
OpenMP*: An
Introduction

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Courtesy:
Barbara Chapman

Stony Brook University

Md Abdullah Shahneous Bari
Stony Brook University

2

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

3

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

4

0

10000

20000

30000

40000

50000

60000

2011 2012 2013 2014 2015

15559.848

26855.89

38692.792
43298.742

50463.78

0 1334.488

8262.962 9592.324
13780.4008

N
o.

 o
f C

or
es

Year

Top500: Av. Core Count

multicore/
manycore

Large-Scale Computers Today

• HPC clusters today have nodes that are increasingly powerful parallel systems
in their own right

• The compute capacity of the nodes continues to grow
• It is important that application codes exploit the nodes as fully as possible

5

Parallelism In HPC Clusters

• Internode parallelism requires data to be exchanged
across a fast network

• Intra-node parallelism exploits multiple cores and their
shared memory
– Today’s nodes often also configured with accelerators, without

shared memory (but potentially with unified memory)

Cluster Architecture Shared Memory Architecture

Processor

M

Network for Data Exchange

•••

Shared Memory

C C C C C C

Bus or Switch Network

Processor Processor

M M

6

The OpenMP API

• Industry standard providing directives (pragmas) to create
parallel Fortran, C and C++ programs
– Directives are instructions to a compiler
– API also has library routines and environment variables

• Specification by OpenMP Architecture Review Board (ARB)
– Members from industry, government labs, academia
– OpenMP is compiled, so needs significant on-going support

http://www.openmp.org/

#pragma omp parallel
#pragma omp for schedule(dynamic)

for (i=0; i<N; i++){
A[i] = sqrt(A[i]);

} /* implicit barrier here */

“High-level directive-based multi-language parallelism that
is performant, productive and portable”

http://www.openmp.org/

7

Where Does OpenMP Run?

Supported (since OpenMP 4.0)
with target, teams, distribute,

and other constructs

Target Device: Intel® Xeon Phi™
coprocessor

Host

Target Device: GPU
OpenMP 4.5

8

Basic components of a parallel
programming environment

• Team of workers
• Work division among worker
• Sharing and accessing data among workers
• Synchronization among workers

9

How Does OpenMP Work?

• Teams of OpenMP threads are created to perform the
computation in a code
– Work is divided among the threads, which run on the different cores
– The threads collaborate by sharing variables
– Threads synchronize to order accesses and prevent data corruption
– Structured programming is encouraged to reduce likelihood of bugs

• Most Fortran/C/C++ compilers implement OpenMP
– Use compiler “flag”, sometimes a specific optimization level

• Alternatives:
– MPI
– POSIX thread library is lower level
– Automatic parallelization is higher level (user does nothing)

 But usually successful on simple codes only

10

What Does the User Have to Do?

• Starting point is most often MPI or sequential program
code

• Application developer must decide how the work can be
divided up among multiple threads
– Identify parallelism and needed synchronization
– Getting this right is the user’s responsibility!
– Insert OpenMP constructs that represent the strategy

• Getting good performance requires an understanding of
implications of chosen strategy
– Translation introduces overheads
– Data access pattern might affect performance

• Sometimes, non-trivial rewriting of code is needed to
accomplish desired results

User makes strategic decisions; compiler figures out details

11

OpenMP Usage

OpenMP
Source

Sequential
Program

Parallel
Program

OpenMP
compiler

sequential
compiler

Info on several compilers used in some known HPC centers
Compiler Name Compiler

Version
OpenMP
version OpenMP flag C/C++/Fortran compiler

Cray Compilers (cce)
[cori, bluewaters, edison] 8.5.X Most of 4.0 -h omp

(None is needed, OpenMP default) cc, CC (crayc++), ftn

GNU Compiler Collection (gcc)
[cori, bluewaters, Edison, stampede 2] 6.3.0 4.5 -fopenmp gcc, g++, gfortran

Intel Compilers
[cori, bluewaters, Edison, stampede 2] 17.0.X 4.5 -qopenmp icc, icpc, ifort

PGI Compilers
[bluewaters] 16.9.0 3.1 -mp=nonuma pgcc, pgc++,

pgfortran (pgf77, pgf90)

Fortran/C/C++
compiler

12

Resources

• We can only give an overview today
– We won’t cover all features

• Lots of information available at ARB’s website
– Specifications, technical reports, summary cards for downloading
– Tutorials and publications; links to other tutorials

• Tutorials also at:
– Supercomputing conferences
– Annual OpenMPCon, IWOMP workshop
– Some user sites, e.g. NERSC

http://www.openmp.org

12

13

Books about OpenMP

• A book about OpenMP by a
team of authors at the forefront
of OpenMP’s evolution.

