CSE 613: Parallel Programming

Lecture 2
(Analytical Modeling of Parallel Algorithms)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2019
Parallel running time on \(p \) processing elements,

\[
T_p = t_{\text{end}} - t_{\text{start}},
\]

where, \(t_{\text{start}} = \) starting time of the processing element

that starts first

\(t_{\text{end}} = \) termination time of the processing element

that finishes last

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition
Sources of overhead (w.r.t. serial execution)

- Interprocess interaction
 - Interact and communicate data (e.g., intermediate results)

- Idling
 - Due to load imbalance, synchronization, presence of serial computation, etc.

- Excess computation
 - Fastest serial algorithm may be difficult/impossible to parallelize
Parallel Execution Time & Overhead

Overhead function or total parallel overhead,

\[T_o = pT_p - T, \]

where, \(p = \) number of processing elements

\(T = \) time spent doing useful work

(often execution time of the fastest serial algorithm)
Speedup

Let $T_p = \text{running time using } p \text{ identical processing elements}$

Speedup, $S_p = \frac{T_1}{T_p}$

Theoretically, $S_p \leq p \quad (\text{why?})$

Perfect or linear or ideal speedup if $S_p = p$
Consider adding n numbers using n identical processing elements.

Serial runtime, $T_1 = \Theta(n)$

Parallel runtime, $T_n = \Theta(\log n)$

Speedup, $S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$

Speedup not ideal.

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition
Theoretically, $S_p \leq p$

But in practice *superlinear speedup* is sometimes observed, that is, $S_p > p$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition
Superlinear Speedup (Cache Effects)

Let cache access latency = 2 ns
DRAM access latency = 100 ns
Suppose we want to solve a problem instance that executes \(k \) FLOPs.

With 1 Core: Suppose cache hit rate is 80%.
If the computation performs 1 FLOP/memory access, then each FLOP will take \(2 \times 0.8 + 100 \times 0.2 = 21.6 \) ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)
Suppose cache hit rate is now 90%.
Then each FLOP will take \(2 \times 0.9 + 100 \times 0.1 = 11.8 \) ns to execute.
Since now each core will execute only \(k / 2 \) FLOPs,
Speedup, \(S_2 = \frac{k \times 21.6}{(k/2) \times 11.8} \approx 3.66 > 2 \)
Superlinear Speedup
(Due to Exploratory Decomposition)

Consider searching an array of $2n$ unordered elements for a specific element x.

Suppose x is located at array location $k > n$ and k is odd.

Serial runtime, $T_1 = k$

Parallel running time with n processing elements, $T_n = 1$

Speedup, $S_n = \frac{T_1}{T_n} = k > n$

Speedup is superlinear!
Parallelism & Span Law

We defined, $T_p = \text{runtime on } p \text{ identical processing elements}$

Then span, $T_\infty = \text{runtime on an infinite number of identical processing elements}$

Parallelism, $P = \frac{T_1}{T_\infty}$

Parallelism is an upper bound on speedup, i.e., $S_p \leq P \quad (\text{why?})$

Span Law

$T_p \geq T_\infty$
The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_1

On a Parallel Computer: is given by pT_p

Work Law

$$T_p \geq \frac{T_1}{p}$$
Work Optimality

Let T_s = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.
Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.

First each processing element locally adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.

Then p processing elements adds these p partial sums in time $\Theta(\log p)$.

Thus $T_p = \Theta\left(\frac{n}{p} + \log p\right)$, and $T_s = \Theta(n)$.

So the algorithm is work-optimal provided $n = \Omega(p \log p)$.

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition
Scaling Laws
Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, $T_p \geq (1 - f)T_1 + f \frac{T_1}{p}$

Speedup, $S_p = \frac{T_1}{T_p} \leq \frac{p}{f + (1-f)p} = \frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$
Scaling of Parallel Algorithms (Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Speedup, $S_p = \frac{T_1}{T_p} \leq \frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$

Suppose only a fraction f of a computation was parallelized.

Then serial running time, $T_1 = (1 - f)T_p + pfT_p$

Speedup, $S_p = \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p - 1)f$
Scaling of Parallel Algorithms (Gustafson-Barjis’ Law)

Suppose only a fraction f of a computation was parallelized.

Speedup, $S_p = \frac{T}{T_p} \leq \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p - 1)f$

Strong Scaling vs. Weak Scaling

Strong Scaling

How T_p (or S_p) varies with p when the problem size is fixed.

Weak Scaling

How T_p (or S_p) varies with p when the problem size per processing element is fixed.
A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing processing elements effectively.
Scalable Parallel Algorithms

In order to keep E_p fixed at a constant k, we need

$$E_p = k \Rightarrow \frac{T_1}{pT_p} = k \Rightarrow T_1 = kpT_p$$

For the algorithm that adds n numbers using p processing elements:

$$T_1 = n \quad \text{and} \quad T_p = \frac{n}{p} + 2\log p$$

So in order to keep E_p fixed at k, we must have:

$$n = kp \left(\frac{n}{p} + 2\log p \right) \Rightarrow n = \frac{2k}{1 - k} p \log p$$

<table>
<thead>
<tr>
<th>n</th>
<th>$p = 1$</th>
<th>$p = 4$</th>
<th>$p = 8$</th>
<th>$p = 16$</th>
<th>$p = 32$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1.0</td>
<td>0.80</td>
<td>0.57</td>
<td>0.33</td>
<td>0.17</td>
</tr>
<tr>
<td>192</td>
<td>1.0</td>
<td>0.92</td>
<td>0.80</td>
<td>0.60</td>
<td>0.38</td>
</tr>
<tr>
<td>320</td>
<td>1.0</td>
<td>0.95</td>
<td>0.87</td>
<td>0.71</td>
<td>0.50</td>
</tr>
<tr>
<td>512</td>
<td>1.0</td>
<td>0.97</td>
<td>0.91</td>
<td>0.80</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition