CSE 548: Analysis of Algorithms

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2019

Asymptotic Stickman
(by Aleksandra Patrzalek, SUNY Buffalo)
Basic Logistics: Who/Where/When

- **Lecture Time:** MW 2:30 pm - 3:50 pm
- **Location:** Harriman Hall 104, West Campus
- **Instructor:** Rezaul A. Chowdhury
- **Office Hours:** MF 4:00 pm - 5:30 pm
  239 Computer Science
- **Email:** rezaul@cs.stonybrook.edu
- **TA:** TBA
- **Class Webpage:**
Prerequisites

- **Required:** Some background (undergrad level) in the design and analysis of algorithms and data structures
  
  - fundamental data structures (e.g., lists, stacks, queues and arrays)
  
  - discrete mathematical structures (e.g., graphs, trees, and their adjacency lists & adjacency matrix representations)
  
  - fundamental programming techniques (e.g., recursion, divide-and-conquer, and dynamic programming)
  
  - basic sorting and searching algorithms
  
  - fundamentals of asymptotic analysis (e.g., $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$ notations)

- **Required:** Some background in programming languages (C / C++)
Topics to be Covered

The following topics will be covered (hopefully)

- recurrence relations and divide-and-conquer algorithms
- dynamic programming
- graph algorithms (e.g., network flow)
- amortized analysis
- advanced data structures (e.g., Fibonacci heaps)
- cache-efficient and external-memory algorithms
- high probability bounds and randomized algorithms
- parallel algorithms and multithreaded computations
- NP-completeness and approximation algorithms
- the alpha technique (e.g., disjoint sets, partial sums)
- FFT (Fast Fourier Transforms)
Grading Policy

- Four Homework Problem Sets
  (highest score 15%, lowest score 5%, and others 10% each): 40%

- Two Exams (higher one 30%, lower one 15%): 45%
  - Midterm (in-class): Mar 13
  - Final (in-class): May 1

- Scribe note (one lecture): 10%

- Class participation & attendance: 5%
Textbooks

Required


Recommended

What is an Algorithm?

An algorithm is a well-defined computational procedure that solves a well-specified computational problem.

It accepts a value or set of values as input, and produces a value or set of values as output.

Example: mergesort solves the sorting problem specified as a relationship between the input and the output as follows.

Input: A sequence of \( n \) numbers \( \langle a_1, a_2, \ldots, a_n \rangle \).

Output: A permutation \( \langle a'_1, a'_2, \ldots, a'_n \rangle \) of the input sequence such that \( a'_1 \leq a'_2 \leq \cdots \leq a'_n \).
Desirable Properties of an Algorithm

✓ Correctness
  – Designing an incorrect algorithm is straightforward

✓ Efficiency
  – Efficiency is easily achievable if we give up on correctness

Surprisingly, sometimes incorrect algorithms can also be useful!
  – If you can control the error rate
  – Tradeoff between correctness and efficiency:
    Randomized algorithms
      ( Monte Carlo: always efficient but sometimes incorrect,
        Las Vegas: always correct but sometimes inefficient )
    Approximation algorithms
      ( always incorrect! )
How Do You Measure Efficiency?

We often want algorithms that can use the available resources efficiently.

Some measures of efficiency

- time complexity
- space complexity
- cache complexity
- I/O complexity
- energy usage
- number of processors/cores used
- network bandwidth
**Goal of Algorithm Analysis**

Goal is to predict the behavior of an algorithm without implementing it on a real machine.

But predicting the exact behavior is not always possible as there are too many influencing factors.

Runtime on a serial machine is the most commonly used measure. We need to model the machine first in order to analyze runtimes. But an exact model will make the analysis too complicated!

So we use an approximate model (e.g., assume unit-cost Random Access Machine model or RAM model).

We may need to approximate even further: e.g., for a sorting algorithm we may count the comparison operations only.

So the predicted running time will only be an approximation!
Performance Bounds

- **worst-case complexity**: maximum complexity over all inputs of a given size
- **average complexity**: average complexity over all inputs of a given size
- **amortized complexity**: worst-case bound on a sequence of operations
- **expected complexity**: for algorithms that make random choices during execution (randomized algorithms)
- **high-probability bound**: when the probability that the complexity holds is \( \geq 1 - \frac{c}{n^\alpha} \) for input size \( n \), positive constant \( c \) and some constant \( \alpha \geq 1 \)
You are given an $n \times n$ grid $A[1,n,1:n]$, where $n = 2^m - 1$ for some integer $m > 0$.

Each grid cell contains a number.

The numbers in each row are sorted in non-decreasing order from left to right.

The numbers in each column are sorted in non-decreasing order from top to bottom.
### Searching in a Sorted Grid (Algorithm 1)

Let $n = 2^m - 1$.

#### Algorithm 1 (Search for $x$):

Scan the entire grid row by row until either $x$ is found, or you are done scanning the entire grid.

Let $Q_1(n) = \text{number of comparisons performed on an } n \times n \text{ grid.}$

Then $Q_1(n) \leq n^2$.
Searching in a Sorted Grid (Algorithm 2):

Let $y$ be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- $y = x$: you found the item
**Searching in a Sorted Grid (Algorithm 2)**

Let $y$ be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- $y = x$: you found the item
Searching in a Sorted Grid (Algorithm 2):

**Algorithm 2 (search for x):**

Let \( y \) be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- \( y = x \): you found the item
- \( y > x \): the item cannot be in \( A_{22}, R_2 \) and \( C_2 \).

Search for \( x \) in \( R_1 \) and \( C_1 \), and recursively in \( A_{11}, A_{12} \) & \( A_{21} \).
Searching in a Sorted Grid (Algorithm 2):

Let \( y \) be the number at the center of the grid (i.e., at the intersection of the mid row and mid column).

- \( y = x \): you found the item
- \( y > x \): the item cannot be in \( A_{22}, R_2 \) and \( C_2 \).
  Search for \( x \) in \( R_1 \) and \( C_1 \), and recursively in \( A_{11}, A_{12} \) & \( A_{21} \).
- \( y < x \): the item cannot be in \( A_{11}, R_1 \) and \( C_1 \).
  Search for \( x \) in \( R_2 \) and \( C_2 \), and recursively in \( A_{12}, A_{21} \) & \( A_{22} \).
Searching in a Sorted Grid (Algorithm 2)

Let \( Q_2(n) \) = number of comparisons performed on an \( n \times n \) grid.

Then \( Q_2(n) \leq 1 + 2 \left( \frac{n + 1}{2} - 1 \right) + 3Q_2 \left( \frac{n + 1}{2} - 1 \right) \)

\[ \Rightarrow Q_2(n) \leq 3Q_2 \left( \frac{n + 1}{2} - 1 \right) + n \]

Solving: \( Q_2(n) \leq 2(n + 1)^{\log_2 3} \)

\[ \leq 2(n + 1)^{1.6} \]
Algorithm 3 (Search for $x$):

Starting from the top row perform a binary search for $x$ in each row until $x$ is found.

