementations, it slowed down as the networks became larger.

The road networks are almost planar and their edge distributions ensure that nodes are connected
to only nearby nodes on the plane. Since Dijkstra’s algorithm only stores fringe nodes in the heap,
the nature of these graphs keep the size of the heap very small. Empirical evidence suggests that
in our experiments the heaps were so small in size that they often fit in L2 cache. In the absence of
any significant savings in L2 misses, cache-efficient heaps did not perform significantly better than
flat-memory heaps, and other overheads in the implementations of buffer heap caused BH-Dij to
run slower than all flat-memory heap based implementations.

4.6 Experimental Results on AMD Opteron
We ran the in-core experiments on Gn,m and power-law graphs described in Sections 4.1– 4.3 on
AMD Opteron. We have included the resulting plots in Figures 12 and 13 in Appendix E. We
summarize the results below.

As on Intel Xeon, Dijkstra-NoDec-based implementations easily outperformed implementa-
tions based on Dijkstra-Dec when the graph was not too dense. Among Dijkstra-NoDec-based
implementations, the ones using cache-efficient priority queues performed better than the ones us-
ing flat-memory priority queues, and Seq-Dij ran the fastest followed by AH-Dij. However, among
Dijkstra-Dec implementations, the flat-memory versions, i.e., Bin-Dij and Pair-Dij, often out-
performed the cache-efficient BH-Dij. We believe that on Intel Xeon, BH-Dij was aided by the
prefetchers (since BH-Dij involves a large number of sequential scans) to overcome the overheads
in its implementation, and thus was able to beat Bin-Dij and Pair-Dij. But on AMD Opteron the
prefetchers are perhaps not as effective as those on Xeon, and as a result, BH-Dij ran slower.
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Running Time in Milliseconds (on Intel P4 Xeon)

Region Bin-Dij SBin-Dij FBin-Dij Pair-Dij Al4-Dij Seq-Dij BH-Dij AH-Dij DIMACS-Dij

New York City 104 90 82 156 94 76 336 91 82

San Fran. Bay Area 120 101 96 179 107 87 381 106 94

Colorado 171 139 132 242 149 121 532 149 137

Florida 441 358 336 612 379 310 1, 328 374 353

Northwest USA 540 427 420 761 456 381 1, 578 445 455

Northeast USA 738 603 579 1, 037 633 529 2, 084 614 645

California & Nevada 876 715 688 1, 266 783 645 2, 531 746 791

Great Lakes 1, 329 1, 106 1, 063 1, 958 1, 172 986 3, 779 1, 138 1, 213

Eastern USA 1, 966 1, 606 1, 563 2, 731 1, 686 1, 453 5, 150 1, 642 1, 842

Western USA 3, 698 3, 114 3, 019 5, 096 3, 210 2, 792 9, 665 3, 139 3, 654

Central USA 13, 965 11, 803 11, 854 17, 236 12, 341 11, 326 27, 450 12, 109 15, 225

Table 5: Running time on US road networks (TIGER/Line). Rows are in increasing order of region sizes ranging
from n = 0.26 × 106 and m = 0.73× 106 for New York City to n = 0.26 × 106 and m = 0.73 × 106 for Central USA.
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Appendix

A The Optimal Auxiliary Buffer Heap

This is a simplified version of the buffer heap which does not support Decrease-Keys, but supports

Insert and Delete-Min operations in optimal amortized O
(

1
B log M

B

N
M

)

I/Os each.

In contrast to the original buffer heap [11] which has log N levels, the optimal version has
log log N levels. For i ∈ [0, log log N), level i has an element buffer Bi containing at most 22i+1

elements, and an update buffer Ui containing at most 22i
updates (i.e., Insert operations). Element

buffer Bi is divided into at most 22i
segments with each segment containing between 1

2 · 22i
and

2 · 22i
elements. The segments of Bi are kept linked together in a chain such that each element in

segment j + 1 is at least as large as any element in segment j. We also keep track of the largest
element value in each segment which we call the splitter value. However, elements in a given segment
are not sorted. The updates in Ui are not kept sorted either. When applying the updates in Ui

on Bi, we first sort Ui by value, and then distribute the elements generated by Ui to appropriate
segments of Bi by scanning Ui and the sorted array of splitters of Bi simultaneously. Whenever a
segment in Bi overflows, we split it into two segments of roughly equal size. If, after applying Ui,
Bi contains more than 22i+1

elements, we move enough segments from the end of the segment-chain
of Bi (i.e., segments containing large values) to Ui+1 so that the remaining segments contain no
more than 22i+1

elements. As in the analysis of buffer heap (see, e.g., [11]), we observe that items
in update buffers typically move downward, and items in element buffers typically move upward,
and in the amortized sense, each such item undergoes a constant number of sorting steps at each

level. Therefore, each item causes a total of O
(

∑log log N−1
i=0

(

1
B logM/B

22i

M

))

= O
(

1
B logM/B

N
M

)

amortized I/O operations, which is optimal.

