
CSE 613: Parallel Programming

Lecture 6

(Basic Parallel Algorithmic Techniques)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

Some Basic Techniques

1. Divide-and-Conquer

― Recursive

― Non-recursive

― Contraction

2. Pointer Techniques

― Pointer Jumping

― Graph Contraction

3. Randomization

― Sampling

― Symmetry Breaking

Divide-and-Conquer

1. Divide: divide the original problem into smaller

subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems

(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem

Divide-and-Conquer

― The divide-and-conquer paradigm improves program

modularity, and often leads to simple and efficient algorithms

― Since the subproblems created in the divide step are often

independent, they can be solved in parallel

― If the subproblems are solved recursively, each recursive

divide step generates even more independent subproblems to

be solved in parallel

― In order to obtain a highly parallel algorithm it is often

necessary to parallelize the divide and merge steps, too

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p  r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q   (p + r) / 2 

5. Merge (A, p, q, r)

Par-Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p  r then

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q   (p + r) / 2 

6. Merge (A, p, q, r)

5. sync

Recursive D&C: Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p  r then

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q   (p + r) / 2 

6. Merge (A, p, q, r)

5. sync

𝑇1 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

2𝑇1
𝑛

2
+  𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛 log 𝑛

𝑇∞ 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

𝑇∞
𝑛

2
+  𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
=  log 𝑛

Span:

Work:

Recursive D&C: Parallel Merge Sort

Too small!
Must parallelize the

Merge routine.

Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array 𝐴 1,… , 𝑛 of 𝑛 distinct keys using 𝑝 ≤ 𝑛 processors.

Steps (without oversampling):

1. Pivot Selection: Select (uniformly at random) and sort 𝑚 = 𝑝 − 1 pivot

elements 𝑒1, 𝑒2, … , 𝑒𝑚. These elements define 𝑚+ 1 = 𝑝 buckets:

−∞, 𝑒1 , 𝑒1, 𝑒2 , … , 𝑒𝑚−1, 𝑒𝑚 , 𝑒𝑚, +∞

2. Local Sort: Divide 𝐴 into 𝑝 segments of equal size, assign each segment

to different processor, and sort locally.

3. Local Bucketing: If 𝑚 ≤
𝑛

𝑝
, each processor inserts the pivot elements

into its local sorted sequence using binary search, otherwise inserts its

local elements into the sorted pivot elements. Thus the keys are divided

among 𝑚 + 1 = 𝑝 buckets.

4. Merge Local Buckets: Processor 𝑖 1 ≤ 𝑖 ≤ 𝑝 merges the contents of

bucket 𝑖 from all processors through a local sort.

5. Final Result: Each processor copies its bucket to a global output array so

that bucket 𝑖 1 ≤ 𝑖 ≤ 𝑝 − 1 precedes bucket 𝑖 + 1 in the output.

Steps (without oversampling):

1. Pivot Selection:  𝑚 log 𝑚 =  𝑝 log 𝑝 [worst case]

2. Local Sort: 
𝑛

𝑝
log

𝑛

𝑝
[worst case]

3. Local Bucketing:

 𝑚𝑖𝑛 𝑚 log
𝑛

𝑝
,
𝑛

𝑝
log𝑚 = 

𝑛

𝑝
log

𝑛

𝑝
[worst case]

4. Merge Local Buckets: 
𝑛

𝑚
log

𝑛

𝑚
= 

𝑛

𝑝
log

𝑛

𝑝
[expected]

(not quite correct as the largest bucket can have


𝑛

𝑚
log𝑚 keys with significant probability)

5. Final Result:
𝑛

𝑚
= 

𝑛

𝑝
[expected]

Overall:  𝑛

𝑝
log

𝑛

𝑝
+ 𝑝 log 𝑝 [expected]

Non-Recursive D&C: Parallel Sample Sort

Contraction

1. Reduce: reduce the original problem to a smaller problem

2. Conquer: solve the smaller problem (often recursively)

3. Expand: use the solution to the smaller problem

to obtain a solution for the original larger problem

Contraction: Prefix Sums

Input: A sequence of 𝑛 elements 𝑥1, 𝑥2, … , 𝑥𝑛 drawn from a

set 𝑆 with a binary associative operation, denoted by .

