Vol. 00 no. 00 2005
Pages 1-8

A Dynamic Data Structure for Flexible Molecular

Maintenance and Informatics

Chandrajit Bajaj *, Rezaul Alam Chowdhury ! and Muhibur Rasheed !
IDepartment of Computer Science, University of Texas at Austin

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: We present the “Dynamic Packing Grid” (DPG), a
neighborhood data structure for maintaining and manipulating flexible
molecules and assemblies, for efficient computation of binding
affinities in drug design or in molecular dynamics calculations.
Results: DPG can efficiently maintain the molecular surface using
only linear space and supports quasi-constant time insertion, deletion
and movement (i.e., updates) of atoms or groups of atoms. DPG also
supports constant time neighborhood queries from arbitrary points.
Our results for maintenance of molecular surface and polarization
energy computations using DPG exhibit marked improvement in time
and space requirements.

Availability: http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml
Contact:

1 INTRODUCTION

Many human functional processes are mediated through thg)

interactions amongst proteins, a major molecular corestitwof

Accessibility to the solvent, namely the solvent accessthirface
(SAS), can be defined as the locus of the center of a ‘probereph
as it contacts the molecular surface. Usually, the ‘probe water
molecule modeled as a sphere with radiusi1 Another definition
for molecular surface is as a set of contact and re-entraches
(Richards [1977]), commonly known as the Solvent Contacizge
(SCS), or Solvent Excluded Surface (SES) or simply the nutdec
surface.

While a number of techniques have been devised for the static
construction of molecular surfaces (see e.g. Bajaj et 8D9B] for
a brief review), not much work has been done on neighborhood
data structures for the dynamic maintenance of moleculdaces
under conformational changes and domain movements. Bhjaj e
al. considered limited dynamic maintenance of moleculafases
based on Non Uniform Rational BSplines (NURBS) descrifgtion
for the patches (Bajaj et al. [2003]). Eyal and Halperin prasd
an algorithm based on dynamic graph connectivity that gsitte
union of balls molecular surface after a conformationalngeain
(log® n) amortized time per affected (by this change) atom (Eyal
and Halperin [2005a,b]). In this paper, we present Eiymamic

our anatomical makeup. A computational understanding e$e¢h Packing Grid (DPG), — a space and time efficient neighborhood

interactions provides important clues for developing dpeutic

interventions related to diseases such as cancer and rhetabo

data structure that maintains a collection of balls (atam8}space
allowing a range of spherical range queries and updatesafod r

disorders. Computational methods such as automated dpcking.,ing of flexible protein-protein interactions (Bajajadt [2010,
through shape and energetic complementarity scoring aim t%OOQa]).

gain insight and predict such molecular interactions. Dugk
(Bajaj et al. [preprint], Gilson and Zhou [2007]) involves

induced complementary fit between flexible protein intezfacrhe
flexible docking solution space consisting of all relativesitions,
orientations and conformations of the proteins is searclzedi
each putative docking is evaluated using combinationsteffiace
complementarity scoring and atomic pair-wise charged @uabic

interactions. Also, since proteins function in predomihawatery

(solvent) environment, the protein solvation energy alsygan
important role in determining inter-molecular binding aiffies

“in-vivo” for drug screening, as well as in molecular dynami
simulations and in the study of hydrophobicity and proteidihg.

When computing the solvation energy for molecules, it i€i@iuto

correctly model and sample the molecular surface.

The efficiency of the data structure results from the assiampt
that the centers of two different balls in the collection rmatn
come arbitrarily close to each other, which is a natural eriypof
molecules. A consequence of this assumption is that anyrbtie
collection can intersect at most a constant number of oth#s.b
On a RAM with w-bit words, ourDPG data structure can report
all balls intersecting a given ball or withi® (7...) distance from
a given point inO (log log w) time with high probability (w.h.p.),
wherer,.q. is the radius of the largest ball in the collection. It can
also answer whether a given ball is exposed (i.e., lies ommien
boundary) or buried within the same time bound. At any time th
entire union boundary can be extracted from the data steidtu
O (m) time in the worst-case, whene is the number of atoms
on the boundary. There are existing techniques like (Weitel.

The most common model for molecules is a collection of atoms[1999 1998]), which can compute/approximate the exposems

represented by spherical balls, with radii equal to theirder Waals

and the surface area in the same time bound, but do not allow

radii (Mezey [1993], Duncan and Olson [1993]). The surfate o dynamic updates. On the other hand, DPG supports updages (i.

the union of these spheres is known as the van der Waals surfac.

*Corresponding Author

insertion/deletion/movement of a ball) @ (log w) time w.h.p. The
data structure uses linear space. As we show HeR&s can be

© Oxford University Press 2005.

Bajaj et al

used to maintain both the van der Waals surface and the SCS ofla general, a ball in a collection of balls in 3-space can intersect

molecule within the performance bounds mentioned abbDWRGs
can also be used to enable fast energetics calculation liglyrap
locating the atoms close to each sampled integration pdititieo
SCs.

Besides Protein docking and Molecular Dynamics, the neigidnd
query and surface maintenance 86fPG also has potential
applications in interactive computer aided design (CADj)Igo
developed forde novodrug design, protein folding, n-body
simulations etc. All these applications often need to handl
extremely large number of atoms or points.

2 THE DYNAMIC PACKING GRID DATA
STRUCTURE

Let M = {Bu,..., B} be a collection of: balls in 3-space with
radiiry,...,r, and centers ati, ..., c,. L€t rmae = max; {r;}
and letd,,i» = min, j {d(ci, ¢;)}, whered(c;, ¢;) is the Euclidean
distance betweesy andc;.