• A book about how to “think
parallel” with examples in
OpenMP, MPI and java

14

Background Reference Material

This book explores key patterns with
Cilk, TBB, OpenCL, and OpenMP

(by McCool, Robison, and Reinders)

An introduction to and overview of
multithreaded programming in general

(by Clay Breshears)

Other books by James Reinders, especially on Xeon Phi multicore programming

15

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

17

OpenMP Fork-Join Execution Model

• Execution starts with single thread (the initial / master thread)
• Master thread spawns multiple worker threads as needed,

together they form a team
• Parallel region is a block of code executed by all threads in a team

simultaneously

Parallel Regions

Initial / Master
thread

A Nested
Parallel
region

Worker thread

Barrier

Number of threads in a team may be dynamically adjusted

Sequential Parts

18

OpenMP Memory Model

18

• All threads access the same, globally
shared memory

• Data can be shared or private
– Shared – only one instance of data

 Threads can access data
simultaneously

 Changes are visible to all threads
– Not necessarily immediately

– Private - Each thread has copy of data
 No other thread can access it
 Changes only visible to the thread

owning the data
• OpenMP has relaxed-consistency

shared memory model
– Threads may have a temporary view of

shared memory that is not consistent with
that of other threads

– These temporary views are made consistent
at certain places in code

19

OpenMP Syntax

• Most OpenMP constructs are compiler directives
– For C and C++, they are pragmas with the form:

#pragma omp construct [clause [clause]…]
– For Fortran, the directives may have fixed or free form:

*$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]

• Include C OpenMP header file and the Fortran OpenMP lib
module

#include <omp.h> (c)
use omp_lib (Fortran)

• Most OpenMP constructs apply to a “structured block”.
– No spaghetti code, please
– A block of one or more statements: no arbitrary branching in and

out, but it’s OK to have a STOP or an exit() within the block

19
Clauses are all optional and allow the user to provide additional
instructions to the implementation

20

Defining Parallelism In OpenMP

• First step is to specify the parallel region(s)
- A team of threads will be created to execute parallel region; it is

terminated at the end of region
- Threads are managed by OpenMP runtime
- Threads in team are numbered consecutively, starting from 0; the

master thread has thread ID 0
- Thread adjustment is only done before entering a parallel region
- Parallel regions can be nested; nesting is disabled by default
- An "if" clause can be used to guard the parallel region; if the

condition evaluates to "false", the code is executed serially

20
OpenMP Team := Master + Workers

21

• You create threads in OpenMP with the parallel construct.
• A runtime function can be used to request a specific

number of threads to execute a parallel region; here, we
request 4 threads:

• Each thread calls pooh(ID,A) for ID = 0 to 3

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Thread Creation: Parallel Regions

21

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

22

Thread Creation: Parallel Regions

• Here, an environment variable is used to set the team
size:

• Each thread calls pooh(ID,A) for ID = 0 to 3
22

double A[1000];
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function
returning a thread ID

Shell

Environment
variable to initialize
number of threads
in a parallel region

23

double A[1000];
#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}
printf(“all done\n”);

Thread Creation: Parallel Regions

• Here a clause is used
to specify team size

• Each thread executes
the same code:

23

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between
all threads. Threads wait here for all threads to

finish before proceeding (i.e. a barrier)

Clause to
request a
certain number
of threads

24

Scope of OpenMP Parallel Region

24

Parallel
construct;
Lexical
extent of
parallel
region

call whoami
C$OMP PARALLEL

call whoami
C$OMP END PARALLEL

subroutine whoami
external omp_get_thread_num
integer iam, omp_get_thread_num
iam = omp_get_thread_num()

C$OMP CRITICAL
print*,’Hello from ‘, iam

C$OMP END CRITICAL
return
end

Orphan constructs
outside lexical
extent of parallel
region

The parallel
region is the text
of the construct
plus any code
called from inside
the construct

bar.fpoo.f

A parallel region can span multiple source files

25

Example: A Multi-threaded “Hello world”
Program

• Write a multithreaded program where each thread prints
“hello world”

25

int main(int argc, char *argv[])
{

int ID = 0;
printf("hello(%d)", ID);
printf("world(%d)\n", ID);

return 0;
}

26

#include <omp.h>
int main(int argc, char *argv[])
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf("hello(%d)", ID);
printf("world(%d)\n", ID);

}
return 0;

}

Example: A Multi-threaded “Hello world”
Program

• Write a multithreaded program where each thread prints
“hello world”.

26

hello(1) hello(0) world(1)

world(0)

hello(3) hello(2) world(2)

world(3)

world(2)

OpenMP include file

Parallel region with
default number of
threads

Runtime library function to
return a thread ID.

End of the parallel region.
Threads wait at a barrier

Sample Output:

27

int main(int argc, char *argv[]) {
#pragma omp parallel
{

int ID = omp_get_thread_num();
printf("hello from thread %d\n", ID);

}
return 0;

}

Programming in Pthreads vs. OpenMP

27

#include <pthread.h>
#define DEFAULT_NUM_THREADS 4

/* encapsulate multiple args to a thread */
typedef struct args {

int id; /* this thread's number */
} args_t;

/* function that is run inside each thread */
void *do_hello_world(void *arg)
{

args_t *ap = (args_t *) arg; /* unpack incoming args */
printf("Hello from thread %d\n", ap->id); /* ACTUAL WORK */
return NULL;

}

int main(int argc, char *argv[])
{

int i, num_threads = DEFAULT_NUM_THREADS;
pthread_t *thread_pool;
args_t *thread_args;

if (argc > 1) {
num_threads = atoi(argv[1]);
if (num_threads < 0) {

num_threads = DEFAULT_NUM_THREADS;
}

}
thread_pool = (pthread_t *) malloc(num_threads *

sizeof(*thread_pool));
thread_args = (args_t *) malloc(num_threads *

sizeof(*thread_args));
/* create and run threads: pass id of thread to each */
for (i = 0; i < num_threads; i += 1) {

thread_args[i].id = i;
pthread_create(&thread_pool[i], NULL, do_hello_world,

(void *) &thread_args[i]);
}
/* wait for all threads to finish */
for (i = 0; i < num_threads; i += 1) {

pthread_join(thread_pool[i], NULL);
}
free(thread_args);
free(thread_pool);
return 0;

}

28

Explicit Barriers

28

time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:

• A barrier is automatically inserted at the end of each parallel
region. We can also add barriers to the code using this
directive.

