Midterm Exam
(2:30 PM – 3:45 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.

• There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes. But no books and no computers.

GOOD LUCK!

<table>
<thead>
<tr>
<th>Question</th>
<th>Pages</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A Broken ATM</td>
<td>2–4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2. Hops</td>
<td>6–9</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3. Recurrences with Triangular Numbers</td>
<td>11–12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>
Question 1. [25 Points] A Broken ATM. This question is about an ATM (Automated Teller Machine) that can store dollar bills of exactly n different integral values, but when a customer tries to withdraw cash the machine fails unless it can output the amount using exactly k bills, where both n and k are positive integers. We assume that the value of the largest bill the machine stores is not more than cn for some constant $c \geq 1$. We also assume that before each transaction the machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be refilled as soon as the number of bills of any value drops below k).

Now the question is: with any given n and k as above, how many distinct cash amount the ATM can successfully deliver?

1(a) [5 Points] Show that for any given k you can output all distinct withdrawal amounts the ATM can successfully deliver in $O(n^2k^2)$ time. For example, if the ATM stores only $5, $10, $20 and $50 bills and $k = 2$, then it can fulfill the following 10 distinct withdrawal amounts:

1. 10 ($= 5 + 5$)
2. 15 ($= 5 + 10$)
3. 20 ($= 10 + 10$)
4. 25 ($= 5 + 20$)
5. 30 ($= 10 + 20$)
6. 40 ($= 20 + 20$)
7. 55 ($= 5 + 50$)
8. 60 ($= 10 + 50$)
9. 70 ($= 20 + 50$)
10. 100 ($= 50 + 50$)
1(b) [10 Points] Explain how you will output all distinct withdrawal amounts in $O(n^{1+\epsilon})$ time when $k = 2$, where ϵ is any given positive constant which can be arbitrarily close to zero.
1(c) [10 Points] Explain how you will extend your algorithm from part 1(b) to output all distinct withdrawal amounts in $O(n(\epsilon n + k^\epsilon))$ time for any given k, where ϵ is a given constant as in part 1(b).
Use this page if you need additional space for your answers.
Question 2. [25 Points] Hops. Suppose G is an undirected graph that has n vertices. Each vertex of G is identified by a unique integer in $[1, n]$. We say that two vertices u and v of G are adjacent provided they are connected by an edge. All edges of G are recorded in an $n \times n$ adjacency matrix A, where $A[u][v]$ is set to 1 provided vertices u and v are connected by an edge (i.e., provided edge (u, v) exists in G), otherwise $A[u][v]$ is set to 0. Since G is undirected, $A[u][v] = A[v][u]$ always holds. We say that vertices u and v are connected by an h-hop path provided v can be reached from u following a path containing exactly h edges and vice versa. An $n \times n$ matrix $D^{(h)}$ which we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry $D^{(h)}[u][v]$ is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again $D^{(h)}[u][v] = D^{(h)}[v][u]$ for all $u, v \in [1, n]$. Clearly, $D^{(1)} = A$.

Figure 1: An undirected graph whose edges (i.e., 1-hop paths) are captured by the matrix $D^{(1)}$ which is also the adjacency matrix of this graph.

Figure 2: The solid edges show the vertices connected by 2-hop paths in the graph on the left. Matrix $D^{(2)}$ marks every pair of vertices connected by 2-hop paths in that graph.

Figure 3: Combining an h_1-hop matrix $X = D^{(h_1)}$ and an h_2-hop matrix $Y = D^{(h_2)}$ to obtain an $(h_1 + h_2)$-hop matrix $Z = D^{(h_1 + h_2)}$.

Figure 4: Multiplying two $n \times n$ matrices X and Y and putting the result in another $n \times n$ matrix Z.

Figure 3 shows an iterative algorithm Iter-Reach that uses bitwise OR (\oplus) and bitwise AND
(⊗) operators to obtain a new \((h_1 + h_2)\)-hop matrix \(Z = D^{(h_1 + h_2)}\) by combining an \(h_1\)-hop matrix \(X = D^{(h_1)}\) and an \(h_2\)-hop matrix \(Y = D^{(h_2)}\).

Observe that \textsc{Iter-Reach} can be obtained from the standard iterative matrix multiplication algorithm \textsc{Iter-MM} shown in Figure 4 simply by replacing the standard addition (+) and multiplication (×) operators with the bitwise OR (⊕) and bitwise AND (⊗) operators, respectively. Both algorithms run in \(Θ(n^3)\) time.

Now answer the following questions.

2(a) [8 Points] Argue that you cannot obtain a \(Θ(n^{\log_2 7})\) time algorithm for computing \(D^{(h_1 + h_2)}\) from \(D^{(h_1)}\) and \(D^{(h_2)}\) by simply replacing the + and \(\times\) operators with \(⊕\) and \(⊗\) operators, respectively, in Strassen’s matrix multiplication algorithm given in the Appendix.
2(b) [10 Points] Give an $\Theta(n^{\log_2 7})$ time algorithm for correctly computing $D^{(h_1+h_2)}$ from $D^{(h_1)}$ and $D^{(h_2)}$ based on Strassen’s matrix multiplication algorithm.
2(c) [7 Points] For any positive integer \(n \), explain how you will compute \(D^{(n)} \) in \(\Theta(n^\log_2^7 \log n) \) time.
Use this page if you need additional space for your answers.
Question 3. [25 Points] Recurrences with Triangular Numbers. The k-th triangular number Δk is defined as follows: $\Delta k = 1 + 2 + \ldots + k$, where k is a natural number. The first few triangular numbers ($\Delta 1, \Delta 2, \Delta 3, \Delta 4, \Delta 5$ and $\Delta 6$) are shown in Figure 5 below.