B Implementations of Dijkstra’s SSSP Algorithm

In our study, we considered the following three implementations of Dijkstra’s SSSP algorithm.

B.1 Dijkstra’s SSSP Algorithm with Decrease-Keys

Dijkstra’s SSSP algorithm for directed graphs [17] works by maintaining an upper bound on the
shortest distance (a tentative distance) to every vertex from the source vertex s and visiting the
vertices one by one in non-decreasing order of tentative distances (see function Dijkstra-Dec in
Figure 6). The next vertex to be visited is the one with the smallest tentative distance extracted
from the set of unvisited vertices (with finite tentative distance) kept in a heap Q. After a vertex
has been extracted from Q it is considered settled, and each of its unvisited neighbors is either
inserted into Q with a finite tentative distance or has its tentative distance updated if it already
resides in Q. Dijkstra’s algorithm performs n Insert and Delete-Min operations each and O (m − n)
Decrease-Key operations on Q.

Using a binary heap that supports Insert, Decrease-Key and Delete-Min operations in O (log n)
time and I/O operations each Dijkstra’s algorithm can be implemented to run in O ((n + m) · log n)
time and perform O ((n + m) · log n) I/Os. If a Fibonacci heap is used that supports Insert/Decrease-
Key operations in constant amortized time and I/Os, both the time and the I/O complexity of the
algorithm reduces to O (m + n · log n). However, if a buffer heap is used as the heap, Dijkstra’s
algorithm runs in O ((n + m) · log n) time, but performs O

(

m + n+m
B · log n

)

I/O operations which
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Function B.1. Dijkstra-Dec( G, w, s, d )

{Dijkstra’s SSSP algorithm [17] with a heap
that supports Decrease-Keys}

1. perform the following initializations:

(i) Q← ∅

(ii) for each v ∈ V [G] do d[v]← +∞

(iii) Insert(Q)( s, 0 )

2. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)( ), d[u]← k

(ii) for each (u, v) ∈ E[G] do

if d[u] + w(u, v) < d[v] then

if d[v] = +∞ then

Insert(Q)( v, d[u] + w(u, v) )

else Decrease-Key(Q)( v, d[u]+w(u, v) )

d[v]← d[u] + w(u, v)

Dijkstra-Dec Ends

Function B.2. Dijkstra-NoDec( G, w, s, d )

{Dijkstra’s SSSP algorithm [17] with a heap
that does not support Decrease-Keys}

1. perform the following initializations:

(i) Q← ∅

(ii) for each v ∈ V [G] do d[v]← +∞

(iii) Insert(Q)( s, 0 )

2. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)( )

(ii) if k < d[u] then

d[u]← k

for each (u, v) ∈ E[G] do

if d[u] + w(u, v) < d[v] then

Insert(Q)( v, d[u] + w(u, v) )

d[v]← d[u] + w(u, v)

Dijkstra-NoDec Ends

Figure 6: Given a directed graph G with vertex set V [G] (each vertex is identified with a unique
integer in [1, |V [G]|]), edge set E[G], a weight function w : E[G] → ℜ and a source vertex s ∈ V [G],
both functions compute the shortest distance from s to each vertex v ∈ V [G] and stores it in d[v].

is a factor of Θ (log n) improvement over the I/O complexity of Dijkstra’s algorithm with Fibonacci
heap provided the graph is very sparse (i.e., m = O (n)), and B ≫ log n which typically holds for
memory levels deeper in the hierarchy such as the disk.

B.2 Dijkstra’s Algorithm without Decrease-keys

It is straight-forward to implement Dijkstra’s algorithm using a heap that supports only Insert and
Delete-Min operations (see function Dijkstra-NoDec in Figure 6). The implementation performs
O (m) Insert and Delete-Min operations and runs in O (m · log n) time and performs O (m · log n)
I/O operations using an internal-memory heap. However, if a buffer heap or an auxiliary buffer
heap is used, the algorithm continues to run in O (m · log n) time but performs O

(

m + m
B · log m

)

I/O operations which a Θ (log n) factor improvement over the I/O bound using an internal-memory
heap if the graph is very sparse (i.e., m = O (n)) and B ≫ log n.

B.3 External-Memory Implementation of Dijkstra’s Algorithm for Undirected

Graphs

The traditional implementations of Dijkstra’s algorithm (see Figure 6) do not perform Decrease-Key
operations on vertices that are already settled, but in the process they incur Θ (1) cache misses per
edge. If one allows such Decrease-Key operations then either one must be able to identify after each
Delete-Min operation whether the deleted vertex has been settled before which again causes Θ (m)
additional cache misses, or be able to remove those extra Decrease-Key operations from the heap
before they are extracted by a Delete-Min operation.

In [25] (see also [24]) Kumar & Schwabe presented an external-memory implementation of Dijk-
stra’s algorithm for undirected graphs that allows spurious Decrease-Key operations to be performed
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Function B.3. Dijkstra-Ext( G, w, s, d )

{Kumar & Schwabe’s external-memory implementation of Dijkstra’s algorithm [25]}

1. perform the following initializations:

(i) Q← ∅, Q′ ← ∅ {Q and Q′ are both external-memory heaps; Q supports Decrease-Key,

Delete and Delete-Min while Q′ supports only Insert and Delete-Min}

(ii) for each v ∈ V [G] do d[v]← +∞

(iii) Decrease-Key(Q)( s, 0 ) {insert vertex s with key (i.e., distance) 0 into Q}

2. while Q 6= ∅ do

(i) (u, k)← Find-Min(Q)( ), (u′, k′)← Find-Min(Q′)( )

(ii) if k ≤ k′ then {a new shortest distance ( k ) has been found }

(a) Delete(Q)( u ), d[u]← k {k is the shortest distance from s to u}

(b) for each (u, v) ∈ E[G] do

Decrease-Key(Q)( v, d[u] + w(u, v) ) {relax edge (u, v)}
Insert(Q′)( v, d[u] + w(u, v) ) {guard for a possible spurious update on u}

else {k > k′: shortest distance to u′ has already been computed}

(a) Delete(Q)( u′ ), Delete-Min(Q′)( ) {remove spurious vertex u′}

Dijkstra-Ext Ends

Figure 7: Given an undirected graph G with vertex set V [G] (each vertex is identified with a unique
integer in [1, |V [G]|]), edge set E[G], a weight function w : E[G] → ℜ and a source vertex s ∈ V [G],
this function computes the shortest distance from s to each vertex v ∈ V [G] and stores it in d[v].

on the primary heap Q but uses a mechanism to remove those operations from Q using an auxiliary
heap Q′ (see Figure 7). This mechanism eliminates the need for identifying settled vertices directly
and thus saves Θ (m) cache misses. The auxiliary heap only needs to support Insert and Delete-Min
operations. The algorithm performs m Decrease-Key operations and about n+m Delete operations
on Q, and about m Insert and Delete-Min operations each on Q′.

The algorithm can be used to solve the SSSP problem on undirected graphs cache-obliviously in
O

(

n + m
B log m

)

I/O operations by replacing Q with a buffer heap and Q′ with an auxiliary buffer
heap [12].

In [12] we show how to implement Dijkstra’s SSSP algorithm for directed graphs cache-obliviously
in O

(

(n + m
B ) · log n

B

)

I/Os under the tall cache assumption. The implementation requires one ad-
ditional data structure called the buffered repository tree [8] for remembering settled vertices. Since
we performed our experiments mainly on sparse graphs for which implementations in Sections B.1
and B.2 give better bounds we have not considered this implementation.

I/O Cost of Accessing the Graph Data Structure Only

Implementation
Accessing/updating

tentative distances
Accessing adjacency lists Total

Dijkstra-Dec n + m n + m
B 2n + m + m

B

Dijkstra-NoDec n + m + D n + m
B 2n + m + m

B + D

Dijkstra-Ext none n + m
B n + m

B

Table 6: I/O complexity of different implementations of Dijkstra’s algorithm for accessing
the graph data structure only, where D (≤ m) is the number of Decrease-Keys performed by
Dijkstra-Dec and B is the block size.
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Number of Priority Queue Operations Performed

Implementation Insert Decrease-Key Delete/Delete-Min Total

Dijkstra-Dec n D n 2n + D

Dijkstra-NoDec n + D none n + D 2n + 2D

Dijkstra-Ext

Primary (Q)

none 2m n + 2m n + 4m

Auxiliary (Q′)

2m none 2m 4m

Total (Q & Q′)

2m 2m n + 4m n + 8m

Table 7: Number of heap operations performed by different implementations of
Dijkstra’s algorithm, where D (≤ m) is the number of Decrease-Keys performed by
Dijkstra-Dec.