29

Using The Master Thread Only

• The master construct denotes a structured block that is
only executed by the master thread. The other threads just
skip it.

• There is no barrier at the end of the master construct.

29

#pragma omp parallel
{

do_many_things();
#pragma omp master
{

exchange_boundaries();
}
#pragma omp barrier
do_many_other_things();

}

31

#include <omp.h>
int main(int argc, char *argv[])
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf("hello(%d)", ID);
printf("world(%d)\n", ID);

}

return 0;
}

OpenMP Features We Have Seen So Far

• Header file, directives, environment variable and runtime
library routines

31

#pragma omp master
{

printf("hello(%d)", ID);
}
#pragma omp barrier

32

Controlling Threads: Environment Variables

32

?

worker
threads

worker
threads

?
barrier

parallel
region

worker
threads

worker
threads

barrier

parallel
region

master
thread

• OMP_THREAD_LIMIT
• Upper limit on #threads

• OMP_NUM_THREADS
• Initialize # threads in team

• OMP_DYNAMIC
• Enable adjustment?
• TRUE or FALSE

• OMP_WAIT_POLICY
• Controls idle thread

behavior
• ACTIVE or PASSIVE
• No runtime routine for this

• Runtime library routines can be used to override some of the initial
values (whether set by environment variable or implementation)

33

#include <omp.h>
int main(int argc, char *argv[])
{

int num_threads;
omp_set_dynamic(0);
omp_set_num_threads(omp_get_num_procs());
#pragma omp parallel
{

int id = omp_get_thread_num();
#pragma omp single

num_threads = omp_get_num_threads();
do_lots_of_stuff(id);

}

return 0;
}

Controlling Threads: Runtime Library Routines

• To use a known, fixed number of threads in a program, you can (1) tell the
system that you don’t want dynamic adjustment of the number of threads, (2)
set the number of threads, then (3) save the number you got.

33

Only one thread retrieves the
value on behalf of all threads

Request as many threads as
you have processors.

Disable dynamic adjustment of the
number of threads.

The system may still give you fewer threads than requested.
If the precise # matters, test for it and respond accordingly.

omp_get_max_threads() returns max # threads available to form a team

35

Example Environment Variable Defaults

35

OpenMP Environment Variable Cray Compiler 8.5 Defaults

OMP_NUM_THREADS 1

OMP_THREAD_LIMIT 4 times the number of available
processors

OMP_DYNAMIC {TRUE | FALSE} TRUE

OMP_NESTED {TRUE | FALSE} FALSE

OMP_MAX_ACTIVE_LEVELS 1023

OMP_WAIT_POLICY [ACTIVE | PASSIVE] ACTIVE

OMP_SCHEDULE “schedule,[chunk]” STATIC, 0

OMP_STACKSIZE “size [B|K|M|G]” 128 MB

Be careful when relying on defaults (they are compiler dependent)

36

Performance Tips

• Experiment to find the best number of threads on your system
• Put as much code as possible inside parallel regions

– Amdahl’s law: If 1/s of the program is sequential, then you cannot
ever get a speedup better than s

– So if 1% of a program is serial, speedup is limited to 100, no matter
how many processors it is computed on

• Have large parallel regions
– Minimize overheads: starting and stopping threads, moving data into

cache
– Directives can be “orphaned”; procedure calls inside regions are fine

• Run-time routines are your friend
– Usually very efficient and allow maximum control over thread behavior

• Barriers are expensive
– With large numbers of threads, they can be slow
– Depends in part on HW and on implementation quality
– Some threads might have to wait a long time if load not balanced

36

37

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

38

#pragma omp parallel
#pragma omp for
for (i = 0; i < N; i++) {

work(i);
}

Worksharing Constructs: Loops

• Worksharing constructs divide the execution of the
enclosed code region among the members of the team of
threads

• The “for”/ “do” worksharing construct splits up loop so that
each thread in team gets adjacent loop iterations
• Each thread gets one or more “chunks” of iterations

38

By default, all threads wait at a barrier at the
end of the “omp for”. Use “nowait” clause to
remove the barrier.

#pragma omp for nowait
“nowait” is useful between two consecutive,
independent parallel loops.

$omp do in Fortran

Barrier at end of parallel loop

$omp end do nowait in Fortran

39

Work Sharing Loops and Scheduling

39

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
work-sharing
for-construct

#pragma omp parallel
{
int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for (i=istart; i<iend; i++) {
a[i] = a[i] + b[i];

}
}

for (i=0; i<N; i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
#pragma omp for schedule(static)
for (i=0; i<N; i++) {
a[i] = a[i] + b[i];

}

40

• The schedule clause affects how loop iterations are mapped onto
threads

• schedule (static | dynamic | guided [, chunk])
• schedule (auto | runtime)

static Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

dynamic Fixed portions of work; size is controlled by the value of
chunk. When a thread finishes, it starts on the next portion of work

guided Same dynamic behavior as "dynamic", but size of the portion
of work decreases exponentially

auto The compiler (or runtime system) decides what is best to use;
choice could be implementation dependent

runtime Iteration scheduling scheme is set at runtime via environment
variable OMP_SCHEDULE or runtime library call

OpenMP Schedule Clause

40

41

Reduction Operations

• Many calculations combine values into a single accumulation variable
at some point, e.g. to determine an overall error

