CSE 613: Parallel Programming

Lecture 12
(The Message Passing Interface)

Guest Lecturer: Zafar Ahmad
Slides: Zafar Ahmad, Rezaul Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2019

Principles of Message-Passing Programming

— One of the oldest and most
widely used approaches for
programming parallel computers

— Two key attributes

Source: Blaise Barney, LLNL

o Assumes a partitioned address space

o Supports only explicit parallelism

— Two immediate implications of partitioned address space

O

Data must be explicitly partitioned and placed to appropriate

partitions

Each interaction (read-only and read/write) requires
cooperation between two processes: process that has the
data, and the one that wants to access the data

Structure of Message-Passing Programs

Asynchronous
— All concurrent tasks execute asynchronously
— Most general (can implement any parallel algorithm)
— Can be difficult to reason about

— Can have non-deterministic behavior due to races

Loosly Synchronous
— A good compromise between synchronous and asynchronous
— Tasks or subset of tasks synchronize to interact
— Between the interactions tasks execute asynchronously

— Easy to reason about these programs

Structure of Message-Passing Programs

)

Source
Files

KL\

Processor 1
Multiple Program Multiple Data (MPMD)

— Ultimate flexibility in parallel

)
Source
Files
Compile to suit _ y
processor
Executables
Processor p

programming

— Unscalable

)

Source
Files

Compile to suit
processor

Executables

Processor 1 Processor p
Single Program Multiple Data (SPMD)

— Most message-passing programs
— Loosely synchronous or
completely asynchronous

The Building Blocks: Send & Receive Operations

send(&data, n, dest):

Send n items pointed to by &data to a processor with id dest

receive(&data, n, src):

Receive n items from a processor with id src to location pointed
to by &data

But wait! What P1 prints when PO and P1 execute the following code?

1 P Pl

2

3 a = 100; receive(&a, 1, 0)
4 send(&a, 1, 1): printf ("%d\n", a);
5 a=0;

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Blocking Non-Buffered Send / Receive

Sending operation waits until the matching receive operation is
encountered at the receiving process, and data transfer is complete.

sending recaiving
Process Procass
sand I requiest b send

okay 10 send .

| dala

.

Blocking Non-Buffered Send / Receive

May lead to idling:

sending recaiving
Procass procass
sand I request to send

ockay 1o send racaive

{a) 5ender comes first;
idling at sender

| diata

| |

Blocking Non-Buffered Send / Receive

May lead to idling:

sending recalying sanding rescaiving
Procass procass Process Procass

sand request (o f‘-lll_!"_lﬂ
ra-quﬁl [+ EEII'I-I.'.|
okay to sand receive 59nd ::H-tﬂy o send

B -0 0 -

{a) Sender comes first; (b Sender and receiver come
idling at sender at about the same time;
1dling minimized

Blocking Non-Buffered Send / Receive

May lead to idling:

sending r&u::ui'.'ng sanding recaliving aanulmg recemving
Procass Process Procass Process

sand request lo send
reqmlm EEII'I'I.'.| regques! 1o 5E|r'|-|:|
okay to sand re.:uwa nkay o send receVE sand

H mm-,.-lns.am —

{a) Sender comes first; (b Sender and receiver come ic) Receiver comes first;
idling at sender at about the same time; idling at receiver
idling minimized

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Blocking Non-Buffered Send / Receive

May lead to deadlocks:

1 PO Pl

2

3 send(&a, 1, 1) send(&a, 1, 0):

4 receive (&b, 1, 1); receive (&b, 1, 0);

— The send at PO waits for the matching receive at P1

— The send at P1 waits for the matching receive at PO

Source: Grama et al.,
“Introduction to Parallel Computing”,

2nd Edition

Blocking Buffered Send / Receive

— Sending operation waits until data is copied into a pre-allocated
communication buffer at the sending process

— Datais first copied into a buffer at the receiving process as well,

from where data is copied to the target location by the receiver

sending receiving sending receiving
process process process process

gsand sond I
- I | data

Data copied to
buffer at receiver

L] __
| data :fi
} receive
L]
recene
-

() With hardware support (b)) Without hardware support

Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

Blocking Buffered Send / Receive

Finite buffers lead to delays:

1 PO Pl

2

3 for (1 = 0; 1 < 1000; 1++) { for (1 = 0; 1 < 1000; 1++) {
4 produce data(&a):; receive (&a, 1, 0):

5 send(&a, 1, 1): consume_ data (&a);

6 } 1

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

— What happens if the receiver’s buffer can only hold 10
items?