We describe th@acking grid data structuréor maintaining M/
efficiently under the following set of queries and updates.

Queries

1. INTERSECT(c,r): Returns all balls intersecting = (c, 7).

2. RANGE(p,d): Returns all balls with centers within distanée
of pointp. We assume that = O(rmaz).

3. EXPOSED(c,r): Returnstrue if the ball B = (¢,7) € M
contributes to the boundary of the union of the balldin

4. SURFACE(): Returns the outer boundary of the union of the
balls in M. If there are multiple disjoint outer boundaries
defined byM, the routine returns one of them.

Updates
1. ADD(¢, r): Adds a new ballB = (c, r) to the setM.
2. REMOVE(¢, r): Removes the balB = (¢, r) from M.

3. MoVE(¢1, c2, r): Moves the ball with centet; and radius-
to a new centets.

We assume that the following holds at all times.

ASSUMPTION2.1. If dmin is the minimum Euclidean distance
between the centers of any two ballshify thenr,,a. = O (dmin)-

TIME COMPLEXITY (W.h.p.)
ASSUMING ASSUMING
OPERATIONS | g = O (loglogw) | ta = O (loglogn)
loc
ty = O (logw) tu:O(logoign)
RANGE, INTERSECT]
EXPOSED O (log log w) O (loglogn)
ADD, REMOVE, 1
MoVE O (logw) o (mﬁig n)
SURFACE O (#balls on surface(worst-case)

ASSUMPTIONS (i) RAM with w-bit Words,
(4¢) Collection ofn Balls, (#i) 6 = O (rmaz) and,
(iv) Tmaz = O (min. dist. between two baljs
Table 1. Time complexities of the operations supported by the pacyiid

data structure.

© (n) other balls in the worst case, and it has been shown by
Clarkson et al. [1990] that the boundary defined by the union o
these balls has a worst-case combinatorial complexite Qfﬂ)
However, if M is a “union of balls” representation of the atoms
in a molecule, then assumption 2.1 holds naturally (Hafparid
Overmars [1994], Varshney et al. [1994]), and as proved Hpétm

and Overmars [1994], both complexities improve by a facfon.o
The following theorem (see (Bajaj et al. [2010]) for a prosfates

the consequences of the assumption.

THEOREM 2.1. (Theorem 2.1 in (Halperin and Overmars
[1994]), slightly modified) Each ball inM intersects at most
216 - (Tmaz/dmin)® O (1) other balls in M and the
combinatorial complexity of the boundary of the union of ltladls
isO ((rmam/d,mn)3 n) =0 (n).

Therefore, as Theorem 2.1 suggests, one should be abledtetidn
more efficiently if assumption 2.1 holds. The efficiency of data
structure, listed in Table 1, also depends partly on thigragsion.

2.1 Preliminaries

Before we describe our data structure we present some dafiit
in order to simplify the exposition.

DEFINITION 2.1 (-grid, grid-cell, grid-line and grid-plane)An
r-gridis an axis-parallel infinite grid structure in 3-space castgig
of cells of size* x r x r (r € R) with theroot (i.e., the corner with
the smallest:, y, z coordinates) of one of the cells coinciding with
the origin of the Cartesian coordinate axes. The grid ceditthas
its root at Cartesian coordinategur, br, cr) (wherea, b, c € Z) is
referred to as théa, b, ¢, r)-cell or simply as théa, b, ¢)-cell when
r is clear from the context. Th@, ¢, r)-line (whereb, ¢ € Z) in an
r-grid consists of allx, y, z, r)-cells withy and z fixed tob ande¢,
respectively. Théc, r)-plane(wherec € Z) in anr-grid consists of
all (z,y, 2z, r)-cells withz fixed toc.

The proof of the following lemma is straight-forward.

LEMMA 2.1. If M is stored in the2r,..-grid G and if
Assumption 2.1 holds, then
(4)
(i)
(i)

Each grid-cell inG contains the centers of at masSt(1) balls.
Each ball inM intersects at most 8 grid-cells i@.

For a given ballB € M with center in grid-cellC', the center
of each ball intersecting3 lies either inC' or in one of the 26
grid-cells adjacent ta”'.

The number ofion-emptygrid-cells inG is at mostn, and the
same bound holds for grid-lines and grid-planes.

(i)

At the heart of our data structure is a fully dynamic one disiemal
integer range reporting data structure for word RAM desxtiby
Mortensen et al. (Mortensen et al. [2005]). Their data $tmec
maintains a sefS of integers under updates (i.e., insertions and
deletions), and answers queries of the formmeQy(l, ») which
reports any or all points ir$' in the interval[l, k]. The following
theorem (proved in Mortensen et al. [2005]) summarizes the
performance bounds of the data structure which are of istteece

us .

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

THEOREM 2.2. On a RAM withw-bit words the fully dynamic
one dimensional integer range reporting problem can beexbin
linear space, and w.h.p. bounds®f(¢.,) and O (¢, + k) on update
time and query time, respectively, whérés the number of items
reported, and

(4) tu = O(logw) and t, = O (loglogw) using the data
structure in Mortensen et al. [2005]; and

(i) tu = O (logn/loglogn) andt, = O (loglogn) using the
data structure in (Mortensen et al. [2005]) for smafl and a
fusion tree (Fredman and Willard [1993]) for large.