• Such a so-called reduction leads to a true dependence between
loop iterations

• Reductions are common and prevent us from parallelizing loops

E.g., to calculate the L2-norm error, we sum up the contributing diffs:

41

double err_2_norm(size_t N, double *x, double *y)
{

double sum = 0;
for (size_t i = 0; i < N; i++) {

double diff = fabs(x[i] - y[i]);
sum += diff * diff;

}
return sqrt(sum);

}

42

double err_2_norm(size_t N, double *x, double *y)
{

double sum = 0;
#pragma omp parallel for reduction(+:sum)
for (size_t i = 0; i < N; i++) {

double diff = fabs(x[i] - y[i]);
sum += diff * diff;

}
return sqrt(sum);

}

Reductions

• Inside a parallel or work-sharing construct:
– A local copy of each list variable is made and initialized depending on

the “operator” (e.g. 0 for “+”).
– Local copies are updated
– Local copies are reduced into a single value and combined with the

original global value.
• Variables in “list” must be shared in enclosing parallel region

42

reduction (operator: list)
reduction ([operator | intrinsic] : list)

C/C++
Fortran

Result variable is shared by default

43

Predefined Reductions

Fortran Only
Operator Initial value

.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

43

• Initial values are the ones that make sense mathematically.
Operator Initial value

+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only
Operator Initial value

& ~0

| 0

^ 0
&& 1
|| 0

44

User Defined Reductions (version 4.0)

• For mathematically associative and commutative operations
• Declare the reduction operator

– Name, type, combiner function, initialization of local copies
– Use special identifiers omp_in for value to be combined, omp_out for

resulting combined value, omp_priv to initialize private copy

• Use the reduction operator in a reduction clause

44

int my_mul(int a, int b) { return a * b; }

#pragma omp declare reduction(mul_id : int : omp_out *= omp_in) \
initializer(omp_priv = 1)

#pragma omp parallel for reduction(mul_id : prod_par)
for (i = 0; i < ARRAY_SIZE; i += 1) {

prod_par = my_mul(prod_par, array[i]);
}

45

• Allows parallelization of multiple loops in perfectly nested
loop nests without using nested parallelism

• Compiler forms and parallelizes a single loop of length NxM.
• Useful if N is O (no. of threads) so parallelizing the outer

loop makes balancing the load difficult.

#pragma omp parallel for private(i,j) collapse(2)\
reduction(+:sum)

for (i = 0; i < 8; i++) {
for (j = 0; j < 1000; j++) {

sum += A[i][j];
}

}

Parallelizing Multiple Loops in Nest

45

Number of loops
to be
parallelized,
counting from
the outside

46

int i, A[MAX];
#pragma omp parallel for
for (i=0; i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

}

int i, j, A[MAX];
j = 5;
for (i=0; i< MAX; i++) {

j += 2;
A[i] = big(j);

}

Working with Loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent, so they can safely execute in

any order without loop-carried dependencies
– Insert the appropriate OpenMP directive(s) and test
– Now tune: reduce synchronization; ensure data locality, optimize

cache behavior

46

Modify this to
get independent
loops

Note: loop index
“i” is private by
default

47

Limitations of Parallel For / Do

47

To use a for or do construct, loops must be countable.
To parallelize this loop, it is necessary to first count the number of
iterations and then rewrite it as a for loop.
Or we can use tasks. More on this later…

#pragma omp parallel
{

…
while (my_pointer != NULL) {

do_independent_work(my_pointer);
my_pointer = my_pointer->next;

} // End of while loop
…

}

48

Worksharing Constructs: Sections

• Gives a different structured block to each thread

48

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

#pragma omp parallel
#pragma omp sections
{

#pragma omp section
x_calculation();

#pragma omp section
y_calculation();

#pragma omp section
z_calculation();

}

52

Work-Sharing Constructs: Single

• The single construct denotes a block of code that is
executed by only one thread

• A barrier is implied at the end of the single block

52

#pragma omp parallel
{

do_many_things();
#pragma omp single
{

exchange_boundaries();
}
do_many_other_things();

}

54

Exercise: Red-Black Method in Parallel

• Grid points partitioned into two sets like a chess
board
– “colored” red and black

• Update in two steps
–Compute new values on “red” points using current values

on neighboring “black” points
–Compute new values on “black”

points using current values on
neighboring “red” points

• To parallelize, consider:
–Which loops to parallelize?
–What loop schedules?
–Needed synchronization? 54

55

Red-Black Method

55

Each loop nest here updates half of the red points. The points used
to compute the updates are all black points.

A similar pair of loops update the black points, using red points.

for some number of timesteps/iterations {// update red points
for (i=1; i<n; i+=2)

for (j=1; j<n; j+=2)
grid [i][j] = 0.25 *

(grid[i-1][j] + grid[i+1][j]
+ grid[i][j-1] + grid[i][j+1]);

for (i=2; i<n; i+=2)
for(j=2; j<n; j+=2)

grid [i][j] = 0.25 *
(grid[i-1][j] + grid[i+1][j]
+ grid[i][j-1] + grid[i][j+1]);

}

parallel
parallel

parallel
parallel

56

/* Parallelizing the outer loop is not possible, so we will parallelize one level below */
for (n=0; n < ITERNUM; n++) {

