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Parallel Execution Time & Overhead
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B Esscntial/Excess Computation ] Interprocessor Communication

il Idling

Parallel running time on p processing elements,

TP = lend = Ustart~
where, t. .., = starting time of the processing element
that starts first
t.., = termination time of the processing element

that finishes last



Parallel Execution Time & Overhead
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Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

B Esscntial/Excess Computation ] Interprocessor Communication

[: Idling
Sources of overhead ( w.r.t. serial execution )

— Interprocess interaction

— Interact and communicate data ( e.g., intermediate results )
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize



Parallel Execution Time & Overhead
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Overhead function or total parallel overhead,
To = pT,-T,

where, p = number of processing elements
T = time spent doing useful work
( often execution time of the fastest serial algorithm )



Speedup

Let T, = running time using p identical processing elements

Speedup, 5, = %
p

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if Sp=Dp



Speedup

Consider adding n numbers @ o @ @ @_ @ @ @ ©0 00 @ ® @ @

using n identical processing

(a) Initial data distribition and the first communication step

elements.
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Parallel runtime, T,,= ®(logn)

ic) Third communication step

“Introduction to Parallel Computing”, 29 Edition
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(&) Accumulation of the sum at processing element O after the Onal communicatior



Superlinear Speedup

Theoretically, S, < p

But in practice superlinear speedup is sometimes observed,
thatis, S, > p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition



Superlinear Speedup
( Cache Effects )

Let cache access latency = 2 ns ,‘ TN, --,.---
DRAM access latency = 100 ns il T
| cache | | cache |
Suppose we want solve a problem
instance that executes k FLOPs. I%l %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. e core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. ( why? )
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9 + 100 x 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

kx21.6

(/)11 ~3.66 > 2

Speedup, S,=

L]



Superlinear Speedup
( Due to Exploratory Decomposition )

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location kK > n and k is odd.

Serial runtime, T; = k A ARIABL AR Alzn]
X
Parallel running time with n sequential search
processing elements, T,, = 1
Speedup, S,, = I_ k>n AlLl ARIABBL ... AL Al2n]
) n Tn X
\ Y i Y J \ J \ J
Speedup is superlinear! T Plugl e e e P,

parallel search



Parallelism & Span Law

We defined, T;, = runtime on p identical processing elements

Then span, Ty, = runtime on an infinite number of identical

processing elements

. T
Parallelism, P = —&

Teo

Parallelism is an upper bound on speedup, i.e., S, < P (why?)

Span Law
Tp > T




Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by T,

On a Parallel Computer: is given by pT,,

Work Law

T
T, > —
p




Work Optimality

Let T, = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided
pr — ®(Ts)

Our algorithm for adding n numbers using n identical processing

elements is clearly not work optimal.



Adding n Numbers Work-Optimality

We reduce the number of processing YRR

elements which in turn increases the .

granularity of the subproblem assigned © ¢ ¢ & e N
to each processing element. @ .

. EI'J; Eiﬁ E|];5
Suppose we use p processing elements. )0 6 o S 500
First each processing element locally © @

Source: Grama et al.,
“Introduction to Parallel Computing”, 2" Edition

adds its % numbers in time ® (g)

Then p processing elements adds these p partial sums in time ©(log p).

ThusT, = © (g + logp), and T, = O(n).

So the algorithm is work-optimal provided n = Q(plogp).



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

(-7

serial section

1 processing
element

p processing
elements

fhi/p

L

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T, = (1-1)T, + f%

Ty _ D 1 1

E — f+(1-f)p - (1—f)+5 1=

Speedup, 5, =



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Ty 1 1
Speedup, 5, = - < 7 = -
p (1-f )+5
Amdahl's Law
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Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

I,

serial section

1 processing
element

p processing
elements

(1-1)T, fTy

I

Suppose only a fraction f of a computation was parallelized.

Then serial running time, Ty = (1 — f)T, + pfT,

Speedup, Sp _ % _ (1-f)Tp+pfTp -1+ (p _ 1)f

p Tp




Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

Suppose only a fraction f of a computation was parallelized.
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Strong Scaling vs. Weak Scaling

Strong Strong
Weak Weak
1k
Number of Processors (p) Number of Processors (p)
Strong Scaling
How T, (or S, ) varies with p when the problem size is fixed.
Weak Scaling

How T, ( or ), ) varies with p when the problem size per

processing element is fixed.

Source: Martha Kim, Columbia University



Scalable Parallel Algorithms

. . S T.

Efficiency, E, = =+ = —-
p PTy

Fixed problem size (W) ' Fixed number of processors ip)

Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

P W

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.



Scalable Parallel Algorithms

In order to keep E,, fixed at a constant k, we need

T,
E,=k — =k T, = kpT,
:>pr =T, =kp

For the algorithm that adds n numbers using p processing elements:
T, = d T,==+21
1 =N and 1, ” + 2108p

So in order to keep E), fixed at k, we must have:

n 2k
n=kp(—+210gp>:>n= plogp
1 1—k
n p=1 p=4 p=3a P =16 p =32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
L12 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition



