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A Binary Counter

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 11 0 1

0 0 0 0 0 0 1 0 22 1 1

0 0 0 0 0 0 1 1 13 0 1

0 0 0 0 0 1 0 0 34 2 1
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0 0 0 0 0 1 1 0 26 1 1
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0 0 0 0 1 0 1 0 210 1 1

0 0 0 0 1 0 1 1 111 0 1

0 0 0 0 1 1 0 0 312 2 1

0 0 0 0 1 1 0 1 113 0 1

0 0 0 0 1 1 1 0 214 1 1

0 0 0 0 1 1 1 1 115 0 1

0 0 0 1 0 0 0 0 516 4 1
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Consider a 𝑘-bit counter initialized to 0 ( i.e., all bits are 0’s ).

Suppose we increment the counter 𝑛 times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of 𝑛 increments?

Worst-case cost of a single increment:

#bit sets ( 0 → 1 ),      𝑏1 ≤ 1

#bit resets ( 1 → 0 ),  𝑏0 ≤ 𝑘 − 𝑏1
#bit flips                             = 𝑏1 + 𝑏0 ≤ 𝑘

Worst-case cost of 𝒏 increments:

#bit flips                             ≤ 𝑛𝑘

This turns out to be a very loose upper bound!

A Binary Counter
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A better upper bound can be obtained as follows.

Each increment sets ( 0 → 1 ) at most one bit, i.e., 𝑏1 ≤ 1

So, total number of bits set by 𝑛 increments, 𝐵1 = 𝑏1𝑛 ≤ 𝑛

Since at most 𝑛 bits are set, there cannot be more than 𝑛 bit resets 

( 1 → 0 ), i.e., 𝐵0 ≤ 𝐵1 ≤ 𝑛

So, total number of bit flips = 𝐵1 + 𝐵0 ≤ 𝑛 + 𝑛 = 2𝑛

Thus worst-case cost of a sequence of 𝑛 increments, 𝑇 𝑛 ≤ 2𝑛

Hence, in the worst case, average cost of an increment =
𝑇 𝑛

𝑛
≤ 2

This worst-case average cost is called the amortized cost of an 

increment in a sequence of 𝑛 increments.

Aggregate Analysis
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A Binary Counter
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0 0 0 0 0 0 0 1 1 11 0 1

0 0 0 0 0 0 1 0 2 32 1 1

0 0 0 0 0 0 1 1 1 43 0 1

0 0 0 0 0 1 0 0 3 74 2 1

0 0 0 0 0 1 0 1 1 85 0 1
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0 0 0 0 0 1 1 1 1 117 0 1

0 0 0 0 1 0 0 0 4 158 3 1

0 0 0 0 1 0 0 1 1 169 0 1
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0 0 0 0 1 0 1 1 1 1911 0 1

0 0 0 0 1 1 0 0 3 2212 2 1

0 0 0 0 1 1 0 1 1 2313 0 1

0 0 0 0 1 1 1 0 2 2514 1 1

0 0 0 0 1 1 1 1 1 2615 0 1

0 0 0 1 0 0 0 0 5 3116 4 1
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− often obtains a tighter worst-case upper bound on the cost of a 

sequence of operations on a data structure by reasoning about 

the interactions among those operations

− the actual cost of any given operation may be very high, but that 

operation may change the state of the data structure in such a 

way that similar high-cost operations cannot appear for a while

− tries to show that there must be enough low-cost operations in 

the sequence to average out the impact of high-cost operations

− unlike average case analysis proves a worst-case upper bound on 

the total cost of the sequence of operations

− unlike expected case analysis no probabilities are involved

Amortized Analysis
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Accounting Method ( Banker’s View )

Consider a 𝑘-bit counter initialized to 0 ( i.e., all bits are 0’s ).

Worst-case cost of a single increment:

#bit sets ( 0 → 1 ),      𝑏1 ≤ 1

#bit resets ( 1 → 0 ),  𝑏0 ≤ 𝑘 − 𝑏1
#bit flips                             = 𝑏1 + 𝑏0 ≤ 𝑘

Thus each increment is paying for the bit it sets ( fair ).

But also paying for resetting bits set by prior increments ( unfair )!

A fairer cost accounting for each increment:

(1) Pay for the bit it sets.

(2) Pay in advance for resetting this bit ( by some other increment ) 

in the future. Store this advanced payment as a credit associated 

with that bit position.

(3) When resetting a bit use the credit stored in that bit position.
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Accounting Method ( Banker’s View )

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4

0 0 0 0 0 1 0 0 3 84 2 7

0 0 0 0 0 1 0 1 1 105 2 8
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Accounting Method ( Banker’s View )

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4
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Total credits remaining after 𝑛 increments, Δ𝑛 = σ𝑖=1
𝑛 Ƹ𝑐𝑖 −σ𝑖=1

𝑛 𝑐𝑖

We must make sure that for all 𝑛,  Δ𝑛 ≥ 0

⇒ σ𝑖=1
𝑛 Ƹ𝑐𝑖 ≥ σ𝑖=1

𝑛 𝑐𝑖

This will ensure that the total amortized cost is always an upper 

bound on the total actual cost.
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Potential Method ( Physicist’s View )

Banker’s View: Store prepaid work as credit with specific objects      

in the data structure.

Physicist’s View: Represent total remaining credit in the data 

structure as a single potential function.

Suppose: state of the initial data structure = 𝐷0
state of the data structure after the 𝑖-th operation = 𝐷𝑖
potential associated with 𝐷𝑖 is = Φ 𝐷𝑖

Then amortized cost of the 𝑖-th operation,

Ƹ𝑐𝑖 = actual cost + potential change due to that operation

= 𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1)
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Potential Method ( Physicist’s View )

Then amortized cost of the 𝑖-th operation,

Ƹ𝑐𝑖 = actual cost + potential change due to that operation

= 𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1)

෍

𝑖=1

𝑛

Ƹ𝑐𝑖 =෍

𝑖=1

𝑛

𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1) =෍

𝑖=1

𝑛

𝑐𝑖 +Φ 𝐷𝑛 −Φ(𝐷0)

Since we do not know 𝑛 in advance, if we make sure that for all 𝑛, 

Φ(𝐷𝑛) ≥ Φ(𝐷0), we ensure that always σ𝑖=1
𝑛 Ƹ𝑐𝑖 ≥ σ𝑖=1

𝑛 𝑐𝑖.

In other words, in that case, the total amortized cost will always be 

an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that Φ 𝐷0 = 0 and 

for all 𝑛, Φ(𝐷𝑛) ≥ 0.

13



Potential Method ( Physicist’s View )

0 0 0 0 0 0 0 1 1 21 2 1( overcharged )1

0 0 0 0 0 0 1 0 2 42 2 31
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0 0 0 0 0 1 0 1 1 105 2 8( overcharged )2
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0

For the binary counter, 

Φ 𝐷𝑖 = number of set bits ( i.e., 1 bits ) after the 𝑖-th operation
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