#pragma omp parallel {
/* Update red points */
/* @TODO: Insert OpenMP pragma here, hint: omp for, collapse, schedule, nowait */
for (i = 1; i < DSIZE_X - 1; i += 2)

for (j = 1; j < DSIZE_Y - 1; j += 2)
grid[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j] +

grid[i][j-1] + grid[i][j+1]);
/* @TODO: Insert OpenMP pragma here, hint: omp for, collapse, schedule, nowait */
for (i = 2; i < DSIZE_X - 1; i += 2)

for (j = 2; j < DSIZE_Y - 1; j += 2)
grid[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j] +

grid[i][j-1] + grid[i][j+1]);
/* Update black points */
/* @TODO:Insert OpenMP pragma here, hint:omp for, collapse, schedule, nowait */
for (i = 1; i < DSIZE_X - 1; i += 2)

for (j = 2; j < DSIZE_Y - 1; j += 2)
grid[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j] +

grid[i][j-1] + grid[i][j+1]);
/* @TODO:Insert OpenMP pragma here, hint:omp for, collapse, schedule, nowait */
for (i = 2; i < DSIZE_X - 1; i += 2)

for (j = 1; j < DSIZE_Y - 1; j += 2)
grid[i][j] = 0.25 * (grid[i-1][j] + grid[i+1][j] +

grid[i][j-1] + grid[i][j+1]);
}}

Exercise: Red Black Method

56

57

Performance Tips

• Is there enough work to amortize overheads?
– May not be worthwhile for very small loops (if clause can control this)
– Might be overcome by choosing different loop, rewriting loop nest or

collapsing loop nest
• Best choice of schedule might change with system, problem

size
– Experimentation may be needed

• Minimize synchronization
– Use nowait where possible

• Locality
– Most large systems are NUMA
– Be prepared to modify your loop nests
– Change loop order to get better cache behavior

• If performance is bad, look for false sharing
– We talk about this in part 2 of the tutorial
– Occurs frequently, performance degradation can be catastrophic 57

58

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

59

What About The Data?

• There is only one instance of shared data
- Threads can read and write the data simultaneously unless

protected through a specific construct
- All changes are visible to all threads (not necessarily immediately)

• Each thread has its own copy of private data
– No other thread can access it in any way

- Changes only visible to the thread owning the data

• Most, but not all, variables are shared by default
– Shared by default: Global variables; Fortran: COMMON blocks,

SAVE variables, MODULE variables; C: File scope variables, static
– Private by default: Stack (local) variables in sub-programs called

from parallel regions; Automatic variables in a statement block
– Tasks have different defaults

• The default status can be modified with:
– DEFAULT (PRIVATE | SHARED | NONE) 59

60

#pragma omp parallel for private(tmp)
for(i=0; i<n; i++) {

tmp= 2.0*a[i];
a[i] = tmp;
b[i] = c[i]/tmp;

}

Private Clause

• private(var) creates a local copy of var for each thread.
– The value is uninitialized
– Private copy is not storage-associated with the original
– The original is undefined at the end

• Parallel loop variable is private by default

60

a and c are shared
data; values defined
prior to loop

Without the private
clause, all threads
would update tmp at
roughly the same
time

61

incr = 0;
#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {
if ((i%2)==0) incr++;
A[i] = incr;

}

Firstprivate Clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

61

Each thread gets its own copy of incr with an
initial value of 0

Value of incr is unspecified after parallel region

62

OpenMP Data Environment

62

double a[size][size], b=4;
#pragma omp parallel private (b)
{ }

shared data
a[size][size]

T0 T1 T2 T3

private data
b =?

Private variable b
becomes undefined
on exit from region

private data
b =?

private data
b = ?

private data
b = ?

• Private variables are undefined on entry and exit of the
parallel region

• A private variable within a parallel region has no storage
association with the same variable outside of the region

• Firstprivate initialize private data; lastprivate causes
variable outside region to be updated after end of region

63

Recap: Private and Firstprivate Data

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C local to each thread or shared inside the parallel region?
• What are their initial values inside and after the parallel region?

63

int a=1, b=1, c=1;

#pragma omp parallel private(B)firstprivate(C)

{

}

• Inside this parallel region ...
• A is shared by all threads; equals 1
• B and C are local to each thread.

• B’s initial value is undefined
• C’s initial value equals 1

• Outside this parallel region ...
• The values of B and C are undefined.

64

void seed(double low_in, double hi_in)
{
/* Sets the per thread range and seed (random_last) */
}
double drandom()
{

random_last = (mult_n * random_last)% PMOD);
rand_num = (random_last /PMOD)*(rand_hi-rand_low)+rand_low;
return rand_num;

}

Parallel Random Number Generator
(RNG)

64

• Seed is used and updated each
time a number is generated

• Need to retain value across
different parallel regions

• Want values to be local to thread

#pragma omp parallel
{

seed(low, high);
for (int i=0; i<10; i++)

drandom();
...

}

65

Threadprivate Data

• To retain the last seed for each thread in our parallel RNG
code across different parallel regions, we can declare this
variable to be threadprivate:

• Threadprivate makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables

• Threadprivate variables persist between parallel regions!
– They can be initialized using COPYIN or DATA statements; values

can be broadcast from one thread to the others using COPYPRIVATE

65

unsigned long long random_last = 0;
#pragma omp threadprivate(random_last)
void seed(double low_in, double hi_in)
. . . .