Figure 5: The first 6 triangular numbers.

3(a) [10 Points] The time $T(n)$ needed to query a widely used data structure of size n can be described by the following recurrence relation involving triangular numbers:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 6, \\ \sum_{k=2}^{5} \frac{1}{\Delta k} \frac{kn}{k+1} + \frac{1}{3} T(n) + \Theta(1) & \text{otherwise}. \end{cases}$$

Solve the recurrence for finding an asymptotic tight bound for $T(n)$.

"
3(b) [15 Points] The expected running time $T(n)$ of a randomized algorithm on an input of size n can be described by the following recurrence relation involving triangular numbers $\Delta 2 = 3$, $\Delta 3 = 6$ and $\Delta 4 = 10$:

$$T(n) = \begin{cases} \Theta(n) & \text{if } n \leq 1024, \\ \frac{1}{3}n^2 T\left(\frac{n}{3}\right) + \frac{1}{6}n^5 T\left(\frac{n}{6}\right) + \frac{1}{10}n^7 T\left(\frac{n}{10}\right) + \frac{2}{5}T(n) + \Theta(n \log \log n) & \text{otherwise.} \end{cases}$$

Solve the recurrence for finding an asymptotic tight bound for $T(n)$.
Use this page if you need additional space for your answers.
Use this page if you need additional space for your answers.
Appendix: Recurrences

Master Theorem. Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise}, \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$. Then $T(n)$ has the following bounds:

Case 1: If $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2: If $f(n) = \Theta(n^{\log_b a \log k \log n})$ for some constant $k \geq 0$, then $T(n) = \Theta(n^{\log_b a \log (k+1) \log n})$.

Case 3: If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Akra-Bazzi Recurrences. Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \leq x \leq x_0, \\ \sum_{i=1}^{k} a_i T(b_i x) + g(x), & \text{otherwise}, \end{cases}$$

where,

1. $k \geq 1$ is an integer constant,
2. $a_i > 0$ is a constant for $1 \leq i \leq k$,
3. $b_i \in (0, 1)$ is a constant for $1 \leq i \leq k$,
4. $x \geq 1$ is a real number,
5. x_0 is a constant and $\geq \max\left\{\frac{1}{b_i}, \frac{1-b_i}{1-b_0}\right\}$ for $1 \leq i \leq k$, and
6. $g(x)$ is a nonnegative function that satisfies a polynomial growth condition (e.g., $g(x) = x^\alpha \log^\beta x$ satisfies the polynomial growth condition for any constants $\alpha, \beta \in \mathbb{R}$).

Let p be the unique real number for which $\sum_{i=1}^{k} a_i b_i^p = 1$. Then

$$T(x) = \Theta\left(x^p \left(1 + \int_1^{x} \frac{g(u)}{u^{p+1}} du\right)\right).$$
Appendix: Computing Products

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in $\Theta(n \log_2 3) = O(n^{1.6})$ time (improving over the standard $\Theta(n^2)$ time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two $n \times n$ matrices in $\Theta(n \log_2 7) = O(n^{2.81})$ time (improving over the standard $\Theta(n^3)$ time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in $\Theta(n \log n)$ time using the FFT (Fast Fourier Transform) algorithm (improving over the standard $\Theta(n^2)$ time algorithm).

Appendix: Strassen’s Matrix Multiplication Algorithm

\[
\begin{array}{c|c|c}
Z_{11} & Z_{12} & \times & X_{11} & X_{12} & Y_{11} & Y_{12} \\
Z_{21} & Z_{22} & & X_{21} & X_{22} & Y_{21} & Y_{22} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
& X_{11} Y_{11} + X_{12} Y_{21} & X_{11} Y_{12} + X_{12} Y_{22} \\
X_{21} Y_{11} + X_{22} Y_{21} & X_{21} Y_{12} + X_{22} Y_{22} \\
\end{array}
\]

Sums:
- $X_{r1} = X_{11} + X_{12}$
- $X_{r2} = X_{21} + X_{22}$
- $X_{c1} = X_{11} - X_{21}$
- $X_{c2} = X_{12} - X_{22}$
- $X_{d1} = X_{11} + X_{22}$

Products:
- $P_{11} = X_{11} \cdot Y_{c2}$
- $P_{22} = X_{22} \cdot Y_{c1}$
- $P_{r1} = X_{r1} \cdot Y_{22}$
- $P_{r2} = X_{r2} \cdot Y_{11}$
- $P_{c1} = X_{c1} \cdot Y_{11}$
- $P_{c2} = X_{c2} \cdot Y_{22}$
- $P_{d1} = X_{d1} \cdot Y_{d1}$

Running Time:
\[
T(n) = \begin{cases}
\Theta(1), & \text{if } n = 1, \\
7T\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.}
\end{cases}
\]

\[
= \Theta(n \log_2 7) \quad = O(n^{2.81})
\]