Binary search in row $i$ of $A$:

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return "item found"} \\
\quad \quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \quad \quad \text{else right} \leftarrow \text{mid} - 1 \\
\quad \quad \text{end while} \\
\quad \text{return "item not found"}
\]
### Searching in a Sorted Grid (Algorithm 3)

**Algorithm 3 (Search for $x$):**

Starting from the top row perform a *binary search* for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

$$
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return "item found"} \\
\quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
$$

#### Sample Application

Search for $x = 35$

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 10 11 20 22 26 30 31 31 34 34 37 37 40 45</td>
</tr>
<tr>
<td>4 6 15 18 27 30 31 38 39 40 42 42 44 48 48 48</td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41 41 41 48 50 50 50 55 59</td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45 48 50 50 58 58 58 65 65</td>
</tr>
<tr>
<td>11 14 29 31 35 36 41 49 55 55 58 59 61 62 67 67</td>
</tr>
<tr>
<td>15 20 30 32 39 42 42 50 59 60 60 65 68 71 71 71</td>
</tr>
<tr>
<td>16 21 35 41 41 43 44 58 62 69 69 70 70 70 75 75</td>
</tr>
<tr>
<td>20 22 36 41 42 50 50 61 65 70 75 75 76 78 78 78</td>
</tr>
<tr>
<td>21 25 37 44 44 45 59 60 62 70 72 75 76 78 80 80</td>
</tr>
<tr>
<td>22 28 39 48 50 61 62 66 71 75 75 76 78 81 85 85</td>
</tr>
<tr>
<td>26 31 40 56 65 65 65 69 75 78 78 80 82 82 88 88</td>
</tr>
<tr>
<td>29 34 41 61 66 69 72 72 78 80 80 81 82 84 88 88</td>
</tr>
<tr>
<td>31 41 45 66 67 70 72 72 78 82 84 85 85 85 91 91</td>
</tr>
<tr>
<td>32 45 49 67 67 72 78 80 81 86 85 86 86 88 95 95</td>
</tr>
<tr>
<td>40 55 56 70 71 75 81 81 81 86 86 88 91 93 93 98</td>
</tr>
</tbody>
</table>

$n = 2^m - 1$
Searching in a Sorted Grid (Algorithm 3):

**Algorithm 3 (search for x):**

Starting from the top row, perform a *binary search* for \( x \) in each row until \( x \) is found.

Binary search in row \( i \) of \( A \):

- \( \text{left} \leftarrow 1 \)
- \( \text{right} \leftarrow n \)
- while \( \text{left} \leq \text{right} \) do
  - \( \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \)
  - if \( A[i, \text{mid}] = x \) then
    - return "item found"
  - else if \( A[i, \text{mid}] < x \) then
    - \( \text{left} \leftarrow \text{mid} + 1 \)
  - else \( \text{right} \leftarrow \text{mid} - 1 \)
- end while
- return "item not found"

### Example

Search for \( x = 35 \):

- Grid: \( A[1:n, 1:n] \)
- \( n = 2^m - 1 \)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>

For \( x = 35 \), search for \( x \) in row 2:

- \( \text{left} = 1 \)
- \( \text{right} = n = 75 \)
- \( \text{mid} = \frac{1 + 75}{2} = 38 \)
- \( A[2, 38] = 35 \)
Searching in a Sorted Grid (Algorithm 3)

**Algorithm 3 (Search for x):**

Starting from the top row perform a *binary search* for *x* in each row until *x* is found.

**Binary search in row *i* of *A*:**

\[ left \leftarrow 1 \]
\[ right \leftarrow n \]

while \( left \leq right \) do

\[ mid \leftarrow \frac{left + right}{2} \]

if \( A[i, mid] = x \) then

return "item found"

else if \( A[i, mid] < x \) then

\[ left \leftarrow mid + 1 \]

else right \leftarrow mid - 1

end while

return "item not found"

Search for \( x = 35 \)
**Searching in a Sorted Grid (Algorithm 3)**

Given a grid $A[1:n, 1:n]$ where $n = 2^m - 1$, Algorithm 3 (search for $x$) is as follows:

Starting from the top row, perform a *binary search* for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

1. Set $left ← 1$
2. Set $right ← n$
3. While $left ≤ right$
   - Calculate $mid ← \frac{left + right}{2}$
   - If $A[i, mid] = x$ then
     - Return "item found"
   - Else if $A[i, mid] < x$ then
     - $left ← mid + 1$
   - Else
     - $right ← mid - 1$
4. Return "item not found"

**Example:**

Search for $x = 35$

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>

The search for $x = 35$ in the grid is illustrated above.
### Searching in a Sorted Grid (Algorithm 3)

- **Algorithm 3 (search for \( x \)):**
  
  Starting from the top row perform a *binary search* for \( x \) in each row until \( x \) is found.

  **Binary search in row \( i \) of \( A \):**
  
  1. \( \text{left} \leftarrow 1 \)
  2. \( \text{right} \leftarrow n \)
  3. while \( \text{left} \leq \text{right} \) do
     1. \( \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \)
     2. if \( A[i, \text{mid}] = x \) then
        1. return "item found"
     3. else if \( A[i, \text{mid}] < x \) then
        1. \( \text{left} \leftarrow \text{mid} + 1 \)
     4. else \( \text{right} \leftarrow \text{mid} - 1 \)
   4. end while
  5. return "item not found"

---

**Table:**

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>49</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>

Search for \( x = 35 \)
### Searching in a Sorted Grid (Algorithm 3)

**Algorithm 3 (Search for x):**

Starting from the top row perform a *binary search* for x in each row until x is found.

**Binary search in row i of A:**

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while} \text{left} \leq \text{right} \text{ do} \\
\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if} A[i, \text{mid}] = x \text{ then} \\
\quad \text{return "item found"} \\
\quad \text{else if} A[i, \text{mid}] < x \text{ then} \\
\quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]

---

#### Search for x = 35

<table>
<thead>
<tr>
<th>n = 2(^m) − 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[1:n, 1:n]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>
Searching in a Sorted Grid (Algorithm 3):

**Algorithm 3 (search for x):**

Starting from the top row, perform a binary search for \( x \) in each row until \( x \) is found.

Binary search in row \( i \) of \( A \):

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return "item found"} \\
\quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]

### Search for \( x = 35 \)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>81</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>
ALGORITHM 3 (SEARCH FOR X):
Starting from the top row perform a *binary search* for x in each row until x is found.

Binary search in row i of A:

\[ \text{left} \leftarrow 1 \]
\[ \text{right} \leftarrow n \]
\[ \text{while } \text{left} \leq \text{right} \text{ do} \]
\[ \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \]
\[ \text{if } A[i, \text{mid}] = x \text{ then} \]
\[ \text{return "item found"} \]
\[ \text{else if } A[i, \text{mid}] < x \text{ then} \]
\[ \text{left} \leftarrow \text{mid} + 1 \]
\[ \text{else right} \leftarrow \text{mid} - 1 \]
\[ \text{end while} \]
\[ \text{return "item not found"} \]

---

**Searching in a Sorted Grid (Algorithm 3)**

![Sorted Grid Image](image-url)
**Searching in a Sorted Grid (Algorithm 3)**

![Matrix Grid]

\( n = 2^m - 1 \)

**Algorithm 3 (Search for \( x \))**:

Starting from the top row, perform a *binary search* for \( x \) in each row until \( x \) is found.