Output: A sequence of 𝑛 partial sums 𝑠1, 𝑠2, … , 𝑠𝑛 , where

𝑠𝑖 = 𝑥1𝑥2 … 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

5 3 7 1 3 6 2 4

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

5 8 15 16 19 25 27 31

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8

 = binary addition

Contraction: Prefix Sums

Prefix-Sum (𝑥1, 𝑥2, … , 𝑥𝑛 , ) { 𝑛 = 2𝑘 for some 𝑘 ≥ 0.

Return prefix sums

𝑠1, 𝑠2, … , 𝑠𝑛 }

4. parallel for 𝑖 ← 1 to Τ𝑛 2 do

5. 𝑦𝑖 ← 𝑥2𝑖−1𝑥2𝑖

6. 𝑧1, 𝑧2, … , 𝑧 Τ𝑛 2 ← Prefix-Sum(𝑦1, 𝑦2, … , 𝑦 Τ𝑛 2 , )

1. if 𝑛 = 1 then

3. else

2. 𝑠1 ← 𝑥1

7. parallel for 𝑖 ← 1 to 𝑛 do

8. if 𝑖 = 1 then 𝑠1 ← 𝑥1

9. else if 𝑖 = 𝑒𝑣𝑒𝑛 then 𝑠𝑖 ← 𝑧 Τ𝑖 2

10. else 𝑠𝑖 ← 𝑧 Τ𝑖−1 2 𝑥𝑖

11. return 𝑠1, 𝑠2, … , 𝑠𝑛

Contraction: Prefix Sums

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8

𝑦1 𝑦2 𝑦3 𝑦4

𝑦′1 𝑦′2

𝑦′′1

𝑧1 𝑧2 𝑧3 𝑧4

𝑧′1 𝑧′2

𝑧′′1

Contraction: Prefix Sums

5 3 7 1 3 6 2 4

5 8 15 16 19 25 27 31

8 8 9 6

16 15

31

8 16 25 31

16 31

31

Contraction: Prefix Sums

𝑇1 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

𝑇1
𝑛

2
+  𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛

𝑇∞ 𝑛 = ቐ
 1 , 𝑖𝑓 𝑛 = 1,

𝑇∞
𝑛

2
+ 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  log𝑛

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
= 

𝑛

log 𝑛

Span:

Work:
Prefix-Sum (𝑥1, 𝑥2, … , 𝑥𝑛 , ) { 𝑛 = 2𝑘 for some 𝑘 ≥ 0.

Return prefix sums

𝑠1, 𝑠2, … , 𝑠𝑛 }

4. parallel for 𝑖 ← 1 to Τ𝑛 2 do

5. 𝑦𝑖 ← 𝑥2𝑖−1𝑥2𝑖

6. 𝑧1, 𝑧2, … , 𝑧 Τ𝑛 2 ← Prefix-Sum(𝑦1, 𝑦2, … , 𝑦 Τ𝑛 2 , )

1. if 𝑛 = 1 then

3. else

2. 𝑠1 ← 𝑥1

7. parallel for 𝑖 ← 1 to 𝑛 do

8. if 𝑖 = 1 then 𝑠1 ← 𝑥1

9. else if 𝑖 = 𝑒𝑣𝑒𝑛 then 𝑠𝑖 ← 𝑧 Τ𝑖 2

10. else 𝑠𝑖 ← 𝑧 Τ𝑖−1 2 𝑥𝑖

11. return 𝑠1, 𝑠2, … , 𝑠𝑛

Observe that we have assumed here that a parallel for loop can be

executed in  1 time. But recall that cilk_for is implemented using

divide-and-conquer, and so in practice, it will take  log 𝑛 time. In that

case, we will have 𝑇∞ 𝑛 =  log2𝑛 , and parallelism = 
𝑛

log2 𝑛
.

Pointer Techniques: Pointer Jumping

The pointer jumping (or path doubling) technique allows fast

processing of data stored in the form of a set of rooted directed trees.

For every node 𝑣 in the set pointer jumping involves replacing 𝑣 →

𝑛𝑒𝑥𝑡 with 𝑣 → 𝑛𝑒𝑥𝑡 → 𝑛𝑒𝑥𝑡 at every step.