2.2 Description (Layout) of the Packing Grid Data
Structure

We are now in a position to present tb®G data structureDPG
represents the entire 3-space ara,..-grid, and maintain the
non-empty grid-planes, grid-lines and grid-cells. Notatth grid
component (i.e., cell, line or plane) is non-empty if it cins the
center of at least one ball iv/. The data structure can be described
as atree with 5 levels: 4 internal levels (levels 3, 2, 1 andr@) an
external level of leaves (see Figure 1). The descriptioraohdevel
follows (further details are available in (Bajaj et al. [20}).

The Leaf Level “Ball” Data Structure (DPG_;). The data
structure stores the center = (cq,cy,c.) and the radius- of
the given ballB. It also includes a Boolean flageposed which

is set totrue if B contributes to the outer boundary of the union
of the balls inM, andfalseotherwise. The 3D arrangement of the
spheresB U N (B), whereN(B) is the set of balls intersecting,
divides the boundary oB into spherical patches, some of which
are exposed, that is they contribute to the union boundaeystare
all exposed patches (if any) of in a setF’ of size© (1), and with
each patchf € F we store pointers to the data structure<of1)
other balls that share edges withand also the identifier of the
corresponding patch on each ball.

/@\ "y
ﬁ ;ﬁN ﬁ P
D 5 6 - 63— 65— lines
A A A A /\ (level 1)
-6 -6 L = =] -8 &6 cells
AMATATTA T [temo

95 balls

(leaves)

Fig. 1. Hierarchical structure dDPG.

The Level 0 “Grid-Cell” Data Structure (DPGy). The “grid-cell”
data structure stores the root (see Definition 241}, ¢) of the grid-
cell it corresponds to. A grid-cell maintains a list of p&rd to data
structures of th& (1) balls whose centers lie inside the cell. Since
we create “grid-cell” data structures only for non-emptidgrells,
there will be at most (and possibly« n) such data structures.

The Level 1 “Grid-Line” Data Structure (DPG;). We create a
“grid-line” data structure for &b, ¢)-line provided it contains at
least one non-empty grid-cell. Ea¢h, b, c¢)-cell lying on this line

is identified with the unique integer, and the identifier of each

such non-empty grid-cell is stored in an integer range $edata
structureRR as described in Section 2.1 (see Theorem 2.2). We
augmentRR to store the pointer to the corresponding “grid-cell”
data structure with each identifier it stores.

The Level 2 “Grid-Plane” Data Structure (DPG2). A “grid-
plane” data structure is created foreglane provided it contains
at least one non-empty grid-line. Similar to the “grid-lingata
structure it identifies each non-empty, c)-line lying on thec-
plane with the unique integér and stores the identifiers in a range
reporting data structurBR.

The Level 3 “Grid” Data Structure (DPGs3). This data structure
maintains the non-empty grid-planes in an integer rangertieygy
data structuré? R in a similar way where eactrplane is identified
by the unique integer. The “grid” data structure also stores a
surface-rootpointer which points to the “ball” data structure of an
arbitrary exposed ball i/ .

We have the following lemma (proved in (Bajaj et al. [201G}))
the space usage of the data structure.

LEMMA 2.2. Let Assumption 2.1 hold. Then the packing grid
data structure storing/ usesO (n) space.

2.3 Queries and Updates

The queries and updates supported by the data structure are
implemented as follows.

2.3.1 Queries

(1) RANGE(p, 0): Letp = (pz,py,p-). First we invoke the
function QUERY((,h) of the range reporting data structurfeR
under the level 3 grid data structure with= | (p. — §)/(27maz) |
andh = [(p- + 6)/(2rmaz)|. This query returns a sét; of non-
empty c-planes represented as pointdfs to level 2 grid-plane
data structure. Then, for eaetplane, we perform similar queries
under the corresponding level 2 data structure to obtainstie
S1 of non-empty grid-lines. Again, querying under each g |
data structure produces the $gtcontaining non-empty grid-cells.
Finally, for each cell inSy, we collect and return each ball whose
center lies within distancé from p.

The correctness of the function follows trivially since itegies a
region in 3-space which includes the region covered by adfall
radiusé centered ap. Also, assumingrmaee = O (dmin) (i.€.,
Assumption 2.1) and = O (rmaz), the complexity reduces to
O (tq). Details can be found in (Bajaj et al. [2010]).

(2) INTERSECT(¢, r): Let B = (¢, r) be the given ball. First, we
call RANGE(¢, 7 4+ rma=) @and collect the output in sét. From S
we remove the data structure of each ball that does not et
and return the resulting (possibly reduced) set.

The correctness follows from basic geometry and the caresst
of RANGE. Under Assumption 2.1 this function runsdn(t,) time.
(3) EXPOSED(¢, r): Let B = (c¢,r) be the given ball.
We locateB’s data structure by calling RNGE(c, 0), and return
the value stored in it@xposedfield. Clearly, the function takes
O (tq + (Pmaz/dmin)®) time (w.h.p.) which reduces t® (t,)
under Assumption 2.1.

