CSE 548: Analysis of Algorithms

Guest Lecture
(The α Technique)

Inspiration Comes from Lectures Given by
Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Guest Lecturer: Shih-yu Tsai
(Slides: Rezaul A. Chowdhury, Shih-yu Tsai)

Department of Computer Science
SUNY Stony Brook
Spring 2019
Iterated Functions

\[f^*(n) = \min \left\{ i \geq 0 : f \left(f \left(f \left(\ldots f(n) \ldots \right) \right) \right) \leq 1 \right\} \]

\[= \min\{i \geq 0 : f^{(i)}(n) \leq 1\}, \]

where

\[f^{(i)}(n) = \begin{cases} n & \text{if } i = 0 \\ f \left(f^{(i-1)}(n) \right) & \text{if } i > 0 \end{cases} \]

Example: If \(f = \log \), we have:

\[\log^{(0)}(65536) = 65536 \quad \log^{(3)}(65536) = 2 \]
\[\log^{(1)}(65536) = 16 \quad \log^{(4)}(65536) = 1 \]
\[\log^{(2)}(65536) = 4 \quad \therefore \log^*(65536) = 4 \]
Iterated Functions

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$f^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n - 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>$n - 2$</td>
<td>$\frac{n}{2}$</td>
</tr>
<tr>
<td>$n - c$</td>
<td>$\frac{n}{c}$</td>
</tr>
<tr>
<td>n</td>
<td>$\log_2 n$</td>
</tr>
<tr>
<td>$\frac{n}{2}$</td>
<td>$\log_2 n$</td>
</tr>
<tr>
<td>$\frac{n}{c}$</td>
<td>$\log_c n$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$\log^* n$</td>
</tr>
</tbody>
</table>
\[\log^* (n) \text{ grows extremely slowly} \]

\[
\begin{align*}
\log^* 2 &= 1 \\
\log^* 2^2 &= 2 \\
\log^* 2^4 &= 3 \\
\log^* 2^{16} &= 4 \\
\log^* 2^{65536} &= 5 \\
\log^* 2^{2^{65536}} &= 6 \ldots
\end{align*}
\]
The Inverse Ackermann Function: $\alpha(n)$

<table>
<thead>
<tr>
<th>$f(n)$</th>
<th>$f^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>$\log^* n$</td>
</tr>
<tr>
<td>$\log^* n$</td>
<td>$\log^{**} n$</td>
</tr>
<tr>
<td>$\log^{**} n$</td>
<td>$\log^{***} n$</td>
</tr>
<tr>
<td>$\log^{***} n$</td>
<td>$\log^{****} n$</td>
</tr>
</tbody>
</table>

\[\alpha(n) = \min\{k \geq 1: \log^{****} n \leq 3\} \]
Example: \(\alpha(65536) \)

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(f^*(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log 65536)</td>
<td>(\log^* 65536 = 4 \geq 3)</td>
</tr>
<tr>
<td>(\log^* 65536)</td>
<td>(\log^{**} 65536 = 3 \leq 3)</td>
</tr>
</tbody>
</table>

\[
\alpha(65536) = \min \left\{ k \geq 1 : \log^{\cdots\cdots} 65536 \leq 3 \right\} = 2
\]

\[
\begin{align*}
\log^{(0)}(65536) &= 65536 & (\log^*)^{(0)}(65536) &= 65536 \\
\log^{(1)}(65536) &= 16 & (\log^*)^{(1)}(65536) &= 4 \\
\log^{(2)}(65536) &= 4 & (\log^*)^{(2)}(65536) &= \log^*(4) = 2 \\
\log^{(3)}(65536) &= 2 & (\log^*)^{(3)}(65536) &= \log^*(2) = 1 \\
\log^{(4)}(65536) &= 1 & \therefore \log^{**}(65536) &= 3 \\
\therefore \log^*(65536) &= 4
\end{align*}
\]
The Partial Sums Data Structure
Example:
The Partial Sums on Array of numbers

\[
\begin{array}{cccccccc}
3 & 4 & 6 & 2 & 11 & 7 & 3 & 5 & 5 & 2 \\
\end{array}
\]

\[
4 + 6 + 2 + 11 + 7 + 3 = ?
\]
Semigroups

Semigroup \((\Pi, \oplus)\): A set \(\Pi\) together with an associative binary operation \(\oplus: \Pi \times \Pi \rightarrow \Pi\).