Blocking Buffered Send / Receive

May still lead to deadlocks:

1 PO Pl

2

3 receive(&a, 1, 1); receive(&a, 1, 0);
4 send (&b, 1, 1): send (&b, 1, 0);

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

— Blocks because the receive calls are always blocking in
order to ensure consistency

Non-Blocking Non-Buffered Send / Receive

— Sending operation posts a pending message and returns
— When the corresponding receive is posted data transfer starts

— When data transfer is complete the check-status operation
indicates that it is safe to touch the data

gefiing neCeiving gending reCeiing
ProcEss Erooiss ProcEss ProcEss
sand I requast 1o sm:'l_l:l 5-|:=n-|:| rsqunsll-:-s-:rnd

Unszafe 1o Un=afe to

updale . te .
oda ckay to send oahs upda ckay fo send recaive

data being data being I
e M gar M, sant | Unsale to read
i data being received

(a) Without hardware support (h) With hardware support
Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Non-Blocking Buffered Send / Receive

Sending operation initiates a DMA (Direct Memory Access)
operation and returns immediately

Data becomes safe as soon as the DMA operation completes

The receiver initiates a transfer from sender’s buffer to receiver’s
target location

Reduces the time during which the data is unsafe to touch

Possible Protocols for Send & Receive Operations

Buffered

Non-Buffered

Blocking Operations Non-Blocking Operations

Sending process
returns after data
has been copied
into communication
buffer

Sending process
returns after initiating
DMA transfer to
buffer. This operation
may not be
completed on return

Sending process
blocks until
matching receive
operation has been
encounterad

Send and Receive

semantics assured by

corresponding operation

Frogrammer must
explicitly ensure
semantics by polling
to verify completion

Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

The Minimal Set of MPl Routines

— The MPI library contains over 125 routines

— But fully functional message-passing programs can be written
using only the following 6 MPI routines

MPI Init Initializes MPI.

MPI Finalize Terminates MPI.

MPI_Comm_size Determines the number of processes.

MPI Comm rank Determines the label of the calling process.
MPI_Send Sends a message.

MPI Recv Receives a message.

— All 6 functions return MPI_SUCCESS upon successful completion,
otherwise return an implementation-defined error code

— All MPI routines, data-types and constants are prefixed by MP|_
— All of them are defined in mpi.h (for C/C++)

Starting and Terminating the MPI Library

. #include < mpi.h >

1
2
3. main(int argc, char *argv[])
4. {

5 MPI_Init(&argc, &argyv);

6. e // do some work
7. MPI_Finalize();

8. }

— Both MPI_Init and MPI_Finalize must be called by all processes
— Command line should be processed only after MPI_Init

— No MPI function may be called after MPI_Finalize

Communicators

— A communicator defines the scope of a communication operation

— Each process included in the communicator has a rank associated
with the communicator

— By default, all processes are included in a communicator called
MP|_COMM_WORLD, and each process is given a unique rank
between 0 and p — 1, where p is the number of processes

— Additional communicator can be created for groups of processes
— To get the size of a communicator:

int MPI_Comm_size(MPI_Comm comm, int *size)
— To get the rank of a process associated with a communicator:

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Communicators

1. #include < mpi.h >

2.

3. main(int argc, char *argv[])

4. {
5.

6.

10.
11. 3

int p, myrank;

MPI_Init(&argc, &argyv);

MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

printf(“This is process %d out of %d!\n”, p, myrank);

MPI_Finalize();

MPI Standard Blocking Send Format

data parameters

A
|]
address of number of datatype of
send buffer items to send each item

N / |

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

IR N

rank of message tag communicator
destination process

\

|

envelope parameters

MPI Standard Blocking Receive Format

data parameters

A
| |
address of number of datatype of
receive buffer items to receive each item

N / |

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Status *status)

! ™ N I

rank of message tag communicator status after
source process operation

\ J
|

envelope parameters

MPI Datatype

MPI CHAR

MPI SHORT

MPI INT

MPI LONG

MPI UNSIGNED CHAR
MPI_ UNSIGNED SHORT
MPI UNSIGNED

MPI UNSIGNED LONG
MPI FLOAT

MPI DOUBLE

MPI LONG DOUBLE
MPI BYTE

MPI PACEED

MPI Datatypes

C Datatype

signed char
signed short int
signed int

signed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Blocking Send/Receive between Two Processes

1. #include < mpi.h >
2.

3. main(int argc, char *argv[])

4. {

5. int myrank, v = 121;

6. MPI_Status status;

7. MPI_Init(&argc, &argv);

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

9. if (myrank==0) {

10. MPI_Send(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD);

11. printf(“Process %d sent %d!\n”, p, myrank, v);
12. } elseif (myrank==1) {

13. MPI_Recv(&v, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD , &status);
14. printf(“Process %d received %d!\n”, p, myrank, v);
15. }

16. MPI_Finalize();
17. 3

MPI Status

MPI_Status holds few primary pieces of information:
MPI_SOURCE, MPI_TAG, count, cancelled and MPI_ERROR. If we
look at the MPI_Recyv, it has source, tag and count as parameters.

number of
items to receive

/

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Status *status)

1 S~

rank of message tag
source process

MPI_STATUS IGNORE can be used as status parameter. But,
why do we need these information inside MP| Status?

Dynamic Receiving and MPI Status

It turns out that MPI_Recv can have MPI_ANY_ SOURCE and
MPI_ANY _ TAG for receiving data for any tag and from any source.
Later, source and tag can be extracted from status parameter by
directly accessing status.MPI _SOURCE and status.MPI|_TAG.

What if the receiver doesn’t know the size of the received data?

Dynamic Receiving and MPI Status

It turns out that MPI_Recv can have MPI_ANY_ SOURCE and
MPI_ANY _ TAG for receiving data for any tag and from any source.
Later, source and tag can be extracted from status parameter by
directly accessing status.MPI _SOURCE and status.MPI|_TAG.

What if the receiver doesn’t know the size of the received data?

In that case, it one can use a buffer of maximum possible size and
extract the received data size from status using MPl_Get_count.

int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)

But isn’t it a waste to allocate that unused receive buffer?

Dynamic Receiving and MPI Probe

Instead of using a large buffer to handle all the cases, we can use
MPI_Probe to query the message size before receiving it.

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe does everything MPI_Recv does but receiving the
actual message. Element count can be extracted from status
using MPI_Get_count.

Dynamic Receive and MPI Probe

1. #include < mpi.h >

2. main(int argc, char *argv[])

3.

4.

10.
1.
12.
13.

14.

15.
16.

17. }

int myrank, v = 121, count;
MPI|_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank==0) {
MPI_Send(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
} else if (myrank ==1) {
MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
MPI_Get_count(&status, MPI_INT, &count);
int recv_buf = (int *) malloc(sizeof(int) * count);

MPI_Recv(&recv_buff, count, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

3
MPI_Finalize();

Non-Blocking Send / Receive

int MPI_Isend(void *buf, int count, MPIl_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *req)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Request *req)

The MPI_Request object is used as an argument to the following two
functions to identify the operation whose status we want to query or
to wait for its completion.

int MPI_Test(MPI_Request *req, int *flag, MPI_Status *status)
— Returns *flag = 1, if the operation associated with *req has
completed, otherwise returns *flag =0

int MPI_Wait(MPI_Request *req, MPI_Status *status)

— Waits until the operation associated with *req completes

Non-Blocking Send and Blocking Receive

1. #include < mpi.h >
2.

3. main(int argc, char *argv[])
4. {

5. int myrank, v = 121;

6. MPI_Status status;

7. MPI_Request req;

8. MPI_Init(&argc, &argy);

9. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

10. if (myrank ==0) {

1. MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);
12. compute(); /* but do not modify v */
13. MPI_Wait(&req, &status);

14. } else if (myrank == 1) MPI_Recv(&v, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD , &status);

15. MPI_Finalize();
16. }

Non-BIoc:king Send/Receive

1.

#include < mpi.h >

2. main(int argc, char *argv[])

3.
4.

10.
11.
12.
13.
14,
15.
16.

17.
18.
19.

{

3

int myrank, v = 121;
MPI|_Status status;
MPI_Request req;
MPI_Init(&argc, &argyv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank==0) {
MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

compute(); /* but do not modify v */

MPI_Wait(&req, &status);
} elseif (myrank ==1) {
MPI_Irecv(&v, 1, MPL_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

compute(); /* but do not read or modify v */

MPI_Wait(&req, &status);

}
MPI_Finalize();

MPI Collective Communication & Computation

Operations

Synchronization
— Barrier

Data Movement
— Broadcast These routines must be
_ Scatter called by all processes in
_ Gather the communication group
— All-to-all

Global Computation
— Reduce

— Scan

Barrier Synchronization

int MPI_Barrier(MPI_Comm comm)

Returns only after all processes in the communication group
have called this function

Broadcast

Process 0 Process 1 Process n — 1
[data \ f data \ [data \ N
— 2%
Action > °2 g S
buf - =
—o— -
. | = E N
beast (); beast (); bcaslt() ; g E
Code ; ; ; § s
. o _
int MPI_Bcast(void *buf, Sends the data stored in the
int count
’ buffer buf of process src to all
MPI_Datatype datatype, _
. the other processes in the
int src,