**Binary search in row \( i \) of \( A \):**

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n
\]

while left \( \leq \) right do

\[
\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2}
\]

if \( A[i, \text{mid}] = x \) then

return "item found"

else if \( A[i, \text{mid}] < x \) then

\[
\text{left} \leftarrow \text{mid} + 1
\]

else right \( \leftarrow \text{mid} - 1
\]

end while

return "item not found"
Searching in a Sorted Grid (Algorithm 3)

$A[1:n, 1:n]$ with $n = 2^m - 1$

**Algorithm 3 (search for $x$):**

Starting from the top row perform a *binary search* for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

$left \leftarrow 1$

$right \leftarrow n$

while $left \leq right$ do

$mid \leftarrow \frac{left + right}{2}$

if $A[i, mid] = x$ then

return "item found"

else if $A[i, mid] < x$ then

$left \leftarrow mid + 1$

else right $\leftarrow mid - 1$

end while

return "item not found"

Search for $x = 35$
**Searching in a Sorted Grid (Algorithm 3)**

| A[1:n,1:n] | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 5 | 10 | 11 | 20 | 22 | 26 | 30 | 31 | 34 | 37 | 40 | 45 | 4 | 6 | 15 | 18 | 27 | 30 | 31 | 38 | 39 | 40 | 42 | 42 | 44 | 48 | 48 |
| 7 | 9 | 16 | 21 | 27 | 31 | 39 | 41 | 41 | 48 | 50 | 55 | 55 | 59 | 8 | 13 | 22 | 22 | 27 | 34 | 40 | 45 | 48 | 50 | 50 | 58 | 58 | 65 |
| 11 | 14 | 29 | 31 | 35 | 36 | 41 | 49 | 55 | 55 | 58 | 59 | 61 | 62 | 67 | 15 | 20 | 30 | 32 | 39 | 42 | 50 | 59 | 60 | 60 | 65 | 68 | 71 |
| 16 | 21 | 35 | 41 | 41 | 43 | 44 | 58 | 62 | 69 | 69 | 70 | 70 | 70 | 75 | 20 | 22 | 36 | 41 | 42 | 50 | 50 | 61 | 65 | 70 | 75 | 75 | 76 | 78 |
| 21 | 25 | 37 | 44 | 44 | 59 | 60 | 62 | 70 | 72 | 75 | 76 | 78 | 80 | 21 | 28 | 39 | 48 | 50 | 50 | 61 | 65 | 70 | 75 | 75 | 76 | 78 | 78 | 80 |
| 22 | 28 | 39 | 48 | 50 | 61 | 62 | 66 | 71 | 75 | 75 | 76 | 78 | 81 | 85 | 26 | 31 | 40 | 56 | 65 | 65 | 69 | 75 | 78 | 78 | 80 | 82 | 82 | 88 |
| 26 | 31 | 40 | 56 | 65 | 65 | 69 | 75 | 78 | 78 | 80 | 82 | 84 | 84 | 85 | 85 | 91 | 29 | 34 | 41 | 61 | 66 | 69 | 72 | 72 | 78 | 80 | 80 | 81 | 82 | 84 | 88 |
| 31 | 41 | 45 | 66 | 67 | 70 | 72 | 72 | 78 | 82 | 84 | 84 | 85 | 86 | 86 | 88 | 95 | 32 | 45 | 49 | 67 | 67 | 72 | 78 | 80 | 81 | 86 | 85 | 86 | 86 | 88 | 95 |
| 40 | 55 | 56 | 70 | 71 | 75 | 81 | 81 | 81 | 86 | 86 | 88 | 91 | 93 | 98 | Search for \( x = 35 \) 

**Algorithm 3 (search for \( x \))**:

Starting from the top row perform a *binary search* for \( x \) in each row until \( x \) is found.

**Binary search in row \( i \) of \( A \):**

- \( left \leftarrow 1 \)
- \( right \leftarrow n \)
- while \( left \leq right \) do
  - \( mid \leftarrow \frac{left+right}{2} \)
  - if \( A[i, mid] = x \) then
    - return "item found"
  - else if \( A[i, mid] < x \) then
    - \( left \leftarrow mid + 1 \)
  - else \( right \leftarrow mid - 1 \)
- end while
- return "item not found"
### Searching in a Sorted Grid (Algorithm 3)

The algorithm searches for a value in a grid of `n x n` elements, where `n = 2^m - 1`. The algorithm starts from the top row and performs a binary search for the value in each row until the value is found.

#### Algorithm 3 (Search for `x`):

1. Starting from the top row, perform a binary search for `x` in each row until `x` is found.

   ```plaintext
   left ← 1
   right ← n
   while left ≤ right do
       mid ← (left + right) / 2
       if A[i, mid] = x then
           return "item found"
       else if A[i, mid] < x then
           left ← mid + 1
       else right ← mid - 1
   end while
   return "item not found"
   ```

2. Binary search in row `i` of `A`:

   - `left` ← 1
   - `right` ← `n`
   - while `left` ≤ `right` do
     - `mid` ← `(left + right) / 2`
     - if `A[i, mid] = x` then
       - return "item found"
     - else if `A[i, mid] < x` then
       - `left` ← `mid` + 1
     - else `right` ← `mid` - 1
   - end while
   - return "item not found"
Searching in a Sorted Grid (Algorithm 3):

An algorithm for searching in a sorted grid is as follows:

**Algorithm 3 (Search for x):**

Starting from the top row, perform a *binary search* for *x* in each row until *x* is found.

**Binary search in row *i* of *A*:**

- Let $left \leftarrow 1$
- Let $right \leftarrow n$

while $left \leq right$ do

- Let $mid \leftarrow \frac{left + right}{2}$

  if $A[i, mid] = x$ then

    return "item found"

  else if $A[i, mid] < x$ then

    $left \leftarrow mid + 1$

  else $right \leftarrow mid - 1$

end while

return "item not found"
Searching in a Sorted Grid (Algorithm 3)

**Algorithm 3 (Search for x):**

Starting from the top row, perform a *binary search* for \( x \) in each row until \( x \) is found.

**Binary search in row \( i \) of \( A \):**

\[
\text{left} \leftarrow 1 \\
\text{right} \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} \\
\quad \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \\
\quad \text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \quad \text{return } "\text{item found}" \\
\quad \quad \text{end if} \\
\quad \text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \quad \text{left} \leftarrow \text{mid} + 1 \\
\quad \quad \text{end if} \\
\quad \text{else right} \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return } "\text{item not found}" \\
\]
**Searching in a Sorted Grid (Algorithm 3)**

Algorithm 3 (Search for $x$):

Starting from the top row, perform a binary search for $x$ in each row until $x$ is found.