Examples:

\[(\mathbb{R}, \text{max})\]
\[(\{\text{true, false}\}, \text{logical OR})\]
\[(k \times k \text{ matrices, matrix multiplication})\]
Partial Semigroup Sums

Given (i) a semigroup (Π, \oplus), and

(ii) an array $A[1 \ldots n]$ with each entry $A[i] \in \Pi$

Goal: Preprocess A using as little space as possible so that for all $1 \leq i \leq j \leq n$, queries of the form $A[i] \oplus A[i+1] \oplus \ldots \oplus A[j]$ can be answered efficiently.

Query Complexity: #times the \oplus operation is applied

Space Complexity: #values from Π stored in the data structure

k-op structure: A data structure with query complexity k

$S_k(n)$: #values from Π to be stored so that every partial sum query can be answered using at most k applications of the \oplus operation
Bound 0

Bound 0: $S_1(n) \leq n \log n$.

Construction of a 1-op structure:

Input array A of size n

Split A into A_l and A_r of size $\frac{n}{2}$ each

Compute: all suffix-sums of A_l, and all prefix-sums of A_r

Recurse: 1-op structure for A_l, and 1-op structure for A_r

Query: Either crosses A’s midpoint (return suffix-sum \oplus prefix-sum), or lies completely inside A_l (recurse) or A_r (recurse)
Bound 0

Bound 0: $S_1(n) \leq n \log n$.

Construction of a 1-op structure:

Input array A of size n

Split A into A_l and A_r of size $\frac{n}{2}$ each

Compute: all suffix-sums of A_l, and all prefix-sums of A_r

Recurse: 1-op structure for A_l, and 1-op structure for A_r

Space: $S_1(n) \leq n + 2S_1\left(\frac{n}{2}\right) \leq n \log n$
Bound 1

Bound 1: $S_3(n) \leq 3n \log^* n$.

Construction of a 3-op structure:
Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each.
Compute: all suffix- and prefix-sums within each subarray.
Build: 1-op structure for $\frac{n}{\log n}$ subarray sums.
Recurse: 3-op structure for each subarray.

Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum \oplus answer from 1-op structure \oplus prefix-sum).
Bound 1

Bound 1: $S_3(n) \leq 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: 1-op structure for $\frac{n}{\log n}$ subarray sums.

Recurse: 3-op structure for each subarray.

Space: $S_3(n) \leq 2n + S_1 \left(\frac{n}{\log n} \right) + \frac{n}{\log n} S_3(\log n)$

$\leq 3n + \frac{n}{\log n} S_3(\log n) \leq 3n \log^* n$
Bound k

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^{\cdots^k} n$.

Construction of a $(2k + 1)$-op structure:

Split A into $n / \log^{\cdots^k} n$ subarrays of size $\leq \log^{\cdots^k} n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: $(2k - 1)$-op structure for $n / \log^{\cdots^k} n$ subarray sums.

Recurse: $(2k + 1)$-op structure for each subarray.

Query: Either completely inside a subarray (recurse),
or crosses subarray boundaries (return suffix-sum \oplus answer from $(2k - 1)$-op structure \oplus prefix-sum)
Bound k

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^* n$.

Construction of a $(2k + 1)$-op structure:

Split A into $n/\log^* n$ subarrays of size $\leq \log^* n$ each.

Compute: all suffix- and prefix- sums within each subarray.

Build: $(2k - 1)$-op structure for $n/\log^* n$ subarray sums.

Recurse: $(2k + 1)$-op structure for each subarray.

Space:

$$S_{2k+1}(n) \leq 2n + S_{2k-1} \left(\frac{n}{k-1} \log^* n \right) + \frac{n}{k-1} S_{2k+1} \left(\log^* n \right)$$

$$\leq (2k + 1)n + \frac{n}{k-1} S_{2k+1} \left(\log^* n \right) \leq (2k + 1)n \log^* n$$
The α Bound

Bound k: $S_{2k+1}(n) \leq (2k + 1)n \log^k n$.

Putting $k = \alpha(n)$, we have:

Bound α: $S_{2\alpha(n)+1}(n) \leq 3(2\alpha(n) + 1)n = O(n\alpha(n))$.

Linear Space: Use the α-bound to show that the space complexity of the data structure can be reduced to $O(n)$ while still supporting range queries in $O(\alpha(n))$ time.
Union-Find:
A Disjoint-Set Data Structure
Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set \(\{x\} \) containing only element \(x \).

 Element \(x \) becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing \(x \)

UNION(x, y): replace the dynamic sets \(S_x \) and \(S_y \) containing \(x \) and \(y \), respectively, with the set \(S_x \cup S_y \)
Union-Find Data Structure

with **Union by Rank** and **Find with Path Compression**

MAKE-SET \((x)\)

1. \(\pi(x) \leftarrow x\)
2. \(\text{rank}(x) \leftarrow 0\)

LINK \((x, y)\)

1. \(\text{if } \text{rank}(x) > \text{rank}(y) \text{ then } \pi(y) \leftarrow x\)
2. \(\text{else } \pi(x) \leftarrow y\)
3. \(\text{if } \text{rank}(x) = \text{rank}(y) \text{ then } \text{rank}(y) \leftarrow \text{rank}(y) + 1\)

UNION \((x, y)\)

1. \(\text{LINK}(\text{FIND}(x), \text{FIND}(y))\)

FIND \((x)\)

1. \(\text{if } x \neq \pi(x) \text{ then } \pi(x) \leftarrow \text{FIND}(\pi(x))\)
2. \(\text{return } \pi(x)\)
Some Useful Properties of Rank

- If x is not a root then $\text{rank}(x) < \text{rank}(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If the root of x’s tree changes from y to z then $\text{rank}(z) > \text{rank}(y)$
- If x is the root of a tree then $\text{size}(x) \geq 2^{\text{rank}(x)}$
- If there are only n nodes the highest possible rank is $\lceil \log_2 n \rceil$
- There are at most $\frac{n}{2^r}$ nodes with rank $r \geq 0$
Some Useful Properties of Rank

- We will analyze the total running time of m' MAKE-SET, UNION and FIND operations of which exactly $n \leq m'$ are MAKE-SET.
- But each UNION can be replaced with two FIND and one LINK.
- Hence, we can simply analyze the total running time of m MAKE-SET, LINK and FIND operations of which exactly $n \leq m$ are MAKE-SET and where $m' \leq m \leq 3m'$.
Compress

Compress \((x, y) \) \{ \text{ } y \text{ } \text{is} \text{ } \text{an} \text{ } \text{ancestor} \text{ } \text{of} \text{ } x \}\\
1. if \(x \neq y \) then \(\pi(x) \leftarrow \text{Compress} \ (\pi(x), y) \) \\
2. return \(\pi(x) \)

\begin{itemize}
 \item We will analyze the total running time of \(m \) MAKE-SET, UNION and \text{FIND} operations of which exactly \(n \) (\(\leq m \)) are \text{MAKE-SET}.
 \item But \text{FIND}(x) is nothing but \text{Compress}(x, y), where \(y \) is the root of the tree containing \(x \).
 \item Hence, we can analyze the total running time of \(m \) \text{MAKE-SET}, \text{LINK} and \text{COMPRESS} operations of which exactly \(n \) (\(\leq m \)) are \text{MAKE-SET}.
\end{itemize}
Compress

\[\text{Compress} (x, y) \{ \text{y is an ancestor of } x \} \]

1. \(\text{if } x \neq y \text{ then } \pi(x) \leftarrow \text{Compress} (\pi(x), y) \)
2. \(\text{return } \pi(x) \)

We can reorder the sequence of Link and Compress operations so that all Link’s are performed before all Compress operations without changing the number of parent pointer reassignments!
\textbf{SHATTER} \hspace{1cm} (x)

1. \textit{if} $x \neq \pi(x)$ \textit{then} \textbf{SHATTER} \hspace{1cm} (\pi(x))

2. $\pi(x) \leftarrow x$

\[
\begin{array}{cccc}
& w & & \\
\downarrow & & \searrow & \\
& z & y & \\
\downarrow & & & \\
x & y & z & w \\
\end{array}
\hspace{5cm}
\begin{array}{cccc}
& w & & \\
\downarrow & & \searrow & \\
& z & y & \\
\downarrow & & & \\
x & y & z & w \\
\end{array}
\]
Bound 0

Let $T(m, n, r) = \text{worst-case number of parent pointer assignments}$

- during any sequence of at most m COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq nr$.

Proof: Since there are at most r distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than r times.
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof: Let F be the forest, and C be the sequence of COMPRESS operations performed on F.

Let $T(F, C)$ be the number of parent pointer assignments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:

- F_b containing all nodes with rank $\leq s$,
- F_t containing all nodes with rank $> s$.
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r. \)

Proof: Let \(s \) be an arbitrary rank. We partition \(F \) into two subforests:
- \(F_b \) containing all nodes with rank \(\leq s \), and
- \(F_t \) containing all nodes with rank \(> s \).

