
CSE 613: Parallel Programming

Lecture 3

(The Cilk++ Concurrency Platform)
(inspiration for many slides comes from talks given

by Charles Leiserson and Matteo Frigo)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

The Cilk++ Concurrency Platform

― Supports dynamic multithreading

― Includes a small set of linguistic extensions to C++ to support

fork-join parallelism

― Based on multithreaded language technology developed at

MIT and MIT spin-off Cilk Arts (acquired by Intel in 2009)

― Includes

o A provably efficient scheduler

o Hyperobject library for parallelizing code with global variables

o Race detector (Cilkscreen)

o Scalability analyzer (Cilkview)

Download URL

― Open Cilk @ MIT Cilk Hub:

http://cilk.mit.edu/

― Intel® Cilk Plus:

https://www.cilkplus.org/

The Cilk++ Concurrency Platform

Serial to Parallel

using

Three Keywords

Nested Parallelism in Cilk++
int comb (int n, int r)
{

if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = comb(n – 1, r - 1);
y = comb(n – 1, r);

return (x + y);
}

int comb (int n, int r)
{

if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Grant permission to execute

the called (spawned) function

in parallel with the caller.Control cannot pass this point

until all spawned children have

returned.

Serial C++ code

Cilk++ code

Oblivious of the number

of cores / processors!

Function return

enforces implicit

synchronization.

Loop Parallelism in Cilk++

in-place

transpose

for (int i = 1; i < n; ++i)
for (int j = 0; j < i; ++j)

{
double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

Serial C++ code

cilk_for (int i = 1; i < n; ++i)
for (int j = 0; j < i; ++j)

{
double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

Cilk++ code

Allows all iterations of the loop

to be executed in parallel.
Converted to spawns and syncs using

recursive divide-and-conquer.

Measuring

Parallel Performance

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

(4, 2)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

1

(4, 2)

(3, 1)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

2

(4, 2)

(3, 1) (3, 2)

(2, 0)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

3

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

4

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 0)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

5

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 1) (1, 0) (1, 1)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

6

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 1) (1, 0) (1, 1)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

7

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 1) (1, 0) (1, 1)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

8

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 1) (1, 0) (1, 1)

int comb (int n, int r)
{
if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

cilk_sync;

return (x + y);
}

Cilk++ Execution Model

9

Computation DAG

strand

return edge

spawn edge continue edge

call edge

― A parallel instruction stream is represented by a DAG G = (V, E).

― Each vertex v  V is a strand which is a sequence of instructions

without a spawn, call, return or exception.

― Each edge e  E is a spawn, call, continue or return edge.

Parallel Performance

Tp = execution time on p cores

span = T

Work Law

Tp T1 / p

Span Law

Tp T

work = T1

Speedup & Parallelism

Tp = execution time on p cores

span = T

Work Law

Tp T1 / p

Span Law

Tp T

work = T1

speedup = T1 / Tp

parallelism = T1 / T

(4, 2)

(3, 1) (3, 2)

(2, 1) (2, 1)(2, 0) (2, 2)

(1, 0) (1, 1) (1, 0) (1, 1)

Parallelism in comb(4, 2)

span: T = 9work: T1 = 21

parallelism = T1 / T = 21 / 9  2.33

Only marginal performance

gains with more than 2 cores!

Implementation of Parallel Loops in Cilk++

cilk_for (int i = s; i < t; ++i)
BODY(i);

void recur(int lo, int hi)
{

if (hi – lo > GRAINSIZE)
{

int mid = lo + (hi – lo) / 2;
cilk_spawn recur(lo, mid);
recur(mid, hi);

}
else

{
for (int i = lo; i < hi; ++i)

BODY(i);
}

}

recur(s, t);

divide-and-conquer

implementation

Analysis of Parallel Loops
cilk_for (int i = 1; i < n; ++i)

for (int j = 0; j < i; ++j)
{

double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

― Span of loop control =  log 𝑛

― Maximum span of an iteration =  𝑛

― Work, 𝑇1 𝑛 =  𝑛2

― Span, 𝑇∞ 𝑛 =  𝑛 + log 𝑛 =  𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛

So
u

rc
e

:C
h

ar
le

s
Le

is
er

so
n

Analysis of Parallel Loops

cilk_for (int i = 1; i < n; ++i)
cilk_for (int j = 0; j < i; ++j)

{
double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

― Span of outer loop control =  log 𝑛

― Maximum span of inner loop control =  log 𝑛

― Span of body =  1

― Work, 𝑇1 𝑛 =  𝑛2

― Span, 𝑇∞ 𝑛 =  log 𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
= 

𝑛2

log 𝑛

Analysis of Parallel Loops

#pragma cilk_grainsize = G

cilk_for (int i = 0; i < n; ++i)
A[i] += B[i];

― Work, 𝑇1 𝑛 = 𝑛 ∙ 𝑡𝑖𝑡𝑒𝑟 +
𝑛

𝐺
∙ 𝑡𝑠𝑝𝑎𝑤𝑛

― Span, 𝑇∞ 𝑛 = 𝐺 ∙ 𝑡𝑖𝑡𝑒𝑟 + log
𝑛

𝐺
∙ 𝑡𝑠𝑝𝑎𝑤𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
=

𝑛

𝐺
∙

1+
𝑟

𝐺

1+
𝑟

𝐺
∙log

𝑛

𝐺

, where, 𝑟 =
𝑡𝑠𝑝𝑎𝑤𝑛

𝑡𝑖𝑡𝑒𝑟

So
u

rc
e

:C
h

ar
le

s
Le

is
er

so
n

Implementation of Parallel Loops in Cilk++

void cilk_for_custom_grainsize(int s, int t)
{

int p = cilk::current_worker_count();

#pragma cilk_grainsize = (t – s) / (4 * p)

cilk_for (int i = s; i < t; ++i)
BODY(i);

}

Default GRAINSIZE: 𝑚𝑖𝑛
𝑁

8𝑝
, 512

― p = number of processing elements

― N = number of loop iterations

― Works well for loops that are reasonably balanced

Custom GRAINSIZE

― small  high overhead

― large  less parallelism

Cilk++’s

Work-Stealing Scheduler

Cilk++’s Work-Stealing Scheduler

― A randomized distributed scheduler

― Achieves

o 𝑇𝑝 =
𝑇1

𝑝
+  𝑇∞ time (provably)

o 𝑇𝑝 ≈
𝑇1

𝑝
+ 𝑇∞ time (empirically)

― Near-perfect linear speedup as long as parallelism,
𝑇1

𝑇∞
≫ 𝑝

― Uses at most p times the space used by a serial execution

― Has provably good cache performance

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

The Cilkview

Scalability Analyzer

Cilkview Scalability Analyzer

❑ Measures work and span using dynamic instrumentation.

❑ Derives upper bounds on parallel performance using work

and span.

❑ Estimates scheduling overhead to compute a burdened span

for lower bounds.

Cilkview Scalability Analyzer
template < typename T >
void qsort(T p, T r)
{

if (p != r)
{

T q = partition(p, r, bind2nd(less< typename
iterator_traits< T >::value_type >(), *p));

cilk_spawn qsort(p, q);

qsort(max(p + 1, q), r);

cilk_sync;
}

}

int cilk_main()
{

int n = 10000000;
double a[n];

cilk::cilkview cv;

cilk_for (int i = 0; i < n; i++)
a[i] = sin((double) i);

cv.start();

qsort(a, a + n);

cv.stop();

cv.dump(``qsort’’);

return 0;
}

Cilkview Scalability Analyzer

Work Law

(linear speedup)

Span Law

Burdened Parallelism

(scheduling overhead)

Measured Speedup

Parallelism

Source: He, Leiserson & Leiserson, 2009

Race Bugs

and

the Cilkscreen Race Detector

Race Bugs

int x = 0;

cilk_for (int i = 0; i < 2; i++)

x++;

printf(“%d”, x);

x++ x++

printf(“%d”, x)

x = 0
r1 = x r2 = x

printf(“%d”, x)

x = 0

r1++ r2++

x = r1 x = r2

A determinacy race occurs if two logically parallel instructions access

the same memory location and at least one of them performs a write.