Binary search in row $i$ of $A$:

- $left \leftarrow 1$
- $right \leftarrow n$
- while $left \leq right$ do
  - $mid \leftarrow \frac{left + right}{2}$
  - if $A[i, mid] = x$ then
    - return "item found"
  - else if $A[i, mid] < x$ then
    - $left \leftarrow mid + 1$
  - else
    - $right \leftarrow mid - 1$
- end while
- return "item not found"

$n = 2^m - 1$

<table>
<thead>
<tr>
<th>$A[1:n,1:n]$</th>
<th>$n = 2^m - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 10 11 20 22 26 30 31 32 34 37 40 45</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>4 6 15 18 27 30 31 38 39 40 42 44 48 48</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41 41 41 48 50 55 55 59</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45 48 50 50 50 58 58 65</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>11 14 29 31 35 36 41 49 55 55 58 59 61 62 67</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>15 20 30 32 39 42 42 50 59 60 60 60 65 68 71</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>16 21 35 41 41 43 44 58 62 69 69 70 70 75</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>20 22 36 41 42 50 50 61 65 70 75 75 76 78 78</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>21 25 37 44 44 44 59 60 62 70 72 75 76 78 80</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>22 28 39 48 50 61 62 66 71 75 75 76 78 81 85</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>26 31 40 56 65 65 65 69 75 78 78 80 82 82 88</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>29 34 41 61 66 69 72 72 78 80 80 81 82 84 88</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>31 41 45 66 67 70 72 72 78 82 84 84 85 85 91</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>32 45 49 67 67 72 78 80 81 86 85 86 86 88 95</td>
<td>$n = 2^m - 1$</td>
</tr>
<tr>
<td>40 55 56 70 71 75 81 81 81 86 86 88 91 93 98</td>
<td>$n = 2^m - 1$</td>
</tr>
</tbody>
</table>

Search for $x = 35$
Searching in a Sorted Grid (Algorithm 3):

**ALGORITHM 3 (SEARCH FOR x):**

Starting from the top row perform a *binary search* for \( x \) in each row until \( x \) is found.

**Binary search in row \( i \) of \( A \):**

\[
\begin{align*}
\text{left} & \leftarrow 1 \\
\text{right} & \leftarrow n \\
\text{while } \text{left} \leq \text{right} \text{ do} & \\
\text{mid} & \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x & \text{ then} \\
\text{return "item found"} & \\
\text{else if } A[i, \text{mid}] < x & \text{ then} \\
\text{left} & \leftarrow \text{mid} + 1 \\
\text{else right} & \leftarrow \text{mid} - 1 \\
\text{end while} & \\
\text{return "item not found"}
\end{align*}
\]
### Searching in a Sorted Grid (Algorithm 3)

#### Algorithm 3 (search for $x$):

Starting from the top row perform a binary search for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

- $\text{left} \leftarrow 1$
- $\text{right} \leftarrow n$
- while $\text{left} \leq \text{right}$ do
  - $\text{mid} \leftarrow \frac{\text{left} + \text{right}}{2}$
  - if $A[i, \text{mid}] = x$ then
    - return "item found"
  - else if $A[i, \text{mid}] < x$ then
    - $\text{left} \leftarrow \text{mid} + 1$
  - else
    - right $\leftarrow \text{mid} - 1$
- end while
- return "item not found"

---

$n = 2^m - 1$

![Sorted Grid](image)

**Search for $x = 35$**

- $n = 2^m - 1$
- $m = 5$
- $n = 2^5 - 1 = 31$
- $m = \log_2 n$
- $m = \log_2 31 = 4.958$
- $m = 5$

- $n = 2^m - 1$
- $n = 2^5 - 1 = 31$
**Searching in a Sorted Grid (Algorithm 3)**

![Sorted Grid Image]

**Algorithm 3 (Search for x):**

Starting from the top row, perform a *binary search* for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

\[
\text{left } \leftarrow 1 \\
\text{right } \leftarrow n \\
\text{while left } \leq \text{right do} \\
\text{mid } \leftarrow \frac{\text{left} + \text{right}}{2} \\
\text{if } A[i, \text{mid}] = x \text{ then} \\
\quad \text{return "item found"} \\
\text{else if } A[i, \text{mid}] < x \text{ then} \\
\quad \text{left } \leftarrow \text{mid} + 1 \\
\text{else right } \leftarrow \text{mid} - 1 \\
\text{end while} \\
\text{return "item not found"}
\]
Searching in a Sorted Grid (Algorithm 3):

Starting from the top row, perform a *binary search* for \( x \) in each row until \( x \) is found.

**Algorithm 3 (Search for \( x \))**:

Starting from the top row, perform a *binary search* for \( x \) in each row until \( x \) is found.

Binary search in row \( i \) of \( A \):

\[
\begin{align*}
left & \leftarrow 1 \\
right & \leftarrow n \\
\text{while } left \leq right \text{ do} \\
& \quad \text{mid} \leftarrow \frac{left + right}{2} \\
& \quad \text{if } A[i, mid] = x \text{ then} \\
& \quad & \quad \text{return "item found"} \\
& \quad \text{else if } A[i, mid] < x \text{ then} \\
& \quad & \quad left \leftarrow mid + 1 \\
& \quad \text{else right} \leftarrow mid - 1 \\
& \text{end while} \\
& \text{return "item not found"}
\end{align*}
\]
Algorithm 3 (search for $x$):

Starting from the top row, perform a binary search for $x$ in each row until $x$ is found.

Binary search in row $i$ of $A$:

- $left \leftarrow 1$
- $right \leftarrow n$
- while $left \leq right$ do
  - $mid \leftarrow \frac{left+right}{2}$
  - if $A[i,mid] = x$ then
    - return "item found"
  - else if $A[i,mid] < x$ then
    - $left \leftarrow mid + 1$
  - else
    - $right \leftarrow mid - 1$
- end while
- return "item not found"
**Searching in a Sorted Grid (Algorithm 3)**

$A[1:n, 1:n]$  

\[ n = 2^m - 1 \]

**Algorithm 3 (Search for $x$):**

Starting from the top row, perform a *binary search* for $x$ in each row until $x$ is found.

**Binary search in row $i$ of $A$:**

- $left \leftarrow 1$
- $right \leftarrow n$
- while $left \leq right$ do
  - $mid \leftarrow \frac{left + right}{2}$
  - if $A[i, mid] = x$ then
    - return "item found"
  - else if $A[i, mid] < x$ then
    - $left \leftarrow mid + 1$
  - else $right \leftarrow mid - 1$
- end while
- return "item not found"
Searching in a Sorted Grid (Algorithm 3)

Algorithm 3 (search for x):

Starting from the top row perform a binary search for x in each row until x is found.

Binary search in row i of A:

left ← 1
right ← n
while left ≤ right do
    mid ← \( \frac{\text{left} + \text{right}}{2} \)
    if \( A[i, mid] = x \) then
        return "item found"
    else if \( A[i, mid] < x \) then
        left ← mid + 1
    else right ← mid - 1
end while
return "item not found"
Searching in a Sorted Grid (Algorithm 3)

\[ n = 2^m - 1 \]

**Algorithm 3 (Search for \( x \))**:

Starting from the top row, perform a binary search for \( x \) in each row until \( x \) is found.

Binary search in row \( i \) of \( A \):

- \( \text{left} \leftarrow 1 \)
- \( \text{right} \leftarrow n \)
- while \( \text{left} \leq \text{right} \) do
  - \( \text{mid} \leftarrow \frac{\text{left} + \text{right}}{2} \)
  - if \( A[i, \text{mid}] = x \) then
    - return "item found"
  - else if \( A[i, \text{mid}] < x \) then
    - \( \text{left} \leftarrow \text{mid} + 1 \)
  - else \( \text{right} \leftarrow \text{mid} - 1 \)
- end while
- return "item not found"
### Searching in a Sorted Grid (Algorithm 3)

Let $Q_3(n) = \text{number of comparisons performed on an } n \times n \text{ grid}$.

Binary search on each row performs $m$ comparisons.

