CSE 613: Parallel Programming

Lecture 11
(Parallel Maximal Independent Set)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2019

Independent Sets
Let G = (V, E) be an undirected graph.

Independent Set: A subset I € V is said to be independent provided
for each v € I none of its neighbors in G belongs to 1.

Maximal Independent Set: An independent set of G is maximal if it is
not properly contained in any other independent set in G.

Maximum Independent Set: O O Q O
A maximal independent set

of the largest size.

d 0O O G
Finding a maximum
independent set is NP-hard. R " " 0
But finding a maximal
independent set is trivial in . . .
the sequential setting. Maximal Independent Sets (red vertices) of the Cube Graph

Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each v € V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS (V, E)
1. MIS < ¢

2. forv<«1to |V| do
3. ifMISNT(v)=¢ then MIS < MIS U { v}

4. return MIS

This algorithm can be easily implemented to run in ®(n + m) time, where n
is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each v € V, we
denote by I'(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-2 (V, E')

1. MIS« ¢

2. while |V| > 0do

3. pick an arbitrary vertex v € V
4 MIS—MISU{v}
5. R«—{viuT(v)
6. V< V\R
7 E<~E\N{(vy,vs) |l vyeRorv,eR}
8. return MIS

Always choosing the vertex with the smallest id in the current graph will
produce exactly the same MIS as in Serial-Greedy-MIS.

Finding a Maximal Independent Set Sequentially

Input: Vis the set of vertices, and E is the set of edges. For each S c V, we
denote by I'(S) the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-3 (V, E')

1. MIS« ¢

2. while |V| > 0do

3. find an independent set Sc V
4 MIS—MISU S
5. R« SuUT(S)
6. V< V\R
7 E<~E\N{(vy,vs) |l vyeRorv,eR}
8. return MIS

Parallelizing Serial-Greedy-MIS-3

— Number of iterations can be kept small Serial-Greedy-MiS-3 (V, E)

by finding in each iteration an S with 1. M5
. . e rpe 2. while |V]| >0 d
large S U I'(S). But this is difficult to do. 3 ! ﬁ:dlar'] indepoendent et ScV

. . . 4. MIS — MISU S
— Instead in each iteration we choose an 5. RO SUT(S)
S such that a large fraction of current 6. V< VAR
edges are incident on S U T'(S). 7o BeBMv) ivieRorv, e R]
8. return MIS

— To select S we start with a random S'c V.

* By choosing lower degree vertices with higher probability we are
likely to have very few edges with both end-pointsin §'.

 We check each edge with both end-points in §’, and drop the end-
point with lower degree from S’. Our intention is to keep I'(S’) as
large as we can.

e After removing all edges as above we are left with an independent
set. This is our S.

* We will prove that if we remove S U I'(S) from the current graph a
large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Input: n is the number of vertices, and for each vertexu € [1,n], V[u] is set
to u. E is the set of edges sorted in non-decreasing order of the first vertex.
For every edge (u, v) both (u,v)and (v, u)areincluded in E.

Output: Forallue [1,n], MIS[u]is setto 1 if vertex u is in the MIS.

dlu](i.e., degree of
vertex u) can now be
computed easily by
subtractingc[u—1]
fromc[u]

\

if both end-points of
an edge is marked,

unmark the one with
the lower degree

remove marked
vertices along with
their neighbors as
well as the
corresponding edges

Par-Randomized-MIS (n, V, E, MIS)
1. while |V| >0 do

for each u find the
edge with the
largest index i such
that E[i].u < u, and
storethatiinc[u]

—————

2. arrayd[1: |V], c[1:|V]I]={0}L, M[1:]|V]]={0}
3. parallel for i« 1 to |E| do
4. (ifi=|E| thenk < nelse k<« E[i+1].u-1]
5. parallel for j« E[i].utokdoc[j]«i J
6. parallel for u <« 1 to |V]| do
\{ ifu=1thend[u]l<« c[ulelsed[u]l« c[u]l-c[u-1]
8. (ifd[u]=0thenM[u] « 1
9. | else M[u] < 1 (with probability 1 / (2d[u]))]/
10. parallel for each (u, v) € E do
\n\'ifM[u] —1and M[v] =1 then
12. L ifd[u]éd[v]thenM[u]<—OelseM[v]<—0]
13. parallel for u <« 1 to |V]| do
14. ifMful=1thenMIS[V[u]] <« 1

15 (V, E) « Par-Compress (V,E, M)

mark lower-degree
vertices with higher
probability
/

add all marked
vertices to MIS

/

Removing Marked Vertices and Their Neighbors

Input: Arrays V and E, and bit array M[1: | V|]. Each entry of E is of the form
(u,v),wherel<u,v<|V|.Ifforsomeu, M[u]=1,thenuandallvsuch
that (u, v) € E must be removed from V along with all edges (u, v) from E.

