CSE 613: Parallel Programming

Lecture 2
(Analytical Modeling of Parallel Algorithms)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2019

Parallel Execution Time & Overhead

Exccution Time =m;

£

-—- L

0 p—— | a

Pl | c—_ | _~ E

= © 8

>

P2 = 59 ¢
P3 I c= 2
: E o=
S
P S&d
— Eel
PS5 g 2 &

O c

P6 5.0

o 5

P7 w 35

oS

o

-

+—

£

B Esscntial/Excess Computation] Interprocessor Communication

il Idling

Parallel running time on p processing elements,

TP = lend = Ustart~
where, t. .., = starting time of the processing element
that starts first
t.., = termination time of the processing element

that finishes last

Parallel Execution Time & Overhead

Exccution Time
0 p—— | S
Pl | c—_ |
P2 [==x] K
P3 [

Pd
PS =
P6
P7

Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

B Esscntial/Excess Computation] Interprocessor Communication

[: Idling
Sources of overhead (w.r.t. serial execution)

— Interprocess interaction

— Interact and communicate data (e.g., intermediate results)
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize

Parallel Execution Time & Overhead

Exccution Time %0

£

—)

ro | E— a

Pl] N

; ~ = 5

>

P2 = 59 ¢
P3 | c= 2
. E ok
Pd © B
o e
PSS = .. 02
y g <~

P6 5.9

o -

> (S}

P7 =] @ S

©

o

S

~ . -~ . . . c

B Esscntial/Excess Computation] Interprocessor Communication -

il Idling

Overhead function or total parallel overhead,
To = pT,-T,

where, p = number of processing elements
T = time spent doing useful work
(often execution time of the fastest serial algorithm)

Speedup

Let T, = running time using p identical processing elements

Speedup, 5, = %
p

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if Sp=Dp

Speedup

Consider adding n numbers @ o @ @ @_ @ @ @ ©0 00 @ ® @ @

using n identical processing

(a) Initial data distribition and the first communication step

elements.

-

? 4 11
b3 EH I 1 b3

3 2 =
BB CHCRORORORORORORCRURCR R RS
Serial rU ntime, T1 — @(n) (b) Second communication step

HOLE

w!! ¥

x; ,;
oNoNeNcNcNoNoNoNoNoNcNcReRe R Ne

Iy

Parallel runtime, T,,= ®(logn)

ic) Third communication step

“Introduction to Parallel Computing”, 29 Edition

I
I+
= —

®@-%

_ I _ n
Speedup; Sn_ T, R ®(1ogn) ' ONONONENCNCN®)

ofofoNoNoRoNoRe

S p e e d u p n Ot i d e a | . (d) Fourth communication step

M
Source: Grama et al.,

ONONONONONONORONONONONONENCNONT

(&) Accumulation of the sum at processing element O after the Onal communicatior

Superlinear Speedup

Theoretically, S, < p

But in practice superlinear speedup is sometimes observed,
thatis, S, > p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition

Superlinear Speedup
(Cache Effects)

Let cache access latency = 2 ns ,‘ TN, --,.---
DRAM access latency = 100 ns il T
| cache | | cache |
Suppose we want solve a problem
instance that executes k FLOPs. I%l %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. e core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9 + 100 x 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

kx21.6

(/)11 ~3.66 > 2

Speedup, S,=

L]

Superlinear Speedup
(Due to Exploratory Decomposition)

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location kK > n and k is odd.

Serial runtime, T; = k A ARIABL AR Alzn]
X
Parallel running time with n sequential search
processing elements, T,, = 1
Speedup, S,, = I_ k>n AlLl ARIABBL ... AL Al2n]
) n Tn X
\ Y i Y J \ J \ J
Speedup is superlinear! T Plugl e e e P,

parallel search

Parallelism & Span Law

We defined, T;, = runtime on p identical processing elements

Then span, Ty, = runtime on an infinite number of identical

processing elements

. T
Parallelism, P = —&

Teo

Parallelism is an upper bound on speedup, i.e., S, < P (why?)

Span Law
Tp > T

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T,

On a Parallel Computer: is given by pT,,

Work Law

T
T, > —
p

Work Optimality

Let T, = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided
pr — ®(Ts)

Our algorithm for adding n numbers using n identical processing

elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing YRR

elements which in turn increases the .

granularity of the subproblem assigned © ¢ ¢ & e N
to each processing element. @ .

. EI'J; Eiﬁ E|];5
Suppose we use p processing elements.)0 6 o S 500
First each processing element locally © @

Source: Grama et al.,
“Introduction to Parallel Computing”, 2" Edition

adds its % numbers in time ® (g)

Then p processing elements adds these p partial sums in time ©(log p).

ThusT, = © (g + logp), and T, = O(n).

So the algorithm is work-optimal provided n = Q(plogp).

Scaling Laws

Scaling of Parallel Algorithms
(Amdahl’s Law)

(-7

serial section

1 processing
element

p processing
elements

fhi/p

L

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T, = (1-1)T, + f%

Ty _ D 1 1

E — f+(1-f)p - (1—f)+5 1=

Speedup, 5, =

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Ty 1 1
Speedup, 5, = - < 7 = -
p (1-f)+5
Amdahl's Law
20.00 —
P
18.00 v :
/ Parallel Portion
16.00 7 50%
/ —75%
14.00 90%
/ —95%
12.00 A
(=1
= /
g 10.00 7 —
(=N ,_.---""""r
ul
8.00 ///
6.00 //
4.00 /
. 7 S
s
2.00 £
0.00 .
~ ™ i - [< =] E m E
Mumber of Processors

Source: Wikipedia

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

I,

serial section

1 processing
element

p processing
elements

(1-1)T, fTy

I

Suppose only a fraction f of a computation was parallelized.

Then serial running time, Ty = (1 — f)T, + pfT,

Speedup, Sp _ % _ (1-f)Tp+pfTp -1+ (p _ 1)f

p Tp

Scaling of Parallel Algorithms
(Gustafson-Barsis’ Law)

Suppose only a fraction f of a computation was parallelized.

T Ty (1-Tp+pfTp _

Speedup, Sp = —< == =14+ (p-1Df
T T. T
p p D
I I fR09. 7 f=08+%.¢7 |
60 |- e //// =
o f=05
.//-
g
2 40 - - Y
k5 -
5 ey f=03
m > /-._/f/
20 |- P -
’ /// 2 ;
// et '—--4_——7——-_7=01
e . ——
n l l l - 1 1
0 20 40 60 80 100 i

Number of Processors

Source: Wikipedia

Strong Scaling vs. Weak Scaling

Strong Strong
Weak Weak
1k
Number of Processors (p) Number of Processors (p)
Strong Scaling
How T, (or S,) varies with p when the problem size is fixed.
Weak Scaling

How T, (or),) varies with p when the problem size per

processing element is fixed.

Source: Martha Kim, Columbia University

Scalable Parallel Algorithms

. . S T.

Efficiency, E, = =+ = —-
p PTy

Fixed problem size (W) ' Fixed number of processors ip)

Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

P W

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.

Scalable Parallel Algorithms

In order to keep E,, fixed at a constant k, we need

T,
E,=k — =k T, = kpT,
:>pr =T, =kp

For the algorithm that adds n numbers using p processing elements:
T, = d T,==+21
1 =N and 1, ” + 2108p

So in order to keep E), fixed at k, we must have:

n 2k
n=kp(—+210gp>:>n= plogp
1 1—k
n p=1 p=4 p=3a P =16 p =32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
L12 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