Bajaj et al

(4) SURFACE(): Thesurface-rootpointer under the level 3 “grid” 2.4 Molecular Surface Maintenance Using DPG

daFa structure points to the “ball” data structure of a Balbn the |, this section, we briefly describe applications of the jraglgrid
union boundary ofi/. We scan the sef of exposed faces d8, and gata structure for efficient maintenance of molecular sesa
using the pointers to other exposed balls storedl’ iwe perform a

depth-first traversal of all exposed ballslifh and return the exposed 5 4 1 Maintaining van der Waals Surface of Molecules

faces on gach such ball. Let be the numt?er of balls contributing gach atom is simply treated as a ball with a radius equal toahe
to the union boundary oM. Then according to Theorem 2.1 the yer Waals radius of the atom (see (Batsanov [September Pf1]

. 3 . .
depth-first search taked ((rmaz/dmin)” - m) time in the Worst 4 jist of van der Waals radius of different atoms).
case which reduces t0 (m) under Assumption 2.1.

2.4.2 Maintaining Lee-Richards (SCS/SES) Surface
For the efficient maintenance of the Lee-Richards surface of

2.3.2 Updates molecule within the performance bounds given in Table 1, we
(1) ADD(¢, 1): Lete = (cu, ¢y, c.) and letc, = { cu J,where maintain two packing grid data structurd8PG and DPG’. The

u € {z,y,z}. LetG be the grid data structure. & does not exist,
then create and initializ&'. Then, first we create and initialize a
data structure3 and add taV/. Then, we query the range reporting
data structur&;. R R to locate the data structure for the ¢, -plane.

If P does not exist, create and initializg and insert, along with

a pointer toP into G.RR. Similar steps are taken for the grid-line
and then the grid-cell data structures to identify tHg ¢, ¢,)-cell

C and addB to the setC.S. We then use theNTERSECTquery

2rmaz

DPG data structure keeps track of the patches on the Lee-Righard
surface, andDPG’ is used for detecting intersections among
concave patches.

Before adding an atom tDPG, we increase its radius by,
where r, is the radius of the rolling solvent atom. THaPG
data structure keeps track of all solvent exposed atoms, dle
atoms that contribute to the outer boundary of the union ee¢h
enlarged atoms. Theorem 2.1 implies that each atonDRG

to identify A/(B), the set of balls intersecting. And finally we contributesO (1) patches to the Lee-Richards surface, and the

update the arrangement of each ballBnu A (B), list exposed
faces on each ball and update theface-rootpointer if necessary.
Observe that the introduction of a new ball may affect théasar
exposure of only the balls it intersects (by burying sonhegél
them partly or completely), and no other balls. Hence, updat
the arrangements of the balls iU N (B) (in addition to those in
earlier steps) are sufficient to maintain the correctneskeéntire
data structure. The BD function terminates irO (t.,) assuming
rmaz = O (dmin). Detailed analysis is in (Bajaj et al. [2010]).

(2) REMOVE(¢, r): This function is symmetric to the B0
function, and has exactly the same asymptotic time contglexi
Hence, we do not describe it here.

insertion/deletion/movement of an atom results in localnges of
only O (1) patches. We can modifpPG to always keep track of
where two or three of the solvent exposed atoms intersedtpace
we know the atoms contributing to a patch we can easily coenput
the patch inD (1) time (Bajaj et al. [2003]).

The Lee-Richards surface can self-intersect in two waysa
toroidal patch can intersect itself, afd) two different concave
patches may intersect (Bajaj et al. [2003]). The self-saetions of
toroidal patches can be easily detected flDR(G. In order to detect
the intersections among concave patches, we maintain thersef
all current concave patchesDPG’, and use theNTERSECTquery
to find the concave patch (if any) that intersects a given aesc
patch.

(3) MOVE(c1, c2, 7): This function is implemented in the obvious 2.5 Energetics Computation using DPG
way by callingREMOVE (c1, r) followed by ADD(¢z, 7). Ithas Generally, the solvation energyso of a molecule is decomposed
the same asymptotic complexity as the two functions above. into three components, namel§cav - the energy to form cavity

in the solvent,Gqw - the solute-solvent van der Waals interaction

Therefore, we have the following theorem. energy, andGpo - the polarization energy or the electrostatic

potential energy change due to the solvation. The first twmgse
Geav @andGygy are linearly related to the solvent accessible surface

THEOREM2.3. Let M be a collection of, balls in 3-space as ~ areaflsas. The last term,Gipo), can be approximated using the
defined in Theorem 2.1, and let Assumption 2.1 hold¢}-endt, Generalized Bori{GB) theory as introduced by Still et al. [1990].
be as defined in Theorem 2.2. Then the packing grid data sieict

storing M on a word RAM: Gpol = —% > Gk TR (2.1)
(i) usesO (n) space; i AT+ Riljem T
(7) supports updates (i.e., insertion/deletion/movement b&l§ wherer = 1 — L, andR; is the effective Born radius of atoir(see
in O (t.) time w.h.p; Figure 2(a)). Either of Equations 2.2 and 2.3 can be usedsasaté
(#7) reports all balls intersecting a given ball or withi® (7maz) approximation ofR;! (Bajaj and Zhao [2010]).

distance from a given point i@ (¢,) time w.h.p., where ..

is the radius of the largest ball in/; and Rl 1 (re — %) -n(rg) 2.2)
P = s v Ve .
reports whether a given ball is exposed or burieddn(t4) dm e~ e — x|
time w.h.p., and returns the entire outer union boundaryobf
in O (m) worst-case time, where is the number of balls on _3 1 (re —xi) -n(rg)
R =— : (2.3)
the boundary. 4 Ire — xi|6

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

where ther.'s are N carefully chosen integration points on the
boundary of the molecule, and,. is a weight assigned to; to
ensure higher order of accuracy for smil(see Figure 2(b)). Other
methods have used volume integrals (Tjong and Zhou [2007]) o
integrals over bonded and non-bonded atom-pairs (Qiu Et3971])

to approximate Born radii.

(b)

Fig. 4. (a) A simple 2D example depicting definition of near, mediuml a
far atoms (centers shown as green dots) from a particulegriation point
x;. In the example, 2 atoms are near, 7 are medium and 3 are Yakftéo
clustering using hierarchic&®PG, each cell contains a pseudoatom (centers
shown as blue circles). Now 2 atoms are near, 3 clusters ad@imend 2
clusters are far.

@ (®) SeparateDPG data structures are used to store the atoms,

Fig. 2. () G is computed based on Born radii and charges of each atoni'megr&_ltion points, pseudo-at_oms, and pseudo-.integramints.
pair, (b) Born radii of an atom can be approximated based tyiaton =~ DPG is used both for identifying the near, mid-way, and far

points, shown as red dots, sampled on the surface. atoms/pseudoatoms as well as for clustering (see (Bajaj.et a
The non-polar term&cay and Gyaw can be computed directly [2010]) for details).
from the solvent accessible surface (SAS) af@gas of the Assuming thatmz is an upper bound on the number of atoms

molecule. The SAS of the molecule can be extracted {m log w) within distances from any given point in space, the time spent
time andO () space using ®PG data structure, wher@ is the for computing allR;’s is O (N loglogw + Nmy) which reduces
number of atoms in the molecule. TR¥G data structure outputs to O (N loglogw) sincermy is a constant (though could be quite
the SAS as a set of spherical and toroidal patches, and wemdd Uarge) for constan®. Once all R;’s are computedGpo can be
the area of each patch in order to calcul@tas. computed using equation 2.1@ () time in the worst case. The

) o . space usage i9 (m + Nmg) which isO (m + N) for constan®.
2.5.1 Discrete Approximation of Born Radiiin order to
approximate the polar terni/,o first we need to approximate
the Born radiusR; of each atomi. We compute the SES as A- 2.6 Maintenance of Flexible Molecules
spline patches, produce a quality improved meshing of thiacel
and sample integration points and their weights followiBgj&j
and Zhao [2010]) (see Figure 3), and then use Equation 2.

to apprquateh;’,i. But observe that the direct computation of ,nq interfaces as connectors. Domains may move with respect
Ri requiresO(n”) time, wheren is the number of atoms and , each other through motions applied to the connectors. Two
assuming that thg number of sa.mpled |ntegrat.|0n PO',m,SSG al domains connected by at least one connector may underginigend
O(n). .Howev.er, since the.terms in t.he summation diminish Very notion applied to some hinge point around some hinge axiself
fast Wlt_h the increase of distance, distance cutoffs canseel to are connected by only one connector, a twisting motion caa al
approximate it. be applied to the connector by updating torsion angles aiting
backbone. If two domains share a large interface area thgy ma
undergo a shearing motion with respect to each other. Haweve
though domains are mostly rigid they may have flexible loaps a
side-chains on their surfaces.

We maintain a separate packing grid data struc®ydor each
domainD;. If two domainsD; andD; are connected and< j, the

@ (®) © setS;; of all connectors between these two domains are included in

Fig. 3. Gaussian integration points (c) on the surface of nuclearsport ~ 7i» @nd @ transformation matrix/;; is kept withP; that describes
factor 2 (1A2K) Computed after generating a smooth surf@dr@m the the exact |Ocati0n and Orientation Of the gr|d StrUCtUrgD(})f\Nith
collection of balls model (a). respect to that of?;. Whenever some motion is applied to the

Given the set of atomsl, the set of integration point® sampled ~ connectors irb;;, we updateP; in order to reflect the changes in the
on the surface, and two user defined parameteds> 0, for every ~ locations of the atoms in these connectors, and also updaten
integration pointy € Q, we place each atom € A in one of the order to reflect the new relative position and orientatioPpfwith
following three categories based on the distaddeetweeng and ~ fespect taP;. The complexities of these operations are presented in
the center ofu: (1) near (d < ¢), (2) mid-way(d < d < ag), thefollowinglemma proved in (Bajaj et al. [2010]).
and (3) far (ad < d). Figure 4 shows an example in 2D. For the
near categories., the computation is performed exacthytheomid- LEmMMA 2.3. The surface of a flexible molecule decomposed into
way category, clusters of atoms and integration points @eed (mostly) rigid domains can be maintained using packing giath
as pseudo-atoms and pseudo-integration points and herag@sec structures so that
computation is performed. For the far category a single ameer
distance and a single average weighted normal is used fpaai (7) updating for a bending/shearing/twisting motion applied
of clusters. between two domains take&d (1 + mlogw) time (w.h.p.),

Suppose we are given a flexible molecule decomposed intoadeve
mostly) rigid domains which interact either through coctee
hain segments or large interfaces. We refer to these chgiments

Bajaj et al

wherem is the number of atoms in the connectors between the Table 3 reports the performance of update function®BfG's
two domains; range reporting data structure. Four different macromdéescwere
(ii) updating the conformation of a flexible loop or a side-chain o USe€d, and for each of them all atoms were first randomly iedert
the surface of a domain tak€s (i log w) time (w.h.p.), where into the data structure followed by the random deletion bé@ims.
1 is the number of atoms affected by this change; and The reported insertion and deletion times are averagesuofsiach
independent runs. The average time for a single insergédetidn

i11) generating the surface of the entire molecule requires
(é4i) g 9 QuIrS,as never more than .