B.3.1 Discussion on the Relative Performance of the Three Implementations.

Table 6 lists the I/O cost of accessing the graph data structure by the three implementations while
Table 7 lists the number of different heap operations performed by them.

We observe that Dijkstra-NoDec performs more I/O operations for accessing the graph data
structure as well as more heap operations compared to Dijkstra-Dec. However, Dijkstra-

NoDec can use a more efficient heap than Dijkstra-Dec since unlike Dijkstra-Dec it does not
require the heap to support Decrease-Key operations. As a result Dijkstra-NoDec is likely to run
faster than Dijkstra-Dec for in-core computations on very sparse graphs. For example, consider
running the two implementations in-core on a large graph with m = Θ (n). In that case, D ≤ kn

for some constant k and log n > B, and Dijkstra-NoDec will run faster than Dijkstra-Dec

provided it uses a heap that runs at least 1+ k times faster than the heap used by Dijkstra-Dec.
The external-memory implementation Dijkstra-Ext performs the smallest number of I/O op-

erations for accessing the graph data structure than the other two implementations. However, this
reduction in graph operations comes at the cost of considerably increasing the number of heap op-
erations performed. For example, for Gn,m with average degree 8 for which D ≤ n typically holds,
Dijkstra-Ext performs at least 6 times more heap operations than the other two implementations.
However, if Dijkstra-Ext uses I/O-efficient heaps such as the buffer heap and the auxiliary buffer
heap, and the block size B is sufficiently large then the I/O cost of performing the heap opera-
tions will no longer dominate its running time. In such a scenario (e.g., out-of-core computations)
Dijkstra-Ext will outperform the other two implementations because of the relatively smaller
number of graph operations it performs.

C Graph Classes Considered

We ran our experiments on three graph classes. The synthetic graphs were generated using gener-
ators (PR [31], GT [5]) contributed by 9th DIMACS Implementation Challenge participants [1].

Undirected Gn,m (PR [31]). The Gn,m distribution chooses a graph uniformly at random from
all graphs with n labeled vertices and m edges [18]. Such a graph can be constructed by choosing
m random edges with equal probability (and with replacement) from all possible (n× n− n) edges
(the PR-generator avoids choosing self-loops).

Directed Power-Law Graphs (GT [5]). The GT-generator generates random graphs with
power-law degree distributions and small-world characteristics using the recursive matrix (R-MAT)

18



graph model [9]. The model has four non-zero parameters a, b, c and d with a + b + c + d = 1.
Given the number of vertices n and the number of edges m, the GT-generator starts off with an
empty n × n adjacency matrix for the graph, recursively divides the matrix into four quadrants,
and distributes the edges to the top-left, top-right, bottom-left and bottom-right quadrants with
probabilities a, b, c and d, respectively. It has been conjectured in [9] that many real-world graphs
have a : b ≈ 3 : 1, a : c ≈ 3 : 1 and a ≥ d, and accordingly we have used a = 0.45, b = c = 0.15
and d = 0.25 which are also the default values used by the GT-generator. The resulting graph is
directed.

Undirected U.S. Road Networks ([34]). These are undirected weighted graphs representing
the road networks of 50 U.S. states and the District of Columbia. Edge weights are given both
as the spatial distance between the endpoints (i.e., the great circle distance in meters between the
endpoints) and as the travel time between them (i.e., spatial distance divided by some average speed
that depends on the road category). Merging all networks produces a graph containing about 24
million nodes and 29 million edges.

In Appendices D and E we present experimental results on the following additional graph classes.
All the following graphs are undirected.

Regular Graphs (PR [31]). A graph is d-regular if all its vertices have the same degree d.

Grid Graphs (PR [31]). We used
√

n×√
n grid graphs with uniformly distributed edge-weights.

Geometric Graphs (PR [31]). This graph class is a natural alternative to the classical Gn,m

class. In contrast to Gn,m where each edge is chosen independently and with equal probability, a
random geometric graph is constructed by randomly distributing a set of vertices over some metric
space and then connecting two vertices with an edge if the distance between them is sufficiently
small. Given the number of vertices n, we used the PR-generator to generate a random geometric
graph by distributing these n points randomly in the unit square and connecting two vertices if
they are within distance 1.5√

n
. The average degree of the resulting graph is about 7. The weight of

an edge connecting two vertices corresponds to the distance between them.