So, $Q_3(n) \leq nm = n \log_2(n + 1)$

Search for $x = 35$
Searching in a Sorted Grid (Algorithm 4)

\[ n = 2^m - 1 \]

**Algorithm 4 (Search for \( x \)):**

Start the search for \( x \) from the bottom-left corner.
Searching in a Sorted Grid (Algorithm 4):

Algorithm 4 (search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (Search for \( x \)):**

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

- Let \( y \) be the number at current location.

  - **\( y = x \):** you found the item
  - **\( y < x \):** move to the right
  - **\( y > x \):** move to the cell above

---

<table>
<thead>
<tr>
<th>( n = 2^m - 1 )</th>
<th>( A[1:n,1:n] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n = 2^m - 1 )</td>
<td>( n = 2^m - 1 )</td>
</tr>
<tr>
<td>( 2 )</td>
<td>( 2 )</td>
</tr>
<tr>
<td>( 5 )</td>
<td>( 5 )</td>
</tr>
<tr>
<td>( 10 )</td>
<td>( 10 )</td>
</tr>
<tr>
<td>( 11 )</td>
<td>( 11 )</td>
</tr>
<tr>
<td>( 20 )</td>
<td>( 20 )</td>
</tr>
<tr>
<td>( 22 )</td>
<td>( 22 )</td>
</tr>
<tr>
<td>( 26 )</td>
<td>( 26 )</td>
</tr>
<tr>
<td>( 30 )</td>
<td>( 30 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 34 )</td>
<td>( 34 )</td>
</tr>
<tr>
<td>( 34 )</td>
<td>( 34 )</td>
</tr>
<tr>
<td>( 37 )</td>
<td>( 37 )</td>
</tr>
<tr>
<td>( 40 )</td>
<td>( 40 )</td>
</tr>
<tr>
<td>( 45 )</td>
<td>( 45 )</td>
</tr>
<tr>
<td>( 4) )</td>
<td>( 4 )</td>
</tr>
<tr>
<td>( 6 )</td>
<td>( 6 )</td>
</tr>
<tr>
<td>( 15 )</td>
<td>( 15 )</td>
</tr>
<tr>
<td>( 18 )</td>
<td>( 18 )</td>
</tr>
<tr>
<td>( 27 )</td>
<td>( 27 )</td>
</tr>
<tr>
<td>( 30 )</td>
<td>( 30 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 38 )</td>
<td>( 38 )</td>
</tr>
<tr>
<td>( 39 )</td>
<td>( 39 )</td>
</tr>
<tr>
<td>( 40 )</td>
<td>( 40 )</td>
</tr>
<tr>
<td>( 42 )</td>
<td>( 42 )</td>
</tr>
<tr>
<td>( 42 )</td>
<td>( 42 )</td>
</tr>
<tr>
<td>( 44 )</td>
<td>( 44 )</td>
</tr>
<tr>
<td>( 48 )</td>
<td>( 48 )</td>
</tr>
<tr>
<td>( 48 )</td>
<td>( 48 )</td>
</tr>
<tr>
<td>( 7 )</td>
<td>( 7 )</td>
</tr>
<tr>
<td>( 9 )</td>
<td>( 9 )</td>
</tr>
<tr>
<td>( 16 )</td>
<td>( 16 )</td>
</tr>
<tr>
<td>( 21 )</td>
<td>( 21 )</td>
</tr>
<tr>
<td>( 27 )</td>
<td>( 27 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 39 )</td>
<td>( 39 )</td>
</tr>
<tr>
<td>( 40 )</td>
<td>( 40 )</td>
</tr>
<tr>
<td>( 42 )</td>
<td>( 42 )</td>
</tr>
<tr>
<td>( 42 )</td>
<td>( 42 )</td>
</tr>
<tr>
<td>( 44 )</td>
<td>( 44 )</td>
</tr>
<tr>
<td>( 48 )</td>
<td>( 48 )</td>
</tr>
<tr>
<td>( 50 )</td>
<td>( 50 )</td>
</tr>
<tr>
<td>( 50 )</td>
<td>( 50 )</td>
</tr>
<tr>
<td>( 50 )</td>
<td>( 50 )</td>
</tr>
<tr>
<td>( 52 )</td>
<td>( 52 )</td>
</tr>
<tr>
<td>( 52 )</td>
<td>( 52 )</td>
</tr>
<tr>
<td>( 58 )</td>
<td>( 58 )</td>
</tr>
<tr>
<td>( 61 )</td>
<td>( 61 )</td>
</tr>
<tr>
<td>( 62 )</td>
<td>( 62 )</td>
</tr>
<tr>
<td>( 65 )</td>
<td>( 65 )</td>
</tr>
<tr>
<td>( 11 )</td>
<td>( 11 )</td>
</tr>
<tr>
<td>( 14 )</td>
<td>( 14 )</td>
</tr>
<tr>
<td>( 29 )</td>
<td>( 29 )</td>
</tr>
<tr>
<td>( 31 )</td>
<td>( 31 )</td>
</tr>
<tr>
<td>( 35 )</td>
<td>( 35 )</td>
</tr>
<tr>
<td>( 36 )</td>
<td>( 36 )</td>
</tr>
<tr>
<td>( 41 )</td>
<td>( 41 )</td>
</tr>
<tr>
<td>( 41 )</td>
<td>( 41 )</td>
</tr>
<tr>
<td>( 43 )</td>
<td>( 43 )</td>
</tr>
<tr>
<td>( 43 )</td>
<td>( 43 )</td>
</tr>
<tr>
<td>( 44 )</td>
<td>( 44 )</td>
</tr>
<tr>
<td>( 44 )</td>
<td>( 44 )</td>
</tr>
<tr>
<td>( 58 )</td>
<td>( 58 )</td>
</tr>
<tr>
<td>( 62 )</td>
<td>( 62 )</td>
</tr>
<tr>
<td>( 69 )</td>
<td>( 69 )</td>
</tr>
<tr>
<td>( 70 )</td>
<td>( 70 )</td>
</tr>
<tr>
<td>( 75 )</td>
<td>( 75 )</td>
</tr>
<tr>
<td>( 78 )</td>
<td>( 78 )</td>
</tr>
<tr>
<td>( 80 )</td>
<td>( 80 )</td>
</tr>
<tr>
<td>( 82 )</td>
<td>( 82 )</td>
</tr>
<tr>
<td>( 85 )</td>
<td>( 85 )</td>
</tr>
<tr>
<td>( 88 )</td>
<td>( 88 )</td>
</tr>
<tr>
<td>( 91 )</td>
<td>( 91 )</td>
</tr>
<tr>
<td>( 93 )</td>
<td>( 93 )</td>
</tr>
<tr>
<td>( 98 )</td>
<td>( 98 )</td>
</tr>
</tbody>
</table>

Search for \( x = 68 \)
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (search for x):**

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

**Search for $x = 68$**

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>
## Searching in a Sorted Grid (Algorithm 4)

$$n = 2^m - 1$$

### Algorithm 4 (Search for x):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

---

<table>
<thead>
<tr>
<th>A[1:n, 1:n]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Search for $x = 68$
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (Search for \( x \))**:

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

Let \( y \) be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

**Search for \( x = 68 \)**

<table>
<thead>
<tr>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
</tr>
</tbody>
</table>
Searching in a Sorted Grid (Algorithm 4):

Algorithm 4 (Search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
# Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (search for \(x\)):**

Start the search for \(x\) from the bottom-left corner.

Keep performing the steps below until either you find \(x\) or you fall off the grid:

Let \(y\) be the number at current location.

- \(y = x\): you found the item
- \(y < x\): move to the right
- \(y > x\): move to the cell above

---

<table>
<thead>
<tr>
<th>(n = 2^m - 1)</th>
<th>(A[1:n,1:n])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) (5) (10) (11)</td>
<td>(20) (22) (26) (30) (31) (34) (37) (40) (45)</td>
</tr>
<tr>
<td>(4) (6) (15) (18)</td>
<td>(27) (30) (31) (38) (39) (40) (42) (44) (48) (48)</td>
</tr>
<tr>
<td>(7) (9) (16) (21)</td>
<td>(27) (31) (39) (41) (41) (48) (50) (55) (58) (59)</td>
</tr>
<tr>
<td>(8) (13) (22) (22)</td>
<td>(27) (34) (40) (45) (48) (50) (50) (58) (58) (65)</td>
</tr>
<tr>
<td>(11) (14) (29) (31)</td>
<td>(35) (36) (41) (49) (55) (55) (58) (59) (61) (62) (67)</td>
</tr>
<tr>
<td>(15) (20) (30) (32)</td>
<td>(39) (42) (42) (50) (59) (60) (60) (65) (68) (71)</td>
</tr>
<tr>
<td>(16) (21) (35) (41)</td>
<td>(41) (43) (44) (58) (62) (69) (69) (70) (70) (70) (75)</td>
</tr>
<tr>
<td>(20) (22) (36) (41)</td>
<td>(42) (50) (50) (61) (65) (70) (75) (75) (76) (78) (78)</td>
</tr>
<tr>
<td>(21) (25) (37) (44)</td>
<td>(44) (59) (60) (62) (70) (72) (75) (76) (78) (78) (80)</td>
</tr>
<tr>
<td>(22) (28) (39) (48)</td>
<td>(50) (61) (62) (66) (71) (75) (75) (76) (78) (81) (85)</td>
</tr>
<tr>
<td>(26) (31) (40) (56)</td>
<td>(65) (65) (65) (69) (75) (78) (78) (80) (82) (82) (88)</td>
</tr>
<tr>
<td>(29) (34) (41) (61)</td>
<td>(66) (69) (72) (72) (78) (80) (80) (81) (82) (84) (88)</td>
</tr>
<tr>
<td>(31) (41) (45) (66)</td>
<td>(67) (70) (72) (72) (78) (82) (84) (84) (85) (85) (91)</td>
</tr>
<tr>
<td>(32) (45) (49) (67) (67)</td>
<td>(72) (78) (80) (81) (86) (85) (86) (86) (88) (95)</td>
</tr>
<tr>
<td>(40) (55) (56) (70) (71) (75) (81) (81) (81) (86) (86) (88)</td>
<td>(91) (93) (98)</td>
</tr>
</tbody>
</table>

Search for \(x = 68\)
## Searching in a Sorted Grid (Algorithm 4)

*\[ n = 2^m - 1 \]*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
</tr>
</tbody>
</table>

### Algorithm 4 (Search for \(x\)):

Start the search for \(x\) from the bottom-left corner.

Keep performing the steps below until either you find \(x\) or you fall off the grid:

Let \(y\) be the number at current location.

- \(y = x\): you found the item
- \(y < x\): move to the right
- \(y > x\): move to the cell above

Search for \(x = 68\)
Searching in a Sorted Grid (Algorithm 4)

\[ n = 2^m - 1 \]

**Algorithm 4 (search for \( x \)):**

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

Let \( y \) be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

Search for \( x = 68 \)
### Algorithm 4 (Search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
**Searching in a Sorted Grid (Algorithm 4)**

\[ n = 2^m - 1 \]

<table>
<thead>
<tr>
<th>( A[1:n,1:n] )</th>
<th>2 5 10 11 20 22 26 30 31 34 34 37 40 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 6 15 18 27 30 31 38 39 40 42 42 44 48 48</td>
<td></td>
</tr>
<tr>
<td>7 9 16 21 27 31 39 41 41 41 48 50 50 50 58 65</td>
<td></td>
</tr>
<tr>
<td>8 13 22 22 27 34 40 45 48 50 50 50 58 58 65</td>
<td></td>
</tr>
<tr>
<td>11 14 29 31 35 36 41 49 55 55 58 59 61 62 67</td>
<td></td>
</tr>
<tr>
<td>15 20 30 32 39 42 42 50 59 60 60 60 65 68 71</td>
<td></td>
</tr>
<tr>
<td>16 21 35 41 41 43 44 58 62 69 69 70 70 70 75</td>
<td></td>
</tr>
<tr>
<td>20 22 36 41 42 50 50 61 65 70 75 75 76 78 78</td>
<td></td>
</tr>
<tr>
<td>21 25 37 44 44 44 59 60 62 70 72 75 76 78 80</td>
<td></td>
</tr>
<tr>
<td>22 28 39 48 50 61 62 66 71 75 75 76 78 81 85</td>
<td></td>
</tr>
<tr>
<td>26 31 40 56 65 65 65 69 75 78 78 80 82 82 88</td>
<td></td>
</tr>
<tr>
<td>29 34 41 61 66 69 72 72 78 80 80 81 82 84 88</td>
<td></td>
</tr>
<tr>
<td>31 41 45 66 67 70 72 72 78 82 84 84 85 85 91</td>
<td></td>
</tr>
<tr>
<td>32 45 49 67 67 72 78 80 81 86 85 86 86 88 95</td>
<td></td>
</tr>
<tr>
<td>40 55 56 70 71 75 81 81 81 86 86 88 91 93 98</td>
<td></td>
</tr>
</tbody>
</table>

**Algorithm 4 (Search for \( x \))**:

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

Let \( y \) be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

Search for \( x = 68 \)
### Searching in a Sorted Grid (Algorithm 4)

#### Algorithm 4 (Search for x):

Start the search for \(x\) from the bottom-left corner.

Keep performing the steps below until either you find \(x\) or you fall off the grid:

Let \(y\) be the number at current location.

- \(y = x\): you found the item
- \(y < x\): move to the right
- \(y > x\): move to the cell above

Search for \(x = 68\)
## Searching in a Sorted Grid (Algorithm 4)

$n = 2^m - 1$

### Algorithm 4 (Search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (Search for x):**

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

1. Let $y$ be the number at current location.
2. If $y = x$: you found the item
3. If $y < x$: move to the right
4. If $y > x$: move to the cell above

---

Table: $A[1:n,1:n]$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

Algorithm 4 (Search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

Algorithm 4 (Search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- y = x: you found the item
- y < x: move to the right
- y > x: move to the cell above

Search for x = 68
### Searching in a Sorted Grid (Algorithm 4)


define $n = 2^m - 1$ for the grid size $[1, n] 	imes [1, n]$


<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>49</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

**Algorithm 4 (search for $x$):**

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

- Let $y$ be the number at current location.
- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (search for $x$):**

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

- Let $y$ be the number at current location.
  - $y = x$: you found the item
  - $y < x$: move to the right
  - $y > x$: move to the cell above

#### Search for $x = 68$
### Searching in a Sorted Grid (Algorithm 4)

$n = 2^m - 1$

#### Algorithm 4 (Search for $x$):

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

- **$y = x$:** you found the item
- **$y < x$:** move to the right
- **$y > x$:** move to the cell above

---

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

\[ n = 2^m - 1 \]

Algorithm 4 (Search for \( x \)):

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

Let \( y \) be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

Search for \( x = 68 \)
# Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (search for \( x \)):**

Start the search for \( x \) from the bottom-left corner.