Output: Updated V and E.

marked vertices
will be removed

\

find new indices
for surviving
vertices & edges

/

0 Nfo v oA W

move surviving
edges to the
smaller array F

~~

Par-Compress (V, E, M)

1.

array S,L1: VI 1={13, S4L1: VI, SeL1: 1EIT={1},SH1: [EI]

3

2. parallel for u<«1to |V]| do

ifM[u]l=1thenS,Ju]« 0

parallel fori <1 to |E| do

ru<—E[i].u,v<—E[i].v
ifMful=1orM[v]=1thenSJu]« 0,S[v]«< 0,S[i]l« O

S% <« Par-Prefix-Sum (Sy, +), St « Par-Prefix-Sum (Sg, +)

10.

12.
13.
14.
15.
16.

array U[1:SYLIVITL FT1:SELIEIT]]

parallel for u<« 1 to |V]| do

if Sul=1thenU[S, [u]]<« V[u]

. parallel for i« 1 to |E| do

ifSe[il1=1then FLS%[i1] <« E[i]

parallel for i < 1 to |F| do

u«Fliluv<«F[ilv
FlilueS[ul,Fli]lveS'[v] |

\

—

initialize

L —

neighbors of
marked vertices &
corresponding
edges must go

/

move surviving
vertices to the
smaller array U

/

update the end-
points of the
surviving edges to
new vertex
indices

—

return (U, F)

Removing Marked Vertices and Their Neighbors

Par-Compress (V, E, M)

1.

2.
3
4,
5
6

array S,[1: VI]1={1} S, [1:1VI],
SeL1:1EI1={13,Sel1: |E]]
parallel for u<« 1 to |V| do
ifM[ul=1thenS[u]«0
parallel fori < 1 to |E| do
u«E[ilu,veE[i]v
ifMful=1orM[v]=1then
Sful<« 0,S[v]« O,5[i]«< O
S% « Par-Prefix-Sum (Sy, +),

S% <« Par-Prefix-Sum (Sg, +)

carrayUL1:SYLIVITL FTI1:SELIEIT]

9. parallel for u<«1to |V]| do

10.
11.
12.
13.
14.
15.
16.

if Sul=1thenU[S,[u]]« V[u]
parallel for i < 1 to |E| do

ifSe[i]=1then F[SE[i]] <« E[i]
parallel for i <— 1 to |F| do

u« Flilu, v« F[il].v

Flilu«S'Jul,F[ilv<S'J[vVv]
return (U, F)

The prefix sums in line 7 perform O(|V| + |E|)
work and have ©(log?|V| + log? |E|) depth. The
rest of the algorithm also perform ®@(|V| + |E|)
work but in ®(log|V| + log |E|) depth. Hence,

Work: O(|V| + |E])
Span: ©(log?|V| + log? |E|)

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS (n, V, E, MIS)

1.
2.

N o AW

10.
11.
12.

13.
14.
15.

while |V| >0 do
arrayd[1: VI],c[1:|V]|]={0}
M1 VI]={0}
parallel for i« 1 to |E| do
ifi=|E| thenk<« nelse k<« E[i+1].u-1
parallel for j« E[i]J.utokdoc[j]« i
parallel for u <« 1 to |V| do
ifu=1thend[u] <« c[u]
elsedlu]l<«c[u]l-c[u-1]
ifdful=0thenM[u] « 1
elseM[u] « 1 (withprob1/ (2d[u]))
parallel for each (u, v) € E do
ifMfu]l]=1andM[v] =1 then
ifdlu]l]<d[v]thenMu]<« 0
elseM[v] <0
parallel for u <« 1 to |V]| do
ifM[u]=1thenMIS[V[u]]« 1
(V,E) « Par-Compress (V,E, M)

Let n = #vertices, and m = #edges initially.

Let us assume for the time being that at least a
constant fraction of the edges are removed in
each iteration of the while loop (we will prove
this shortly). Let this fraction be f (< 1).

This implies that the while loop iterates
@(logl/(l_f) m) = ®(logm) times. (how?)