Layered Graphs (MPI [2]). A d-layer random graph on n nodes consists of d+1 levels with level
0 containing a single node (called the source node) and each of the remaining d levels containing

exactly (n−1)
d nodes (assuming d divides n− 1) [2]. The source node at level 0 is connected to every

node at level 1, and for 1 ≤ i < d each node at level i is connected to 3 random nodes at level
i + 1. The nodes in each level are connected with a Hamiltonian cycle. All edges are directed and
inter-level edges are directed from lower to higher levels.
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D Additional Experimental Results on Intel P4 Xeon
In-Core Performance on d-regular Graphs (on Intel P4 Xeon)

BH-Dij AH-Dij Bin-Dij SBin-Dij FBin-Dij Pair-Dij Al4-Dij Seq-Dij DIMACS-Dij

(a) Absolute Runtimes with d = 8
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Figure 8: In-core performance of algorithms on d-regular graphs (on Intel P4 Xeon).

In-Core Performance on
√

n × √
n Grid Graphs (on Intel P4 Xeon)
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Figure 9: In-core performance of algorithms on
√

n ×√
n grid graphs (on Intel P4 Xeon).
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In-Core Performance on Geometric Graphs in a Unit Square Connecting All Nodes within Distance 1.5√
n

(on Intel P4 Xeon)
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(a) Absolute Runtimes
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Figure 10: In-core performance of algorithms on geometric graphs in a unit square connecting all nodes
within distance 1.5

√

n
(on Intel P4 Xeon).

In-Core Performance on Layered Graphs (on Intel P4 Xeon)
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(a) Absolute Runtimes with log2 n Layers
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(b) Absolute Runtimes with n = 220 ≈ 1 Million
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(d) Runtimes (w.r.t. SBin-Dij) with n = 220 ≈ 1 Million
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Figure 11: In-core performance of algorithms on layered graphs (on Intel P4 Xeon).
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E Experimental Results on AMD Opteron
In-Core Performance on Gn,m (on AMD Opteron 250)
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Figure 12: In-core performance of algorithms on Gn,m (on AMD Opteron 250).

In-Core Performance on Power-Law Graphs (on AMD Opteron 250)
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(b) Absolute Runtimes with m = 1 Million
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(d) Runtimes (w.r.t. SBin-Dij) with m = 1 Million
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Figure 13: In-core performance of algorithms on power-law graphs (on AMD Opteron 250).
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In-Core Performance on d-regular Graphs (on AMD Opteron 250)
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(b) Runtimes (w.r.t. SBin-Dij) with d = 8
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(b) Absolute Runtimes with n = 220 ≈ 1 Million
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(d) Runtimes (w.r.t. SBin-Dij) with n = 220 ≈ 1 Million
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Figure 14: In-core performance of algorithms on d-regular graphs (on AMD Opteron 250).

In-Core Performance on
√

n × √
n Grid Graphs (on AMD Opteron 250)

BH-Dij AH-Dij Bin-Dij SBin-Dij FBin-Dij Pair-Dij Al4-Dij Seq-Dij DIMACS-Dij

(a) Absolute Runtimes

ÿ����
�ÿ����

�� � �� � ��� � ��� � ��� � �ÿ�� � �ÿ�� � �ÿ�� � ���� �	
��
� �� �
����
������������ 
(b) Runtimes w.r.t. SBin-Dij

!"#!"$%"&%"'&"!&"#&"$("&("'
(& ) '# ) %&$ ) &*' ) *%& ) %!&# ) &!#$ ) #!+' ) $%+& ),-./01 23 401567089:;<=>?@AB9B< BCD=;EF B

Figure 15: In-core performance of algorithms on
√

n ×√
n grid graphs (on Intel P4 opteron).
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In-Core Performance on Geometric Graphs in a Unit Square Connecting All Nodes within Distance 1.5√
n

(on AMD Opteron 250)
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(a) Absolute Runtimes
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Figure 16: In-core performance of algorithms on geometric graphs in a unit square connecting all nodes
within distance 1.5

√

n
(on Intel P4 opteron).

In-Core Performance on Layered Graphs (on AMD Opteron 250)
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(a) Absolute Runtimes with log2 n Layers
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(b) Runtimes (w.r.t. SBin-Dij) with log2 n Layers
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(b) Absolute Runtimes with n = 220 ≈ 1 Million
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(d) Runtimes (w.r.t. SBin-Dij) with n = 220 ≈ 1 Million
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Figure 17: In-core performance of algorithms on layered graphs (on AMD Opteron 250).
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