MP1_Comm comm) group

uonlp3 puc
‘,Buiwweu3doud |9||eJed,,
““U3||V '8 UOSUD||IAN :224n0S

Broadcast

-

NS N

N

e

Scatter

Process 0 Process 1 Process n— 1
A / data \ data / data \ .
— 10— g 5%
/ Z .E
Action o3 E c
S C 3
v bo =
£ 08
y buf ==
A Sk
scatter () ; scatter () ; scatter () ; S g
Code ' ' ' 3
(75]

The src process sends a
int MPI_Scatter(void *sendbuf, different part of sendbuf to
int sendcount,

MPI_Datatype sendtype,
void *recvbuf,

@

each process, including itself.

Process i receives sendcount

int recvcount, contiguous elements starting
MPI_Datatype recvtype, | from i x sendcount.
int src,

The received data are stored
MPI_Comm comm)

in recvbuf.

Process 0

data

]

Action »«””ﬂﬂf}ﬂrﬂi}ﬁ

buf

gathér();
Code '

[

int MPI_Gather(void *sendbuf,
int sendcount,

MPI_Datatype sendtype,

void *recvbuf,
int recvcount,

MPI|_Datatype recvtype,

int dest,

MPI_Comm comm)

Gather

Process 1

data

O

gathér();

Process n — 1

(data \
1

gathér();

The opposite of scatter.

“Parallel Programming”,
2" Edition

Source: Wilkinson & Allen.,

Every process, including dest
sends data stored in sendbuf
to dest.

Data from process i occupy
sendcount contiguous
locations of recvbuf starting
from i x sendcount.

Reduce

Process 0 Process 1 Process m— 1

reduce (); reduce (); reduce ();
Y \, f / \ f / \ f /

int MPI_Reduce(void *sendbuf,
void *recvbuf,

Action

Y buf | [J= +
A

“Parallel Programming”,
2"d Edition

Code

Source: Wilkinson & Allen.,

Combines the elements stored
in sendbuf of each process

int count, . _
MPI_Datatype datatype, using the operation op, and
MPI_Op op, stores the combined values in
int dest, recvbuf of the process with

MPI_Comm comm) rank dest.

Reduce

0 |

(]
“Parallel Programming”,
2"d Edition

Source: Wilkinson & Allen.,

int MPI_Reduce(void *sendbuf,

Combines the elements stored
void *recvbuf,

in sendbuf of each process

int count, . _
MPI_Datatype datatype, using the operation op, and
MPI_Op op, stores the combined values in
int dest, recvbuf of the process with

MPI_Comm comm) rank dest.

Reduce

MPI_Reduce(vals, sums, 4, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)

Polao| bo| o | do :> Qo+ A1+ Oyt 03| Do+ b1+ byt bs | Cot €1+ G+ €5 | dot dy+ dy+ d

Predefined Reduction Operations

Operation

MPT MAX
MPT MIN
MPI SUM
MPI PROD
MPI LAND
MPI BAND
MPI LOR
MPI_ BOR
MPI_ LXOR
MPI BXOR
MPT MAXLOC

MPI MINLOC

Meaning
Maximum
Minimum
sum
Product
Logical AND
Bit-wise AND
Logical OR
Bit-wise OR
Logical XOR
Bit-wise XOR
max-min value-location
min-min value-location

C integers
C integers
C integers
C integers
C integers
C integers
C integers
C integers
C integers
C integers
Data-pairs
Data-pairs

Datatypes
and floating point
and floating point
and floating point
and floating point

and byte

and byte

and byte

Scan / Prefix

int MPI_Scan(void *sendbuf,
void *recvbuf,

Performs a prefix reduction of
the data stored in sendbuf at

int count, ")
MPI_Datatype datatype, each process and returns the
MPI_Op op, results in recvbuf of the

MPI_Comm comm) process with rank dest.

Pyl a0 | bo| co| do do by Co do

F:l a | by|c | d; Gpt 0, bot b, Cot €4 dot dy
;;2 a, | b, | ¢, | d, ay,+ a,+ a, b,+ b+ b, Cot C1* C5 dot+d+d,
;;3 as | bs | c; | ds agt a,+ a,+as;| byt b+ b+ bs| ¢yt it ct ¢ | dot di+ d+d;

MPI_Scan(vals, sums, 4, MPI_INT, MPI_SUM, MPI_COMM_WORLD)