O (mlogw) time (w.h.p.), wheren is the sum of the number
of atoms on the surface of each domain.

MOLECULE NUMBER | AVG. INSERT| AVG. DELETE
(PDB HLE) OF ATOMS| TIME (uS) TIME (uS)
GroEL (1GRL) 29,274 3.3 4.0
3 RESULTS AND DISCUSSIONS RDV P8 (LUF2: P)| 193,620 3.9 4.4
The performance of the basic functions BPG are reported RDV P3 (1UF2: A)] 459,180 3.9 4.6
in Section 3.2. Sections 3.3 and 3.4 respectively analyzes | Dengue (1K4R) | 545,040 4.0 4.5
performance of DPG in molecular surface maintenance and
energetics calculation. Table 3. Insertion and deletion times of our current packing grid

implementation. The results are averages of 4 runs. In aachall atom
centers are randomly inserted into the data structurewellbby random

3.1 Implementatlon Details deletion of all atom centers.

In our current implementation, instead of the 1D integergean

reporting data structure presented in (Mortensen et alOgR0

we have implemented a much simpler data structure that stsppo 3.3 Performance of Molecular Surface Maintenance

both updates and distance queries in expeCldibg w) time and e compared the performance BPG with the 3D hashing used
uses linear space. Sineeis usually not more than 64, for most py Eyal and Halperin [2005a,b] in producing and maintaining
practical purposes @ (log w) query time should be almost as good molecular surfaces. We used the same implementation of 3D
asO (log log w) time. This data structure builds on binary search arrangement and surface generation (Eya| and Ha|per|r5mmo
trees, dynamic perfect hashing, and y-fast trees. Howéwstlead put switched between the two different range query datastres.

of dynamic perfect hashing we used “cuckoo hashing” (Rasmusye measured the space and time requirements for generating t
and Flemming [2004]) since it is much simpler, and still sup® surface of various macromolecules. To verify scalabilityltiple
lookups inO (1) worst-case time, and updates in expect2dl) chains of the same protein were inserted. For virus capsisis,

time. multiple chains are inserted, not only the number of atoroeses
but also the overall structure becomes sparser. The resfuttgs
3.2 Performance Analysis of Updates and Queries experiment are reported in Table 4. It is clear that the space

To measures the performance of the update and query fusctiorf€duirement of theDPG is linear in the number of atoms. The
of DPG, we use more than 180k quadrature points, generated fofifference in space requirement becomes more pronounced fo
energetics computations by sampling uniformly at randonthen larger and sparser structures. Also, its running times@mgarable
surface of PSTI (a variant of human pancreatic trypsin ibib with that of 3D hash. Though 3D hash performs insertions and
1HPT.pdb) after protonation using PDB2PQR (Dolinsky et al.dueries in optimal constant time, using too much memory can
[2004]). Experiments are performed on a 3 GMzdual-core (only ~ adversely affect the running time as well. For example, dase
one core was used) AMD Opteron 2222 processor with 4 GB RAM.0f RDV P3 with 4 chains, 3D hash operations run slower D&
Please refer to (Bajaj et al. [2010]) for details of the eipent. range reporting operations. We believe that this slowd@duk to
Table 2 shows the results of this experiment. The time reguis ~ Page faults caused by excessive space requirement of 3D hash

O (log w + K) whereK is the size of the output or in this case, the

number of points returned. The last column of the table shtbas 3.4 Performance of Born Radii and Polarization

as the point set becomes denser, the efficiency of the datst Energy Calculation

remains almost the same. A parallelized implementation of the approximation scheme

described in Section 2.5.1 was applied to compute the Borii Ra
QUADR. D?Sl:ll'iil\({jE AVG. TIME AVG. # POINTS which_ were used to compute the polarization enetgy,;. The_
POINTS / (MS)/ QUERY | RETURNED (K/MS) experiments were performed on the RANGER cluster, on aeing|
(A) node with 16 cores.

45,654 | 2]4|8 |0.31]0.57]1.42] 0.38|1.37]3.14 First, three different approximations were performed byyivay
91,309| 2]4]8 1059114280 0.38|1.43|331 the § parameter for the molecules in ZDock Benchmark 2.0
122’2‘1}2 ; | i |§ S..??07| ;252 |§.-2?5 8:22 | 1;? | 2;2),; (Mintseris et al. [2005]). We shall refer to t.heselas.DG_GJ.B’_g_:c,

. . where§ = zD,x € 0.5,0.75,1.0 and D is the dimension of a
Table 2. Performance of the QERY function of packing grid. We randomly cell in DPG, and it means that@gXg grid was used to generate
assign each of the 182,618 points to one of four groups ansl dbtain the surface and integration points on the surface. Bathnd o
four approximately equal-sized groups. We then run quér@a the atom 50 automatically selected based on the size of the mokecEte

centers (100 queries per atom) on group 1, merge groups 1 and un oach atomi of a molecule, the approximation error is defined
queries on this merged group, and so on.