67

Performance and Correctness Tips

• There is one version of shared data
– Keeping data shared reduces overall memory consumption

• Private data is stored locally, so use of private variables
can increase efficiency
– Avoids false sharing
– May make it easier to parallelize loops
– But private data is no longer available after parallel regions ends

• It is an error if multiple threads update the same variable at
the same time (a data race)

• It is a good idea to use “default none” while testing code
• Putting code into a subroutine / function can make it easier

to write code with many private variables
– Local / automatic data in a procedure is private by default

67

68

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

69

OpenMP Synchronization

• Synchronization enables the user to
– Control the ordering of executions in different threads
– Ensure that at most one thread executes operation or region of code at

any given time (mutual exclusion)
• High level synchronization:

– barrier
– critical section
– Atomic
– ordered

• Low level synchronization:
– flush
– locks (both simple and nested)

69

70

Barrier: Explicit and Implicit
• Each thread waits until all threads arrive.

70

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){

B[i]=big_calc2(C, i);

}
A[id] = big_calc3(id);

}
implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait

71

Mutual Exclusion

• Code may only be executed by at most one thread
at any given time

• Could lead to long wait times for other threads
–Atomic updates for individual operations
–Critical regions and locks for structured regions of code

time

critical region

72

Why Is this needed?
• When multiple threads attempt to manipulate the same

data item, the results can often be unexpected if proper
care is not taken.

• Consider a joint account, deposited by both the wife and
the husband
/*Thread 1:the wife deposits $1500 */

ourBalance = ourBalance + $1500
/*Thread 2:the husband deposits $1000 */

ourBalance = ourBalance + $1000
– Assuming the initial balance is $500, the final value of
ourBalance is exepected to be $3000.

– However, depending on the schedule of the threads, the
value of ourBalance could be $3000, $1500 or $2000!

73

How could this happen?

/* T1: The wife */

T1: t1 = ourBalance
T1: t1+ = 1000
T1: ourBalance = t1

/*T2: The husband */

T2: t2= ourBalance
T2: t2+= 1500
T2: ourBalance = t2

ourBalance = $500

/*schedule 1*/
T1: t1 = ourBalance /*500*/
T1: t1 +=1000 /*1500*/
T1: ourBalance = t1 /*1500*/
T2: t2 = ourBalance /*1500*/
T2: t2+= 1500 /*3000*/
T2: ourBalance= t2 /*3000*/

/*schedule 2*/
T1: t1 = ourBalance /*500*/
T2: t2 = ourBalance /*500*/
T1: t1 += 1000 /*1500*/
T2: t2 += 500 /*2000*/
T1: ourBalance = t1 /*1500*/
T2: ourBalance = t2 /*2000*/

Interrupting the modifications to the shared data is dangerous!

Concurrent execution

74

Solution: Critical Section

• Critical section: a code segment that must be executed by only one
thread at any time.
– Thread cooperates by acquiring a lock before accessing the

corresponding data
– Pthreads: pthread_mutex_lock, pthread_mutex_unlock
– OpenMP: omp critical or omp_set_lock, omp_unset_lock

• Mutex-locks have two states: locked and unlocked.
– Lock::Acquire(): wait until lock is unlocked, then set it to locked
– Lock::Release(): release the lock to unlocked state

T1: pthread_mutex_lock(&cs_mutex)
T1: t1 = ourBalance
T1: t1+ = 1000
T1: ourBalance = t1
T1: pthread_mutex_unlock(&cs_mutex)

T2: pthread_mutex_lock(&cs_mutex)
T2: t2= ourBalance
T2: t2+= 1500
T2: ourBalance = t2
T2: pthread_mutex_lock(&cs_mutex)

75

Atomic

• Atomic is a special case of mutual exclusion
• It usually applies only to the update of a

memory location

75

#pragma omp parallel private(b)
{

b=do_it(i);
tmp = big_ugly();
#pragma omp atomic

x=x+tmp
}

76

long balance[NUM_ACCOUNTS] = {INIT_BALANCE, INIT_BALANCE};
long transaction[NUM_TRANSACTION] = {10, 20, 30, -40, -50, 80, -10, -50, 100,
90};
#pragma omp parallel for
for(i=0; i<NUM_TRANSACTION ; i++) {

#pragma omp atomic
balance[i%2] += transaction[i];

}

long balance[NUM_ACCOUNTS] = {INIT_BALANCE, INIT_BALANCE};
long transaction[NUM_TRANSACTION] = {10, 20, 30, -40, -50, 80, -10, -50, 100,
90};
#pragma omp parallel for
for(i=0; i<NUM_TRANSACTION ; i++) {

#pragma omp critical
balance[i%2] += transaction[i];

}

long balance[NUM_ACCOUNTS] = {INIT_BALANCE, INIT_BALANCE};
long transaction[NUM_TRANSACTION] = {10, 20, 30, -40, -50, 80, -10, -50, 100,
90};
#pragma omp parallel for
for(i=0; i<NUM_TRANSACTION ; i++) {

balance[i%2] += transaction[i];
}

Mutual Exclusion: critical and atomic

Parallelized without proper
synchronization

Parallelized and using omp
critical update

Parallelized and using omp
atomic update

77

Data Races / Race Condition

• Data race occurs when two ore more threads
access and update shared data “more or less”
concurrently
–One thread writes and one or more threads read or

write same memory location at about the same time
–Outcome depends on relative ordering of operations

and may differ between runs
• User is expected to avoid race conditions

– insert synchronization constructs as appropriate, or
–privatize data

• Some tools exist to detect data races at runtime
–e.g. Intel Thread Checker, Oracle Solaris Studio

Thread Analyzer
77

78

Care with Synchronization

• Recall that a thread’s temporary view of memory may vary
from shared memory
– Value of shared objects updated at synchronization points
– User must be aware of the point at which modified values are

