
CSE 613: Parallel Programming

Lecture 3

( The Cilk++ Concurrency Platform )
( inspiration for many slides comes from talks given 

by Charles Leiserson and Matteo Frigo )

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019



The Cilk++ Concurrency Platform

― Supports dynamic multithreading

― Includes a small set of linguistic extensions to C++ to support 

fork-join parallelism

― Based on multithreaded language technology developed at 

MIT and MIT spin-off Cilk Arts ( acquired by Intel in 2009 )

― Includes

o A provably efficient scheduler

o Hyperobject library for parallelizing code with global variables

o Race detector ( Cilkscreen )

o Scalability analyzer ( Cilkview )



Download URL  

― Open Cilk @ MIT Cilk Hub: 

http://cilk.mit.edu/

― Intel® Cilk Plus:

https://www.cilkplus.org/

The Cilk++ Concurrency Platform



Serial to Parallel

using 

Three Keywords



Nested Parallelism in Cilk++
int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = comb( n – 1, r - 1 );
y = comb( n – 1, r );

return ( x + y );
}

int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Grant permission to execute 

the called ( spawned ) function 

in parallel with the caller.Control cannot pass this point 

until all spawned children have 

returned.

Serial C++ code

Cilk++ code

Oblivious of the number 

of cores / processors!

Function return 

enforces  implicit 

synchronization.



Loop Parallelism in Cilk++

in-place

transpose

for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Serial C++ code

cilk_for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Cilk++ code

Allows all iterations of the loop 

to be executed in parallel.
Converted to spawns and syncs using 

recursive divide-and-conquer.



Measuring

Parallel Performance



int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model



( 4, 2 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

1



( 4, 2 )

( 3, 1 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

2



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 0 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

3



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

4



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 0 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

5



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

6



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

7



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

8



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = cilk_spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

cilk_sync;

return ( x + y );
}

Cilk++ Execution Model

9



Computation DAG

strand

return edge

spawn edge continue edge

call edge

― A parallel instruction stream is represented by a DAG G = ( V, E ).

― Each vertex v  V is a strand which is a sequence of instructions 

without a spawn, call, return or exception.

― Each edge e  E is a spawn, call, continue or return edge.



Parallel Performance

Tp = execution time on p cores

span = T

Work Law

Tp T1 / p

Span Law

Tp T

work = T1



Speedup & Parallelism

Tp = execution time on p cores

span = T

Work Law

Tp T1 / p

Span Law

Tp T

work = T1

speedup = T1 / Tp

parallelism = T1 / T



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

Parallelism in comb( 4, 2 )

span: T = 9work: T1 = 21

parallelism = T1 / T = 21 / 9  2.33

Only marginal performance 

gains with more than 2 cores!



Implementation of Parallel Loops in Cilk++

cilk_for ( int i = s; i < t; ++i )
BODY( i );

void recur( int lo, int hi )
{

if ( hi – lo > GRAINSIZE )
{

int mid = lo + ( hi – lo ) / 2;
cilk_spawn recur( lo, mid );
recur( mid, hi );  

}
else

{
for ( int i = lo; i < hi; ++i )

BODY( i );
} 

}

recur( s, t );

divide-and-conquer

implementation



Analysis of Parallel Loops
cilk_for ( int i = 1; i < n; ++i )

for ( int j = 0; j < i; ++j )
{

double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

― Span of loop control =  log 𝑛

― Maximum span of an iteration =  𝑛

― Work, 𝑇1 𝑛 =  𝑛2

― Span, 𝑇∞ 𝑛 =  𝑛 + log 𝑛 =  𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛
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Analysis of Parallel Loops

cilk_for ( int i = 1; i < n; ++i )
cilk_for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

― Span of outer loop control =  log 𝑛

― Maximum span of inner loop control =  log 𝑛

― Span of body =  1

― Work, 𝑇1 𝑛 =  𝑛2

― Span, 𝑇∞ 𝑛 =  log 𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
= 

𝑛2

log 𝑛



Analysis of Parallel Loops

#pragma cilk_grainsize = G

cilk_for ( int i = 0; i < n; ++i )
A[ i ] += B[ i ]; 