A Dynamic Data Structure for Flexible Molecular Maintenance and Informatics

Born radii computation error

MOLECULE |#OF| #OF |#OFCELLS(K)| TIME (SEQ) . = prahe oSS
(PDB FLE) | CH. | AToms [DPG [3D hash| DPG [3D hash R —ope G a7
113Q 1 | 11,114 4.68] 4518 17.36] 16.23 . et
2GLS 1 3,636(1.44 9.18(5.43 5.06
5 | 18,180| 7.28] 41.40[37.10] 34.80 g
2BGY 1 2,991 1.20 10.75(4.44 4.29 LN
5 | 14,955| 6.03 31.20| 24.31| 22.95]
1UF2: 1 3,227(1.35 9.26(4.47 4.23 ,
Chainp |2 | 6454] 274[112404 923 856 NTTOAAAAAM AN N T A
(RDV P8) 4 | 12,908| 5.47|4,426.11] 19.36] 18.14 .
8 | 25,816(10.98| 6,332.16| 45.22| 44.44 e e e mmmmm scam
. 1 7,653| 3.23 38.76| 10.99| 10.23
1UF2: 2 | 15,306| 6.46] 927.44] 22.73| 21.44 (a)
Chain A ! Speedup compared to full pairwise summation
(RDV P3) 3 | 22,959 9.74| 1,992.75(40.48| 39.62
4 | 30,612]12.99| 2,591.70] 119.28| 128.37
1KAR: 2 6,056 2.62 20.70| 8.46 7.71
Chains A & B 4 | 12,112 5.24| 138.60| 17.56 16.52
6 | 18,168| 7.85| 333.06| 33.73| 32.62

Speedup

Table 4. Comparison of the performance of the 3D range reporting data
structure used bpPG and the 3D hash table used in (Eyal and Halperin
[2005b]).

Rexact _ pdpPayi 100 SN foms (not in scale)
ase; = ‘(Wt# where R%?Y and R{**“* are the e

Born radii of atom: approximated using DPG based scheme and (®)

by exact (full pairwise) evaluation of Equation 2.2 respedy. Fig. 5. (@) Comparison of the approximation errors for Born Radii
The approximation error for a molecule is the average ofzte computation at various levels of approximation. Averagec@etage error
Figure 5(a) reports the approximation errors for each moéedt across all moIecuIe§ for the schemes hle4'2, 4.44,2.16, 4.84. and4.41

is clear that a larger ‘near’ band results in lower error. Bndther (N the order shown in legend). (b) Comparison of the speulitp respect

. ; to the exact implementation) for Born Radii computation atiaus levels
hand, Figure 5(b) shows the speedup for each approximatioere of approximation. Average speedup across all moleculethéoschemes are

speedup is defined as (time taken by exact computationy/(aien 17 g5 37 71 30,63, 59.97 and47.51 (in the order shown in legend).

by DPG based computation). Though there is a clear speeui#agyc

tradeoff, it only underscores the efficacy and flexibility thie pol error and Born radi error

scheme. For exampl&® PG_GB_128_1.0 is almost 50 times faster

than the naive pairwise computation with or2iyt1 percent error. ¥
In Figure 6, we report the error @¥,,, computation where, for s , /4/

% Emor

each molecule, the error is defined%ﬁ%ﬁf”*m, where B RN e
Gt and P9 are respectively th&,,, computed usingze®*<! /

and Rf”g for each atom of the molecule.G,.,; errors are much
lower than the Born radii errors because the integral of(hg;
formulation also falls off with distance and hence accurafcgs .
is more dependent on the accuracy of the Born radii of atoras ne o (sored by bom o DPG_G8,256.10)
the surface. In Figure 7, the Born radii of all atoms of all ewlles
are grouped into 5 bins based Bfi"““*. Itis easy to verify that Born
radii computation errors for the atoms near the surfacdifigdewer
values of Born radii), are indeed much lower. Another naaspect

Fig. 6. Approximation errors fot+,,,; computation. The average,,; error
across all molecules afe09 and0.1 respectively.

from the results in Figure 6 is that some of the molecules;iapg Range of | # of Atoms | Avg. % Error

1PPE_.b, theG) error is considerably higher. We found that this Born Radii | inrange

tend to happen for molecules which are very small (for exampl [0.2] 17,580 0.83

1PPE__b has only 436 atoms) or very flat, in other words does not (2,4] 63,101 1.85

have much in the 'far’ band. Our scheme for computing pastiahs (4.7] 61,640 3.82

for 'far’ bands seem to over-estimate in such cases. (7,10] 38,796 6.74
We also computed the Born radii ar@,,; for the same set 10,..] 112765 10.16

of molecules using Amber (Case et al. _[2005]) E(ﬁBr(? (Tjong Fig. 7. Distribution of errors for different ranges of Born radiile@rly, error
and Zhou [2007]) on the same computing cluster using the samg |ower for atoms near the surface (smaller Born radii)

number of nodes and cores. The results in Figure 8(a) shaw tha

DPG based implementations, are much faster thaBr® and

are comparable to Amber. In Figure 8(b) we report the ratio ofthe size increases and outperforms Amber in a few cases. So,
the Born radii computation time of DPG and Amber, sorted inwe experimented with Amber?Br® and DPG for a very large
increasing size of molecules. It is clear that DPG gets betse molecule, the Cucumber Mosaic Virus (CMV) capsid, consgsti

Bajaj et al

509K atoms. DPG completed in onB2 seconds, while Amber
needed 72 seconds and Br° needed abous.6 hours.