(guaranteed to be) accessible
• Compilers routinely reorder instructions that implement a

program
– Helps exploit the functional units, keep machine busy

• Compiler cannot move instructions past a barrier
– Also not past a flush on all variables
– But it can move them past a flush on a set of variables so long as

those variables are not accessed

78

79

Updates to Shared Data

• Blocks of data are fetched into cache lines
• Values may temporarily differ from other copies of

data within a parallel region

79

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

a

8080

Updates to Shared Data

X = 0 while (X == 0)
{

“wait”
}

X = 1

Thread A Thread B

If shared variable X is kept within a register, the
modification may not be immediately visible to the

other thread(s)

81

The Flush Directive

• Flushing is what creates a consistent view of shared data:
it causes a thread to write data back to main memory and
retrieve new values of updated variables

• It is automatically performed on a number of constructs
• The flush construct allows the programmer to define a

point where a thread makes its variable values consistent
with main memory
– Caution: it does not enable a thread to retrieve values updated by

another thread unless that thread also performs a flush
– It also does not synchronize threads
– Its use is tricky: be sure you understand it

81

82

What Else Does Flush Influence?

Compilers reorder instructions to better exploit the functional
units and keep the machine busy
• Flush prevents the compiler from doing the following:

– Reorder read/writes of variables in a flush set relative to a flush.
– Reorder flush constructs when flush sets overlap.

• A compiler CAN do the following:
– Reorder instructions NOT involving variables in the flush set relative to

the flush.
– Reorder flush constructs that don’t have overlapping flush sets.

82

The flush operation does not
actually synchronize different
threads. It just ensures that a
thread’s values are made consistent
with main memory.

84

Implied Flush

Flushes are implicitly performed during execution:
• In a barrier region
• At exit from worksharing regions, unless a nowait is present
• At entry to and exit from parallel, critical, ordered and parallel

worksharing regions
• During omp_set_lock and omp_unset_lock regions

– During omp_test_lock, omp_set_nest_lock, omp_unset _nest_lock and
omp_test_nest_lock regions, if the region causes the lock to be set or unset

• Immediately before and after every task scheduling point
• At entry to and exit from atomic regions, where the list contains only

the variable updated in the atomic construct
• But not on entry to a worksharing region, or entry to/exit from a

master region,

85

Agenda

• Background
• Parallel Regions
• Sharing Work
• Handling Data
• Synchronization
• Tasks

86

Tasking In OpenMP

• Tasking was introduced in OpenMP 3.0
• Until then it was impossible to efficiently

implement certain types of parallelism
– Recursive algorithms
– Linked lists, ...

• The initial functionality was very simple by design
– The idea was (and still) is to augment tasking as we collectively

gain more insight and experience

8787

The Tasking Concept In OpenMP

Thread

Generate
tasks

Thread

Thread

Thread

Thread

Ex
ec

ut
e

ta
sk

s

8888

The Tasking Construct

!$omp task

#pragma omp taskDefine a task:

• A task is a specific instance of executable code and its data
environment

• A task is generated when a thread encounters a task/taskloop
construct or a parallel construct. Comprised of a task region and
data environment.

• A task region consists of all code encountered during the
execution of a task.

• The data environment consists of all the variables associated
with the execution of a given task. It is constructed from the
data environment of the generating task at the time the task is
generated.

89

Tasking - Who Does What And When ?

• Assumption: all tasks can execute independently
• When any thread encounters a task/taskloop construct,

one or more new tasks generated
– Tasks can be nested (but not for the faint of heart)

• Execution of a generated task is carried out by one of the
threads in the current team
– This is subject to the thread's availability and thus could be

immediate or deferred until later
• Completion of the task can be guaranteed using a task

synchronization construct
– a taskwait or a barrier construct

9090

Tasking Example
int main(int argc, char *argv[]) {

#pragma omp parallel
{
#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("race ");}

#pragma omp task
{printf("car ");}

printf(“is fun to watch “);
}

} // End of parallel region

printf("\n");
return(0);

}
What will this program print using

2 threads ?

9191

Tasking Example

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch race car
$./a.out

A is fun to watch car race
$

9292

Tasking Example

int main(int argc, char *argv[]) {

#pragma omp parallel
{
#pragma omp single
{

printf(“A “);
#pragma omp task
{printf("car ");}

#pragma omp task
{printf("race ");}

#pragma omp taskwait
printf(“is fun to watch “);

}
} // End of parallel region

printf("\n");return(0);
}

What will this program
print using 2 threads ?

9393

Tasking Example

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
$
A car race is fun to watch
$./a.out
A car race is fun to watch
$./a.out
A race car is fun to watch
$

Tasks are executed first
now

9494

Task Completion
Explicit wait on the completion of child tasks:

int fib(int n) {
int x, y;
if (n < 2) return n;
else {

#pragma omp task shared(x)
x = fib(n-1);
#pragma omp task shared(y)
y = fib(n-2);
#pragma omp taskwait
return x + y;

}
}

!$omp taskwait

#pragma omp taskwait

Does not include descendents of child tasks

9595

Clauses On The Task Directive

if(scalar-expression) if false, create an undeferred task:
encountering thread must suspend
the encountering task region, immediately
execute the current task region until it is
completed. Helps avoid small tasks.

untied any thread can resume after suspension
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression) if true, the generated task is a final task
mergeable if the task is an undeferred task or an

included task, the implementation may
generate a merged task

9696

Default Data-Sharing Attributes for Tasks

int a;
void foo()
{

int b, c;

#pragma omp parallel private(b)
{

int d; static int e;
#pragma omp task
{

int f;
// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: shared
// Scope of f: private

}
}

}

Local variables (f) are private
to task.