Critical Sections and Mutexes

int r = 0;

cilk_for (int i = 0; i < n; i++)

r += eval(x[i]);race

cilk::mutex mtx;

cilk_for (int i = 0; i < n; i++)

mtx.lock();

r += eval(x[i]);

mtx.unlock();

critical section

two or more strands

must not access

at the same time

mutex (mutual exclusion)

an attempt by a strand

to lock an already locked mutex

causes that strand to block (i.e., wait)

until the mutex is unlocked

Problems

− lock overhead

− lock contention

Critical Sections and Mutexes

int r = 0;

cilk_for (int i = 0; i < n; i++)

r += eval(x[i]);race

cilk::mutex mtx;

cilk_for (int i = 0; i < n; i++)

mtx.lock();

r += eval(x[i]);

mtx.unlock();

− slightly better solution

− but lock contention can still destroy parallelism

cilk::mutex mtx;

cilk_for (int i = 0; i < n; i++)

int y = eval(x[i]);

mtx.lock();

r += y;

mtx.unlock();

Cilkscreen Race Detector

― If determinacy data races exist in an ostensibly deterministic

program (e.g., a program with no mutexes), Cilkscreen

guarantees to find such a race.

― Uses regression tests on user-provided test inputs

― Reports filenames, line and variables involved in races as well as

stack traces.

― Runs the binary executable using dynamic instrumentation.

― Runs about 20 times slower than real-time.

Race Bugs

and

the Cilk++ Reducers

Race Bugs and Cilk++ Reducer Hyperobjects

― Cilk++ provides reducer hyperobjects to mitigate data races on

nonlocal variables without locks and code restructuring

― A variable x can be declared a Cilk++ reducer over an associative

operation such as addition, list concatenation etc.

― Strands can update x as if it were an ordinary local variable, but x

is, in fact, maintained as a collection of different views.

― Clik++ runtime system coordinates the views and combines them

when appropriate.

cilk::reducer_opadd< int > r;

cilk_for (int i = 0; i < n; i++)

r += eval(x[i]);

cout << r.get_value();

a summing

reducer over int

updates are resolved automatically

without races or contention

at the end the

final int value

can be extracted

x1 = 0;

x1 += 2;

x1++;

x1 += 3;

x1 += 4;

x1 += 7;

x1 += 5;

x1 += 4;

x2 = 0;

x2 += 2;

x2++;

x2 += 6;

x2 += 9;

x2 += 3;

x2++;

x2 += 8;

x = x1 + x2;

equivalent

Race Bugs and Cilk++ Reducer Hyperobjects

x = 0;

x += 2;

x++;

x += 3;

x += 4;

x += 7;

x += 5;

x += 4;

x += 2;

x++;

x += 6;

x += 9;

x += 3;

x++;

x += 8;

original

x1 = 0;

x1 += 2;

x1++;

x1 += 3;

x1 += 4;

x2 = 0;

x2 += 7;

x2 += 5;

x2 += 4;

x2 += 2;

x2++;

x3 = 0;

x3 += 6;

x3 += 9;

x3 += 3;

x3++;

x3 += 8;

x = x1 + x2 + x3;

equivalent

If you do not need to look at intermediate values the

result is determinate because addition is associative.

raceless

parallel

execution

raceless

parallel

execution

Cilk++ Reducer Library

― Many commonly used reducers

o reducer_list_append

o reducer_list_prepend

o reducer_max

o reducer_max_index

o reducer_min

o reducer_min_index

o reducer_opadd

o reducer_ostream

o reducer_basic_string

o …

― One can also make one’s own reducers using cilk::monoid_base

and cilk::reducer

Some Concluding Remarks

Cilk++ seems to have several major advantages

− very easy to use (compared to DIY platforms like pthreads)

− portable code (e.g., core-/processor-oblivious)

− produces efficient executables

(efficient scheduler, cache-efficiency)

− useful toolkit (cilkview, cilkscreen)