As G, Obtained using different formulations often vary a lot,
we decided to compare the consistency instead of the exrtsva
Figure 8(c) displays that DPG consistently producgs,; values
similar to Amber’s. In fact, the average deviation(®f,; computed

U S (Y SV

| N T Ny YN AN H
by D P G Born radii computation times
20

DPG_GB,

05

_256,

above 2 are clipped

Time (5) : values

g

of atoms (not in scale)

@)

Ratio of speed of DPG and Amber

Ratio

#of Atoms (not in scale)

(b)

Gpol

0

B DPG_GB_256_0.5

-2000 -GB_256

4000 | > DPG_GB_128_1.0

< Gbr6

-6000

a
-8000

Others

~10000 <

[
-12000 - s- 2
~14000 a

~16000

14000 -12000 -10000 -8000

Amber

(©)

-6000

4000 2000 0

Fig. 8. (a) Comparison of Born Radii computation speeds of Am&es;-6

C. Bajaj, R. Chowdhury, and M. Rasheed. A dynamic data stracfor flexible
molecular maintenance and informatics. $PM '09: 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modelipgges 259-270, 2009a.

C. Bajaj, G. Xu, and Q. Zhang. A fast variational method fog tonstruction of
resolution adaptive-smooth molecular surfacesComputer Methods in Applied
Mechanics and Engineering98(21-26):1684-1690, 2009b.

C. Bajaj, R. Chowdhury, and M. Rasheed. A dynamic data stracfor flexible
molecular maintenance and informatics. Technical Rep®t1U-31, ICES, UT
Austin, July 2010.

C. Bajaj, R. Chowdhury, and V. Siddahanavalli. F2Dock: Famtrier protein-protein
docking. IEEE/ACM Transactions on Computational Biology and Bioinfatics
preprint.

S.S. Batsanov. Van der Waals radii of elemeinterganic Materials 37:871-885(15),
September 2001.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. MrMA. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods. The Amber biomokacsimulation
programs.Journal of Computational Chemistr26(16):1668—1688, 2005.

K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, dhdVelzl. Combinatorial
complexity bounds for arrangements of curves and sphBissrete Computational
Geometry5(2):99-160, 1990.

T.J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. BaReib2pqr: an automated
pipeline for the setup, execution, and analysis of poidsaitemann electrostatics
calculations Nucleic Acids Resear¢B2:665—-667, 2004.

B. Duncan and A. Olson. Approximation and characterizatibmolecular surfaces.
Biopolymers33(2):219-229, 1993.

E. Eyal and D. Halperin. Dynamic maintenance of molecularfases under
conformational changes. BCG '05: Proceedings of the 21st Annual Symposium
on Computational Geometrpages 45-54, 2005a.

E. Eyal and D. Halperin. Improved maintenance of moleculafases using dynamic
graph connectivityAlgorithms in Bioinformaticspages 401-413, 2005b.

M. L. Fredman and D. E. Willard. Surpassing the informatibadretic bound with
fusion treesJournal of Computer and System Sciend@43):424-436, 1993.

M. K. Gilson and H. X. Zhou. Calculation of protein-liganchbing affinities.Annual
Review of Biophysics and Biomolecular Strucf&(1):21-42, 2007.

D. Halperin and M. H. Overmars. Spheres, molecules, ancehiddrface removal. In
SCG '94: Proceedings of the 10th Annual Symposium on Cortipugh Geometry
pages 113-122, 1994,

P. G. Mezey. Shape in Chemistry; An introduction to molecular shape amblogy
VCH Inc, 1993.

J. Mintseris, K. Wiehe, B. Pierce, R. Anderson, R. Chen,idinjJand Z. Weng. Protein-
protein docking benchmark 2.0: an upda®eoteins 60(2):214-216, 2005.

C. W. Mortensen, R. Pagh, and M. Patragccu. On dynamic raegerting in one
dimension. InSTOC '05: Proceedings of the 37th Annual ACM Symposium on
Theory of Computingpages 104-111, 2005.

D. Qiu, P. S. Shenkin, F. P. Hollinger, and W. C. Still. The SB/continuum model
for solvation. a fast analytical method for the calculatidapproximate Born radii.
The Journal of Physical Chemistry A01(16):3005-3014, 1997.

P. Rasmus and R. Flemming. Cuckoo hashifaurnal of Algorithms51(2), 2004.

F. Richards. Areas, volumes, packing, and protein stractann. Rev. of Biophysics
and Bioengineerings:151-176, 1977.

W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendricksonn@analytical treatment
of solvation for molecular mechanics and dynamidsurnal of Americal Chemical
Society 112:6127-6129, 1990.

and DPG (some values for ti@Br® are higher than the range displayed H. Tjong and H. X. Zhou. GBré: A parameterization-free, aate, analytical

here). (b) Ratio of Born radii computation times of DPG andbm sorted
by increasing size of molecules.

REFERENCES

C. Bajaj and W. Zhao. Fast molecular solvation energetid§@ce computationSIAM
Journal on Scientific Computing1(6):4524-4552, 2010.

C. Bajaj, V. Pascucci, A. Shamir, R. Holt, and A. Netravalyramic maintenance and
visualization of molecular surface®iscrete Applied Mathematic427(1):23-51,
2003.

generalized born methodJournal of Physical Chemistry,B11(11):3055-3061,
2007.

A. Varshney, F. P. Brooks Jr., and W. V. Wright. Computing sthanolecular surfaces.
IEEE Computer Graphics Application$4(5):19-25, 1994.

J. Weiser, A. A. Weiser, P. S. Shenkin, and W. C. Still. NeigHlst reduction:
Optimization for computation of molecular van der Waals antient-accessible
surface areaslournal of Computational Chemistr§9(7):797-808, 1998.

J. Weiser, P. S. Shenkin, and W. C. Still. Fast, approximigterithm for detection of
solvent-inaccessible atomdournal of Computational Chemistr20(6):588-596,
1999.

