
CSE 548: Analysis of Algorithms

Lecture 8

(Amortized Analysis)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

1

A Binary Counter

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 11 0 1

0 0 0 0 0 0 1 0 22 1 1

0 0 0 0 0 0 1 1 13 0 1

0 0 0 0 0 1 0 0 34 2 1

0 0 0 0 0 1 0 1 15 0 1

0 0 0 0 0 1 1 0 26 1 1

0 0 0 0 0 1 1 1 17 0 1

0 0 0 0 1 0 0 0 48 3 1

0 0 0 0 1 0 0 1 19 0 1

0 0 0 0 1 0 1 0 210 1 1

0 0 0 0 1 0 1 1 111 0 1

0 0 0 0 1 1 0 0 312 2 1

0 0 0 0 1 1 0 1 113 0 1

0 0 0 0 1 1 1 0 214 1 1

0 0 0 0 1 1 1 1 115 0 1

0 0 0 1 0 0 0 0 516 4 1

counter
value counter

#bit
flips

#bit resets
(1→ 0)

#bit sets
(0 → 1)

2

Consider a 𝑘-bit counter initialized to 0 (i.e., all bits are 0’s).

Suppose we increment the counter 𝑛 times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of 𝑛 increments?

Worst-case cost of a single increment:

#bit sets (0 → 1), 𝑏1 ≤ 1

#bit resets (1 → 0), 𝑏0 ≤ 𝑘 − 𝑏1
#bit flips = 𝑏1 + 𝑏0 ≤ 𝑘

Worst-case cost of 𝒏 increments:

#bit flips ≤ 𝑛𝑘

This turns out to be a very loose upper bound!

A Binary Counter
3

A better upper bound can be obtained as follows.

Each increment sets (0 → 1) at most one bit, i.e., 𝑏1 ≤ 1

So, total number of bits set by 𝑛 increments, 𝐵1 = 𝑏1𝑛 ≤ 𝑛

Since at most 𝑛 bits are set, there cannot be more than 𝑛 bit resets

(1 → 0), i.e., 𝐵0 ≤ 𝐵1 ≤ 𝑛

So, total number of bit flips = 𝐵1 + 𝐵0 ≤ 𝑛 + 𝑛 = 2𝑛

Thus worst-case cost of a sequence of 𝑛 increments, 𝑇 𝑛 ≤ 2𝑛

Hence, in the worst case, average cost of an increment =
𝑇 𝑛

𝑛
≤ 2

This worst-case average cost is called the amortized cost of an

increment in a sequence of 𝑛 increments.

Aggregate Analysis
4

A Binary Counter

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 11 0 1

0 0 0 0 0 0 1 0 2 32 1 1

0 0 0 0 0 0 1 1 1 43 0 1

0 0 0 0 0 1 0 0 3 74 2 1

0 0 0 0 0 1 0 1 1 85 0 1

0 0 0 0 0 1 1 0 2 106 1 1

0 0 0 0 0 1 1 1 1 117 0 1

0 0 0 0 1 0 0 0 4 158 3 1

0 0 0 0 1 0 0 1 1 169 0 1

0 0 0 0 1 0 1 0 2 1810 1 1

0 0 0 0 1 0 1 1 1 1911 0 1

0 0 0 0 1 1 0 0 3 2212 2 1

0 0 0 0 1 1 0 1 1 2313 0 1

0 0 0 0 1 1 1 0 2 2514 1 1

0 0 0 0 1 1 1 1 1 2615 0 1

0 0 0 1 0 0 0 0 5 3116 4 1

counter
value counter

#bit
flips

#bit resets
(1→ 0)

#bit sets
(0 → 1)

total
#bit flips

5

− often obtains a tighter worst-case upper bound on the cost of a

sequence of operations on a data structure by reasoning about

the interactions among those operations

− the actual cost of any given operation may be very high, but that

operation may change the state of the data structure in such a

way that similar high-cost operations cannot appear for a while

− tries to show that there must be enough low-cost operations in

the sequence to average out the impact of high-cost operations

− unlike average case analysis proves a worst-case upper bound on

the total cost of the sequence of operations

− unlike expected case analysis no probabilities are involved

Amortized Analysis
6

Accounting Method (Banker’s View)

Consider a 𝑘-bit counter initialized to 0 (i.e., all bits are 0’s).

Worst-case cost of a single increment:

#bit sets (0 → 1), 𝑏1 ≤ 1

#bit resets (1 → 0), 𝑏0 ≤ 𝑘 − 𝑏1
#bit flips = 𝑏1 + 𝑏0 ≤ 𝑘

Thus each increment is paying for the bit it sets (fair).

But also paying for resetting bits set by prior increments (unfair)!

A fairer cost accounting for each increment:

(1) Pay for the bit it sets.

(2) Pay in advance for resetting this bit (by some other increment)

in the future. Store this advanced payment as a credit associated

with that bit position.

(3) When resetting a bit use the credit stored in that bit position.

7

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4

0 0 0 0 0 1 0 0 3 84 2 7

0 0 0 0 0 1 0 1 1 105 2 8

0 0 0 0 0 1 1 0 2 126 2 10

0 0 0 0 0 1 1 1 1 147 2 11

0 0 0 0 1 0 0 0 4 168 2 15

0 0 0 0 1 0 0 1 1 189 2 16

counter
value counter

actual
cost (𝑐𝑖)

amortized
cost (Ƹ𝑐𝑖)

෍𝑐𝑖 ෍ Ƹ𝑐𝑖

(overcharged)

(overcharged)

(undercharged)

(overcharged)

(overcharged)

(undercharged)

(overcharged)

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

9

Accounting Method (Banker’s View)

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 1 1 21 2 1

0 0 0 0 0 0 1 0 2 42 2 3

0 0 0 0 0 0 1 1 1 63 2 4

0 0 0 0 0 1 0 0 3 84 2 7

counter
value counter

actual
cost (𝑐𝑖)

amortized
cost (Ƹ𝑐𝑖)

෍𝑐𝑖 ෍ Ƹ𝑐𝑖

(overcharged)

(overcharged)

(undercharged)

≤

≤

≤

≤

≤

Total credits remaining after 𝑛 increments, Δ𝑛 = σ𝑖=1
𝑛 Ƹ𝑐𝑖 −σ𝑖=1

𝑛 𝑐𝑖

We must make sure that for all 𝑛, Δ𝑛 ≥ 0

⇒ σ𝑖=1
𝑛 Ƹ𝑐𝑖 ≥ σ𝑖=1

𝑛 𝑐𝑖

This will ensure that the total amortized cost is always an upper

bound on the total actual cost.

10

Potential Method (Physicist’s View)

Banker’s View: Store prepaid work as credit with specific objects

in the data structure.

Physicist’s View: Represent total remaining credit in the data

structure as a single potential function.

Suppose: state of the initial data structure = 𝐷0
state of the data structure after the 𝑖-th operation = 𝐷𝑖
potential associated with 𝐷𝑖 is = Φ 𝐷𝑖

Then amortized cost of the 𝑖-th operation,

Ƹ𝑐𝑖 = actual cost + potential change due to that operation

= 𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1)

12

Potential Method (Physicist’s View)

Then amortized cost of the 𝑖-th operation,

Ƹ𝑐𝑖 = actual cost + potential change due to that operation

= 𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1)

෍

𝑖=1

𝑛

Ƹ𝑐𝑖 =෍

𝑖=1

𝑛

𝑐𝑖 +Φ 𝐷𝑖 −Φ(𝐷𝑖−1) =෍

𝑖=1

𝑛

𝑐𝑖 +Φ 𝐷𝑛 −Φ(𝐷0)

Since we do not know 𝑛 in advance, if we make sure that for all 𝑛,

Φ(𝐷𝑛) ≥ Φ(𝐷0), we ensure that always σ𝑖=1
𝑛 Ƹ𝑐𝑖 ≥ σ𝑖=1

𝑛 𝑐𝑖.

In other words, in that case, the total amortized cost will always be

an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that Φ 𝐷0 = 0 and

for all 𝑛, Φ(𝐷𝑛) ≥ 0.

13

Potential Method (Physicist’s View)

0 0 0 0 0 0 0 1 1 21 2 1(overcharged)1

0 0 0 0 0 0 1 0 2 42 2 31

0 0 0 0 0 0 1 1 1 63 2 4(overcharged)2

0 0 0 0 0 1 0 0 3 84 2 7(undercharged)1

0 0 0 0 0 1 0 1 1 105 2 8(overcharged)2

0 0 0 0 0 1 1 0 2 126 2 102

0 0 0 0 0 1 1 1 1 147 2 11(overcharged)3

0 0 0 0 1 0 0 0 4 168 2 15(undercharged)1

≤

≤

≤

≤

≤

≤

≤

≤

≤

0 0 0 0 0 0 0 00

counter
value counter

actual
cost (𝑐𝑖)

amortized
cost (Ƹ𝑐𝑖)

෍𝑐𝑖 ෍ Ƹ𝑐𝑖Φ 𝐷𝑖

0

For the binary counter,

Φ 𝐷𝑖 = number of set bits (i.e., 1 bits) after the 𝑖-th operation

17