Variables that are shared in
enclosing context (a, c, e) are
shared in task.

Variables that are not shared in
enclosing context (b, d) are
firstprivate in task.

97

Task Scheduling Points In OpenMP

• Whenever a thread reaches a task scheduling
point, it may suspend the current task in order to
execute a different task bound to the current team

• Task scheduling points are implied at:
– The point immediately following the generation of an

explicit task
– After the last instruction of a task region
– In taskwait and taskyield regions
– In implicit and explicit barrier regions

• The implementation may insert task scheduling
points in untied tasks

• The user may define additional scheduling points

98

Tied and Untied Tasks

• Default: Tasks are tied to the thread that first executes
them
– Tasks created with the untied clause are never tied to a thread
– Take care with some constructs, e.g. thread ids, locks

• This affects execution behavior after a task switch at a task
scheduling point

• If the suspended task region is for a tied task, the initially
assigned thread resumes execution of the suspended task
subsequently
– If it is untied, any thread may resume its execution

99

Taskyield #include <omp.h>
void something_useful();
void something_critical();
void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while(!omp_test_lock(lock)) {
#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

#pragma omp taskyield

!$omp taskyield

• The taskyield directive
specifies that the current
task can be suspended in
favor or execution of a
different task

• Hint to the runtime
The waiting task may be suspended

here so that the executing thread
can perform other work.

100

Final clause

• For recursive problems that perform task decomposition
– stop task creation at a certain depth exposes
– enough parallelism while reducing overhead.

• Warning: Merging the data environment may have side-
effects

#pragma omp task final(expr)

!$omp task final(expr)

void foo(bool arg)
{

int i = 3;
#pragma omp task final(arg) firstprivate(i)

i++;
printf(“%d\n”, i); // will print 3 or 4 depending on arg

}

101

Loop parallelization with tasks

1

• Recall: loop (for/do) construct distributes
loop iterations among encountering threads.

• taskloop construct:
–distributes loop iterations among tasks

generated by the construct
–implicit taskgroup region surrounds loop by

default
–tasks are scheduled onto threads like any other

task

102

The taskloop construct

void long_running(void);
void loop_body(int i, int j);

void parallel_work(void)
{

int i, j;
// generates 1 task

#pragma omp task
long_running();

// generates 20 tasks
#pragma omp taskloop private(j) num_tasks(20) nogroup

for (i = 0; i < 10000; i++) {
for (j = 0; j < i; j++) {

loop_body(i, j);
}

}
}

103

103

	OpenMP*: An Introduction
	Agenda
	Agenda
	Large-Scale Computers Today�
	Parallelism In HPC Clusters
	The OpenMP API
	Where Does OpenMP Run?
	Basic components of a parallel programming environment
	How Does OpenMP Work?
	What Does the User Have to Do?
	OpenMP Usage
	Resources
	Books about OpenMP
	Background Reference Material
	Agenda
	OpenMP Fork-Join Execution Model
	OpenMP Memory Model
	OpenMP Syntax
	Defining Parallelism In OpenMP
	Thread Creation: Parallel Regions
	Thread Creation: Parallel Regions
	Thread Creation: Parallel Regions
	Scope of OpenMP Parallel Region
	Example: A Multi-threaded “Hello world” Program
	Example: A Multi-threaded “Hello world” Program
	Programming in Pthreads vs. OpenMP
	Explicit Barriers
	Using The Master Thread Only
	OpenMP Features We Have Seen So Far
	Controlling Threads: Environment Variables
	Controlling Threads: Runtime Library Routines
	Example Environment Variable Defaults
	Performance Tips
	Agenda
	Worksharing Constructs: Loops
	Work Sharing Loops and Scheduling
	OpenMP Schedule Clause
	Reduction Operations
	Reductions
	Predefined Reductions
	User Defined Reductions (version 4.0)
	Parallelizing Multiple Loops in Nest
	Working with Loops
	Limitations of Parallel For / Do
	Worksharing Constructs: Sections
	Work-Sharing Constructs: Single
	Exercise: Red-Black Method in Parallel
	Red-Black Method
	Exercise: Red Black Method
	Performance Tips
	Agenda
	What About The Data?
	Private Clause
	Firstprivate Clause
	OpenMP Data Environment
	Recap: Private and Firstprivate Data
	Parallel Random Number Generator (RNG)
	Threadprivate Data
	Performance and Correctness Tips
	Agenda
	OpenMP Synchronization
	Barrier: Explicit and Implicit
	Mutual Exclusion
	Why Is this needed?
	How could this happen?
	Solution: Critical Section
	Atomic
	Mutual Exclusion: critical and atomic
	Data Races / Race Condition
	Care with Synchronization
	Updates to Shared Data
	Updates to Shared Data
	The Flush Directive
	What Else Does Flush Influence?�
	Implied Flush
	Agenda
	Tasking In OpenMP
	The Tasking Concept In OpenMP
	The Tasking Construct
	Tasking - Who Does What And When ?
	Tasking Example
	Tasking Example
	Tasking Example
	Tasking Example
	Task Completion
	Clauses On The Task Directive
	Default Data-Sharing Attributes for Tasks
	Task Scheduling Points In OpenMP
	Tied and Untied Tasks
	Taskyield
	Final clause
	Loop parallelization with tasks
	The taskloop construct
	Slide Number 103