― Work, 𝑇1 𝑛 = 𝑛 ∙ 𝑡𝑖𝑡𝑒𝑟 +
𝑛

𝐺
∙ 𝑡𝑠𝑝𝑎𝑤𝑛

― Span, 𝑇∞ 𝑛 = 𝐺 ∙ 𝑡𝑖𝑡𝑒𝑟 + log
𝑛

𝐺
∙ 𝑡𝑠𝑝𝑎𝑤𝑛

― Parallelism =
𝑇1 𝑛

𝑇∞ 𝑛
=

𝑛

𝐺
∙

1+
𝑟

𝐺

1+
𝑟

𝐺
∙log

𝑛

𝐺

,   where,  𝑟 =
𝑡𝑠𝑝𝑎𝑤𝑛

𝑡𝑖𝑡𝑒𝑟
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Implementation of Parallel Loops in Cilk++

void cilk_for_custom_grainsize( int s, int t )
{

int p = cilk::current_worker_count( );

#pragma cilk_grainsize = ( t – s ) / ( 4 * p )

cilk_for ( int i = s; i < t; ++i )
BODY( i );

}

Default GRAINSIZE:  𝑚𝑖𝑛
𝑁

8𝑝
, 512

― p = number of processing elements

― N = number of loop iterations

― Works well for loops that are reasonably balanced

Custom GRAINSIZE

― small  high overhead

― large  less parallelism



Cilk++’s

Work-Stealing Scheduler



Cilk++’s Work-Stealing Scheduler

― A randomized distributed scheduler

― Achieves

o 𝑇𝑝 =
𝑇1

𝑝
+  𝑇∞ time ( provably )

o 𝑇𝑝 ≈
𝑇1

𝑝
+ 𝑇∞ time ( empirically )

― Near-perfect linear speedup as long as parallelism,  
𝑇1

𝑇∞
≫ 𝑝

― Uses at most p times the space used by a serial execution

― Has provably good cache performance



― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one 

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4



The Cilkview

Scalability Analyzer



Cilkview Scalability Analyzer

❑ Measures work and span using dynamic instrumentation.

❑ Derives upper bounds on parallel performance using work 

and span.

❑ Estimates scheduling overhead to compute a burdened span

for lower bounds.



Cilkview Scalability Analyzer
template < typename T > 
void qsort( T p, T r )
{

if ( p != r )
{

T q = partition( p, r, bind2nd( less< typename 
iterator_traits< T >::value_type >( ), *p ) );

cilk_spawn qsort( p, q );

qsort( max( p + 1, q ), r );

cilk_sync;
} 

}

int cilk_main( ) 
{

int n = 10000000;
double a[ n ];

cilk::cilkview cv;

cilk_for ( int i = 0; i < n; i++ ) 
a[ i ] = sin( ( double ) i );

cv.start( );

qsort( a, a + n );

cv.stop( );

cv.dump( ``qsort’’ );

return 0;
}



Cilkview Scalability Analyzer

Work Law

( linear speedup )

Span Law

Burdened Parallelism

( scheduling overhead )

Measured Speedup

Parallelism

Source: He, Leiserson & Leiserson, 2009



Race Bugs

and

the Cilkscreen Race Detector



Race Bugs

int x = 0;

cilk_for ( int i = 0; i < 2; i++ )

x++;

printf( “%d”, x );

x++ x++

printf( “%d”, x )

x = 0
r1 = x r2 = x

printf( “%d”, x )

x = 0

r1++ r2++

x = r1 x = r2

A determinacy race occurs if two logically parallel instructions access 

the same memory location and at least one of them performs a write.