Let \(n_t = \# \) nodes in \(F_t \), and \(n_b = \# \) nodes in \(F_b \)

Let \(m_t = \# \text{COMPRESS operations with at least one node in } F_t \), and
\[
m_b = m - m_t
\]
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r. \)

Proof: The sequence \(C \) on \(F \) can be decomposed into
- a sequence of COMPRESS operations in \(F_t \), and
- a sequence of COMPRESS and SHATTER operations in \(F_b \)

Suppose, this decomposition partitions \(C \) into two subsequences
- \(C_t \) in \(F_t \), and
- \(C_b \) in \(F_b \)
Bound 1

Bound 1: \(T(m, n, r) \leq m + 2n \log^* r \).

Proof: We get the following recurrence:

\[
T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b
\]

<table>
<thead>
<tr>
<th>Cost on Left Side</th>
<th>Corresponding Cost on Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>node ∈ (F_t) gets new parent ∈ (F_t)</td>
<td>(T(F_t, C_t))</td>
</tr>
<tr>
<td>node ∈ (F_b) gets new parent ∈ (F_b)</td>
<td>(T(F_b, C_b))</td>
</tr>
<tr>
<td>node ∈ (F_b) gets new parent ∈ (F_t) (for the first time)</td>
<td>(n_b)</td>
</tr>
<tr>
<td>node ∈ (F_b) gets new parent ∈ (F_t) (again)</td>
<td>(m_t)</td>
</tr>
</tbody>
</table>
Bound 1

Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof: We get the following recurrence:

$$T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b$$

Now $n_t \leq \sum_{i>s} \frac{n}{2^i} = \frac{n}{2^s}$, and $r_t = r - s < r$.

Hence, using bound 0: $T(F_t, C_t) \leq n_tr_t < \frac{nr}{2^s}$

Let $s = \log r$. Then $T(F_t, C_t) < n$.

Hence, $T(F, C) \leq T(F_b, C_b) + m_t + 2n$

$\Rightarrow T(F, C) - m \leq T(F_b, C_b) - m_b + 2n$
Bound 1: $T(m, n, r) \leq m + 2n \log^* r$.

Proof:

We got $T(F, C) - m \leq T(F_b, C_b) - m_b + 2n$

Let $T_1(m, n, r) = T(m, n, r) - m$

Then $T_1(m, n, r) \leq T_1(m_b, n_b, r_b) + 2n$

$\Rightarrow T_1(m, n, r) \leq T_1(m, n, \log r) + 2n$

Solving, $T_1(m, n, r) \leq 2n \log^* r$

Hence, $T(m, n, r) \leq m + 2n \log^* r$
Bound 2

Bound 2: \(T(m, n, r) \leq 2m + 3n \log^* r \).

Proof: Similar to the proof of bound 1.

But we solve \(T(F_t, C_t) \) using bound 1, instead of bound 0!

We fix \(s = \log^* r \) (instead of \(\log r \) for bound 1)

Then using bound 1: \(T(F_t, C_t) \leq m_t + 2n_t \log^* r_t \)

\[\leq m_t + 2 \frac{n}{2 \log^* r} \log^* r \]

\[\leq m_t + 2n \]

Then from \(T(F, C) \leq T(F_t, C_t) + T(F_b, C_b) + m_t + n_b \), we get

\[T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b \]
Bound 2

Bound 2: \(T(m, n, r) \leq 2m + 3n \log^\ast r \).

Proof: Our recurrence:

\[
T(F, C) \leq T(F_b, C_b) + 2m_t + 3n_b
\]
\[
\Rightarrow T(F, C) - 2m \leq T(F_b, C_b) - 2m_b + 3n_b
\]

Let \(T_2(m, n, r) = T(m, n, r) - 2m \)

Then \(T_2(m, n, r) \leq T_2(m_b, n_b, r_b) + 3n \)
\[
\Rightarrow T_2(m, n, r) \leq T_2(m, n, \log^\ast r) + 3n
\]

Solving, \(T_2(m, n, r) \leq 3n \log^\ast r \)

Hence, \(T(m, n, r) \leq 2m + 3n \log^\ast r \)
Bound k

Bound k: $T(m, n, r) \leq km + (k + 1)n \log^{k} r$.

Observation: As we increase k:
- the dependency on m increases
- the dependency on r decreases

When $k = \alpha(r)$, we have $\log^{k} r \leq 3$!

Bound α: $T(m, n, r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.
The α Bound

Bound α: $T(m, n, r) \leq m\alpha(r) + 3(\alpha(r) + 1)n$.

Observing that $r < n$, we have:

Bound α: $T(m, n, r) \leq (m + 3n)\alpha(n) + 3n = \mathcal{O}((m + n)\alpha(n))$.

Assuming $m \geq n$, we have:

Bound α: $T(m, n, r) = \mathcal{O}(m\alpha(n))$.

So, amortized complexity of each operation is only $\mathcal{O}(\alpha(n))$!