Each iteration performs ®(|V| + |E|) work and
has ®(log?|V| + log? |E|) depth. Hence,

Work: T;(n,m) = © ((n + m) Z{-‘=0(1 — f)i)
= 0O(Mn +m)
Span: T,(n,m) = ©((log>n + log? m)logm)
= O(log3n)
T1(n,m) _ ®<n+m>

Too (n,mM) log®*n

Parallelism:

Analysis of Randomized MIS
Let, d(v) be the degree of vertex v, and I'(v) be its set of neighbors.

Good Vertex: A vertex v is good provided |L(v)| = @ , Where,

L(v) = {u | (u S F(v)) A (d(u) < d(v)) }

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge (u, v) is good if at least one of u and v is good.

Bad Edge: An edge (u, v) is bad if both u and v are bad.

Analysis of Randomized MIS

Lemma 1: In some iteration of the while loop, let v be a good vertex
with d(v) > 0, and let M be the set of vertices that got marked (in
lines 8-9). Then

Pr{il(W) "M =+0}>1—e" 1/,
Proof: We have, Pr{lT(v) "M #@0}=1—-Pr{IT'(v) "M =@}

=1-— 1_[PriugM}>1-— 1_[Pr{ué¢ M }

u er(v) u €L(v)
1= [(t-zm) 2 - [(t-32)

Ll 2d(u) Lo 2d(v)

|IL(v)] 1 d(v)/3

=1—-(1- 1—(1-

(2d(v)> - (Zd(v))

_dw)/3 1

>1—e 2dW) =1—¢"6

Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let M be the set of vertices
that got marked (in lines 8-9), and let S be the set of vertices that got
included in the MIS (in line 14). Then

Pr{vESIvEM}Z%.

Proof: We have, Pri{v e S|ve M}

>1—Pr{auel(w)s.t. (dlu)=d@w))A(ueM)}

=1- z Zdl(u)21_ z 2d1(v)

u er(v) uer(v)
d(u)=d(v) d(u)=d(v)

1 1 1
=1- Z 2d0) T Xy T2

uer)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V; be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{vESUF(S)IvEVG}Z%(l — e~ 1/0),
Proof: We have, Pri{v e SUT(S) |v € V; }
>Pr{ivel(S)|veV;}=Pr{T(v) NS#p|veV;}

=Pr{ilfw) NS+ |T(w)NM=+¢p,veV;}
XPr{ilTwW)NnM=¢p|veV;}

>Pr{iueS|luelf(v)nM,veV;}
XPr{I'lv)NnM+#¢|veV;}

1
_(1 - p—1/6
> 2 (1-e1/9)

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V; be the set of good
vertices, and let S be the vertex set that got included in the MIS. Then

Pr{vESUF(S)IvEVG}Z%(l — e~ 1/0),

Corollary 1: In any iteration of the while loop, a good vertex gets

removed (in line 15) with probability at least % (1 —e”V/9).

Corollary 2: In any iteration of the while loop, a good edge gets

removed (in line 15) with probability at least % (1 —e” 1/6) :

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |Eg| = |E|/2.

Proof: For each edge (u,v) € E, direct (u,v) fromutovifd(u) <
d(v), and v to u otherwise.

For every vertex v in the resulting digraph let d; (v) and d,(v) denote
its in-degree and out-degree, respectively.

Let V; and Vz be the set of good and bad vertices, respectively.

d(v)

Then for eachv € Vg,d,(v) — d;(v) = -

Let mgg, Mmpe, Msp and m; be the #edges directed from Vg to I3,
from Vg to V¢, from V; to I, and from V. to V, respectively.

Analysis of Randomized MIS
Lemma 4: In any iteration of the while loop, let E and E; be the sets

of all edges and good edges, respectively. Then |E¢| = |E|/2.

Proof (continued): We have,
ZmBB + Mpa + Megp

— z d(v) <3 Z (do(v) —d;i(v)) =3 z (d;() —dp,(V))

VEV R VEV VEV g
= 3((mBG + mgg) — (mgp + mGG)) = 3(mpg — Mgp)

< 3(mpg + mgp)

ThUS ZmBB + mBG + mGB < B(mBG + mGB)
= Mpp < Mpe +Mgp = Mpp < Mpg + Mgp + Mg
= (mpg + Mgp + Mgg) + mpp < 2(pg + Mg + Mgg)
= |E| < 2|E|

Analysis of Randomized MIS
Lemma 5: In any iteration of the while loop, let E be the set of all

edges. Then the expected number of edges removed (in line 15)

. o 1 _
during this iteration is at Ieastz(l — e~ VO)E].

Proof: Follows from Lemma 4 and Corollary 2.