Keep performing the steps below until either you find \( x \) or you fall off the grid:

Let \( y \) be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

| Search for \( x = 68 \) | Algorithm 4 (search for \( x \)): Start the search for \( x \) from the bottom-left corner. Keep performing the steps below until either you find \( x \) or you fall off the grid: Let \( y \) be the number at current location.  
- \( y = x \): you found the item  
- \( y < x \): move to the right  
- \( y > x \): move to the cell above |
### Searching in a Sorted Grid (Algorithm 4)

**Algorithm 4 (search for \( x \)):**

- **Start the search for \( x \)** from the bottom-left corner.
- Keep performing the steps below until either you find \( x \) or you fall off the grid:
  - **Let \( y \)** be the number at the current location.
    - \( y = x \): you found the item
    - \( y < x \): move to the right
    - \( y > x \): move to the cell above

---

**Search for \( x = 68 \)**
**Searching in a Sorted Grid (Algorithm 4)**

$n = 2^m - 1$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>22</th>
<th>26</th>
<th>30</th>
<th>31</th>
<th>34</th>
<th>34</th>
<th>37</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>44</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>39</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td>58</td>
<td>58</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>29</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>30</td>
<td>32</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>35</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>58</td>
<td>62</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>36</td>
<td>41</td>
<td>42</td>
<td>50</td>
<td>50</td>
<td>61</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>59</td>
<td>60</td>
<td>62</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>39</td>
<td>48</td>
<td>50</td>
<td>61</td>
<td>62</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>78</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>40</td>
<td>56</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>69</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>41</td>
<td>61</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>45</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>78</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>49</td>
<td>67</td>
<td>67</td>
<td>72</td>
<td>78</td>
<td>80</td>
<td>81</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>55</td>
<td>56</td>
<td>70</td>
<td>71</td>
<td>75</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>91</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

**Algorithm 4 (search for x):**

Start the search for $x$ from the bottom-left corner.

Keep performing the steps below until either you find $x$ or you fall off the grid:

Let $y$ be the number at current location.

- $y = x$: you found the item
- $y < x$: move to the right
- $y > x$: move to the cell above

Search for $x = 68$
Searching in a Sorted Grid (Algorithm 4):

Algorithm 4 (search for x):

Start the search for x from the bottom-left corner.

Keep performing the steps below until either you find x or you fall off the grid:

Let y be the number at current location.

- \( y = x \): you found the item
- \( y < x \): move to the right
- \( y > x \): move to the cell above

Search for \( x = 68 \)
Let $Q_4(n)$ = number of comparisons performed on an $n \times n$ grid.

Then $Q_4(n) \leq 2n - 1 < 2n$
Comparing the Four (4) Grid Search Algorithms

\[ Q_1(n) \geq n^2 \]
\[ Q_2(n) \geq 2(n + 1)^{1.6} \]
\[ Q_3(n) \geq n \ln(n + 1) \]
\[ Q_4(n) \geq \ln(2) \]
\[ Q_5(n) \geq 2n \]
Searching in a Sorted Grid (Algorithm 1)

Let $T_1(n)$ = running time of algorithm 1 on an $n \times n$ grid.

Though we were able to compute an exact worst-case bound for $Q_1(n)$, the same cannot be done for $T_1(n)$ because it depends on many other external factors such as CPU speed, programming style, compiler and optimization level used, etc.

But for large values of $n$, $T_1(n)$’s worst-case value will be within a constant factor of that of $Q_1(n)$. That constant is generally unknown, and depends on the specific hardware and compiler used, expertise of the programmer, etc.

**Algorithm 1 (search for $x$):**

1. for $i = 1$ to $n$ do
2. for $j = 1$ to $n$ do
3. if $A[i, j] = x$ then return "item found"
4. end for
5. end for
6. return "item not found"
Searching in a Sorted Grid (Algorithm 1):

1. for $i = 1$ to $n$ do
2. \hspace{1em} for $j = 1$ to $n$ do
3. \hspace{2em} if $A[i, j] = x$ then return "item found"
4. \hspace{1em} end for
5. \hspace{1em} end for
6. return "item not found"

In the worst case,

- line 3 will be executed $n^2$ times,
- variable $j$ in line 2 will be updated $n^2$ times,
- variable $i$ in line 1 will be updated $n$ times, and
- line 6 will be executed will be executed 1 time.

Hence, $T_1(n) \leq a_1 n^2 + a_2 n + a_3$, where $a_1$, $a_2$ and $a_3$ are constants.

Clearly, $T_1(n) \leq (a_1 + 1) n^2 = (a_1 + 1) Q_1(n)$, when $n \geq a_2 + a_3$. 
Why Lower Order Terms Can be Dropped

The graph illustrates the comparison of different functions of $n$ over a range of values. The functions shown are:

- $n^2$ (dotted red line)
- $n^2 + 10n$ (black line)
- $n^2 + 100n$ (blue dashed line)
- $n^2 + 1000n$ (green dashed line)

The graph demonstrates how higher order terms dominate as $n$ increases, justifying the omission of lower order terms in certain calculations or approximations.
Running Times of the Four (4) Algorithms for Large \( n \)

<table>
<thead>
<tr>
<th>Grid Searching Algorithm</th>
<th>Worst-Case Bound on #Comparisons</th>
<th>Worst-Case Bound on Running Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm 1</td>
<td>( Q_1(n) \leq n^2 )</td>
<td>( T_1(n) \leq c_1 n^2 )</td>
</tr>
<tr>
<td>Algorithm 2</td>
<td>( Q_2(n) \leq 2(n + 1)^{1.6} )</td>
<td>( T_2(n) \leq c_2 (n + 1)^{1.6} )</td>
</tr>
<tr>
<td>Algorithm 3</td>
<td>( Q_3(n) \leq n \log_2 (n + 1) )</td>
<td>( T_3(n) \leq c_3 n \log_2 (n + 1) )</td>
</tr>
<tr>
<td>Algorithm 4</td>
<td>( Q_4(n) \leq 2n )</td>
<td>( T_4(n) \leq c_4 n )</td>
</tr>
</tbody>
</table>

\( c_1, c_2, c_3 \) and \( c_4 \) are constants.
Why Faster Algorithms?

As the input gets large a faster algorithm run on a slow computer will eventually beat a slower algorithm run on a fast computer!

Suppose we run Algorithm 4 on computer $A$ that can execute only 1 million instructions per second. The algorithm was implemented by an inexperienced programmer, and so $c_4 = 10$.

Suppose we run Algorithm 1 on computer $B$ that is 1000 times faster than $A$, and the algorithm was implemented by an expert programmer, and so $c_1 = 1$.

Let’s run both algorithm on a large grid with $n = 100,000$.

Then Algorithm 1 will require up to $\frac{1 \times (100000)^2}{1000000000} = 10$ seconds, while Algorithm 4 will terminate in only $\frac{10 \times 100000}{1000000} = 1$ second!
Asymptotic Bounds

We compute performance bounds as functions of input size $n$. Asymptotic bounds are obtained when $n \to \infty$.