Some Applications

― Finding the roots of a forest of directed trees

― Parallel prefix on rooted directed trees

― List ranking

Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots (𝑛, 𝑃, 𝑆) { Input: A forest of rooted directed trees, each

with a self-loop at its root, such that each

edge is specified by 𝑣, 𝑃 𝑣 for 1 ≤ 𝑣 ≤ 𝑛.

Output: For each 𝑣, the root 𝑆 𝑣 of the tree

containing 𝑣. }

1. parallel for 𝑣 ← 1 to 𝑛 do

2. 𝑆 𝑣 ← 𝑃 𝑣

7. 𝑆 𝑣 ← 𝑆 𝑆 𝑣

8. if 𝑆 𝑣 ≠ 𝑆 𝑆 𝑣 then 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

1 2

3 4

5

6 7

8

9

10

11

12

13

1 2

3
4 5

6

7

8

9

10

11

12

13

1

2

3 54

6

8
7

9

10 11

12

13

3. 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

4. while 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 do

5. 𝑓𝑙𝑎𝑔 ← 𝑓𝑎𝑙𝑠𝑒

6. parallel for 𝑣 ← 1 to 𝑛 do

Pointer Jumping: Roots of a Forest of Directed Trees

Let ℎ be the maximum

height of any tree in the

forest.

Observe that the distance

between 𝑣 and 𝑆 𝑣

doubles after each

iteration until 𝑆 𝑆 𝑣 is

the root of the tree

containing 𝑣.

Work: 𝑇1 𝑛 =  𝑛 log ℎ and Span: 𝑇∞ 𝑛 =  log ℎ

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛

Find-Roots (𝑛, 𝑃, 𝑆) { Input: A forest of rooted directed trees, each

with a self-loop at its root, such that each

edge is specified by 𝑣, 𝑃 𝑣 for 1 ≤ 𝑣 ≤ 𝑛.

Output: For each 𝑣, the root 𝑆 𝑣 of the tree

containing 𝑣. }

1. parallel for 𝑣 ← 1 to 𝑛 do

2. 𝑆 𝑣 ← 𝑃 𝑣

7. 𝑆 𝑣 ← 𝑆 𝑆 𝑣

8. if 𝑆 𝑣 ≠ 𝑆 𝑆 𝑣 then 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

3. 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

4. while 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 do

5. 𝑓𝑙𝑎𝑔 ← 𝑓𝑎𝑙𝑠𝑒

6. parallel for 𝑣 ← 1 to 𝑛 do

Hence, the number of iterations is log ℎ. Thus (assuming that each

parallel for loop takes  1 time to execute),

Pointer Techniques: Graph Contraction

1. Contract: the graph is reduced in size while maintaining

some of its original properties (depending on the problem)

2. Conquer: solve the problem on the contracted graph

(often recursively)

3. Expand: use the solution to the contracted graph

to obtain a solution for the original graph

Some Applications

― Finding connected components of a graph

― Minimum spanning trees

Graph Contraction: Connected Components (CC)

1. Direct the edges to form a forest of rooted directed trees

2. Use pointer jumping to contract each such tree to a single vertex

3. Recursively find the CCs of the contracted graph

4. Expand those CCs to label the vertices of the original graph with

CC numbers

contraction

Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which

can locally look the same to all vertices.

Some Applications

― Prefix sums in a linked list (list ranking)

― Selecting a large independent set from a graph

― Graph contraction

Symmetry Breaking: List Ranking

1. Flip a coin for each list node

2. If a node 𝑢 points to a node 𝑣, and 𝑢 got a head while 𝑣 got a tail,

combine 𝑢 and 𝑣

3. Recursively solve the problem on the contracted list

4. Project this solution back to the original list

1 1 1 1 1 11 1 1

t h t h h t t h

1 2 1 2 1 11

8 7 5 4 2 11

8 7 6 5 4 13 2 1

solve recursively

break symmetry:

contract:

expand:

Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability
1

4

(as a node gets head with probability
1

2
and the next node gets tail

with probability
1

2
).

Hence, a quarter of the nodes get removed in each iteration

(expected number).

Thus the expected number of iterations is  log 𝑛 .

In fact, it can be shown that with high probability,

𝑇1 𝑛 =  𝑛 and 𝑇∞ 𝑛 =  log 𝑛