Critical Sections and Mutexes

int r = 0;

cilk_for ( int i = 0; i < n; i++ )

r += eval( x[ i ] );race

cilk::mutex mtx;

cilk_for ( int i = 0; i < n; i++ )

mtx.lock( );

r += eval( x[ i ] );

mtx.unlock( );

critical section

two or more strands

must not access

at the same time

mutex ( mutual exclusion )

an attempt by a strand 

to lock an already locked mutex

causes that strand to block (i.e., wait)

until the mutex is unlocked

Problems

− lock overhead

− lock contention



Critical Sections and Mutexes

int r = 0;

cilk_for ( int i = 0; i < n; i++ )

r += eval( x[ i ] );race

cilk::mutex mtx;

cilk_for ( int i = 0; i < n; i++ )

mtx.lock( );

r += eval( x[ i ] );

mtx.unlock( );

− slightly better solution

− but lock contention can still destroy parallelism

cilk::mutex mtx;

cilk_for ( int i = 0; i < n; i++ )

int y = eval( x[ i ] );

mtx.lock( );

r += y;

mtx.unlock( );



Cilkscreen Race Detector

― If determinacy data races exist in an ostensibly deterministic 

program ( e.g., a program with no mutexes ), Cilkscreen

guarantees to find such a race.

― Uses regression tests on user-provided test inputs

― Reports filenames, line and variables involved in races as well as 

stack traces.

― Runs the binary executable using dynamic instrumentation.

― Runs about 20 times slower than real-time.



Race Bugs

and

the Cilk++ Reducers



Race Bugs and Cilk++ Reducer Hyperobjects

― Cilk++ provides reducer hyperobjects to mitigate data races on 

nonlocal variables without locks and code restructuring

― A variable x can be declared a Cilk++ reducer over an associative

operation such as addition, list concatenation etc.

― Strands can update x as if it were an ordinary local variable, but x

is, in fact, maintained as a collection of different views.

― Clik++ runtime system coordinates the views and combines them 

when appropriate.

cilk::reducer_opadd< int > r;

cilk_for ( int i = 0; i < n; i++ )

r += eval( x[ i ] );

cout << r.get_value( );

a summing 

reducer over int

updates are resolved automatically 

without races or contention

at the end the 

final int value 

can be extracted



x1 = 0;

x1 += 2;

x1++;

x1 += 3;

x1 += 4;

x1 += 7;

x1 += 5;

x1 += 4;

x2 = 0;

x2 += 2;

x2++;

x2 += 6;

x2 += 9;

x2 += 3;

x2++;

x2 += 8;

x = x1 + x2;

equivalent

Race Bugs and Cilk++ Reducer Hyperobjects

x = 0;

x += 2;

x++;

x += 3;

x += 4;

x += 7;

x += 5;

x += 4;

x += 2;

x++;

x += 6;

x += 9;

x += 3;

x++;

x += 8;

original

x1 = 0;

x1 += 2;

x1++;

x1 += 3;

x1 += 4;

x2 = 0;

x2 += 7;

x2 += 5;

x2 += 4;

x2 += 2;

x2++;

x3 = 0;

x3 += 6;

x3 += 9;

x3 += 3;

x3++;

x3 += 8;

x = x1 + x2 + x3;

equivalent

If you do not need to look at intermediate values the 

result is determinate because addition is associative. 

raceless

parallel

execution

raceless

parallel

execution



Cilk++ Reducer Library

― Many commonly used reducers

o reducer_list_append

o reducer_list_prepend

o reducer_max

o reducer_max_index

o reducer_min

o reducer_min_index

o reducer_opadd

o reducer_ostream

o reducer_basic_string

o …

― One can also make one’s own reducers using cilk::monoid_base

and cilk::reducer



Some Concluding Remarks

Cilk++ seems to have several major advantages

− very easy to use ( compared to DIY platforms like pthreads )

− portable code ( e.g., core-/processor-oblivious )

− produces efficient executables

( efficient scheduler, cache-efficiency )

− useful toolkit ( cilkview, cilkscreen ) 