Several types of asymptotic bounds

- upper bound (O-notation)
- strict upper bound (o-notation)
- lower bound (Ω-notation)
- strict lower bound (ω-notation)
- tight bound (Θ-notation)
Asymptotic Upper Bound (\( O \)-notation)

\[
O(g(n)) = \left\{ f(n) \text{: there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \right\}
\]

\[
O(g(n)) = \left\{ f(n) \text{: there exists a positive constant } c \text{ such that } \\
\lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) \leq c \right\}
\]
Recall that for Algorithm 1 we had, $T_1(n) \leq f(n)$, where,

$$f(n) = a_1 n^2 + a_2 n + a_3,$$

for constants $a_1, a_2$ and $a_3$.

Suppose, $a_1 = 5$, $a_2 = 2$ and $a_3 = 9$.

Then $f(n) = 5n^2 + 2n + 9$.

We will now derive asymptotic bounds for $f(n)$. 

**Asymptotic Upper Bound (O-notation).**
Let $g(n) = n^2$.

Then $f(n) = O(n^2)$ because:

$$0 \leq f(n) \leq cg(n) \text{ for } c = 6 \text{ and } n \geq 5.$$
Asymptotic Upper Bound (O-notation)

Let $g(n) = n^3$.

Then $f(n) = O(n^3)$ because:

$$0 \leq f(n) \leq cg(n) \text{ for } c = 1 \text{ and } n \geq 6.$$
Asymptotic Upper Bound (O-notation)

Let $g(n) = n$.

Then $f(n) \neq O(n)$ because:

$$f(n) > cg(n) \text{ for any } c \text{ and } n \geq \frac{c}{5}.$$. 
Asymptotic Lower Bound (Ω-notation)

\[ \Omega(g(n)) = \left\{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \right. \]
\[ 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \]

\[ \Omega(g(n)) = \left\{ f(n) : \text{there exists a positive constant } c \text{ such that} \right. \]
\[ \lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) \geq c \]
Let \( g(n) = n^2 \).

Then \( f(n) = \Omega(n^2) \) because:

\[
0 \leq cg(n) \leq f(n) \text{ for } c = 5 \text{ and } n \geq 1.
\]
Let $g(n) = n^3$.

Then $f(n) \neq \Omega(n^3)$ because:

$$cg(n) > f(n) \text{ for any } c \text{ and } n \geq \frac{5}{c}.$$
Let $g(n) = n$.

Then $f(n) = \Omega(n)$ because:

$$0 \leq cg(n) \leq f(n) \text{ for } c = 30 \text{ and } n \geq 6.$$
Asymptotic Tight Bound (Θ-notation)

\[ \Theta(g(n)) = \left\{ f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that} \right. \]
\[
\left. 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \right\}

\[ \Theta(g(n)) = \left\{ f(n) : \text{there exist positive constants } c_1 \text{ and } c_2 \text{ such that} \right. \]
\[
\left. c_1 \leq \lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) \leq c_2 \right\} \]
Asymptotic Tight Bound (Θ-notation)

\[
\begin{align*}
(f(n) = \Omega(g(n))) & \land (f(n) = \Omega(g(n))) \\
\iff (f(n) = \Theta(g(n)))
\end{align*}
\]
Asymptotic Tight Bound ($\Theta$-notation)

$$f(n) = 5n^2 + 2n + 9$$

$$f(n) = \Theta(n^2)$$ because both $f(n) = O(n^2)$ and $f(n) = \Omega(n^2)$ hold.

$$f(n) \neq \Theta(n^3)$$ because though $f(n) = O(n^3)$ holds, $f(n) \neq \Omega(n^3)$.

$$f(n) \neq \Theta(n)$$ because though $f(n) = \Omega(n)$ holds, $f(n) \neq O(n)$. 
Asymptotic Strict Upper Bound (\( o \)-notation)

\[
O(g(n)) = \left\{ f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \right. \\
0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0
\]

\[
O(g(n)) = \left\{ f(n): \text{there exists a positive constant } c \text{ such that} \right. \\
\lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) \leq c
\]

\[
o(g(n)) = \left\{ f(n): \lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) = 0 \right\}
\]
Asymptotic Strict Lower Bound ($\omega$-notation)

\[ \Omega(g(n)) = \left\{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \right\} \]

\[ \Omega(g(n)) = \left\{ f(n) : \text{there exists a positive constant } c \text{ such that } \\
\lim_{n \to \infty} \left( \frac{f(n)}{g(n)} \right) \geq c \right\} \]

\[ \omega(g(n)) = \left\{ f(n) : \lim_{n \to \infty} \left( \frac{g(n)}{f(n)} \right) = 0 \right\} \]
Comparing Functions: Transitivity

\[ f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) \implies f(n) = O(h(n)) \]

\[ f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n)) \implies f(n) = \Omega(h(n)) \]

\[ f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n)) \implies f(n) = \Theta(h(n)) \]

\[ f(n) = o(g(n)) \text{ and } g(n) = o(h(n)) \implies f(n) = o(h(n)) \]

\[ f(n) = \omega(g(n)) \text{ and } g(n) = \omega(h(n)) \implies f(n) = \omega(h(n)) \]
Comparing Functions: Reflexivity

\[ f(n) = O(f(n)) \]

\[ f(n) = \Omega(f(n)) \]

\[ f(n) = \Theta(f(n)) \]
Comparing Functions: Symmetry

\[ f(n) = \Theta(g(n)) \quad \text{if and only if} \quad g(n) = \Theta(f(n)) \]
Comparing Functions: Transpose Symmetry

\[
f(n) = O(g(n)) \quad \text{if and only if} \quad g(n) = \Omega(f(n))
\]

\[
f(n) = \Omega(g(n)) \quad \text{if and only if} \quad g(n) = O(f(n))
\]
Adding Functions

\[ O(f(n)) + O(g(n)) = O(f(n) + g(n)) \]
\[ \Omega(f(n)) + \Omega(g(n)) = \Omega(f(n) + g(n)) \]
\[ \Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n)) \]
Multiplying Functions by Constants

\[ O(c f(n)) = O(f(n)) \]
\[ \Omega(cf(n)) = \Omega(f(n)) \]
\[ \Theta(cf(n)) = \Theta(f(n)) \]
Multiplying Two Functions

\[ O(f(n)) \times O(g(n)) = O(f(n) \times g(n)) \]

\[ \Omega(f(n)) \times \Omega(g(n)) = \Omega(f(n) \times g(n)) \]

\[ \Theta(f(n)) \times \Theta(g(n)) = \Theta(f(n) \times g(n)) \]
Division of Functions

\[
\frac{O(f(n))}{\Theta(g(n))} = O\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Omega(f(n))}{\Theta(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Theta(f(n))}{\Theta(g(n))} = \Theta\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{0(f(n))}{\Omega(g(n))} = 0\left(\frac{f(n)}{g(n)}\right) \quad \frac{\Omega(f(n))}{0(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]

\[
\frac{\Theta(f(n))}{\Omega(g(n))} = 0\left(\frac{f(n)}{g(n)}\right) \quad \frac{\Theta(f(n))}{0(g(n))} = \Omega\left(\frac{f(n)}{g(n)}\right)
\]